Topology of density matrices and their detection

Michael Fleischhauer

Dept. of Physics & research center OPTIMAS Technische Universität Kaiserslautern

Adv. School & Workshop on Quantum Science & Technolog, 11.09.2017 picture: wikipedia

exotic quantum states

topological protection

Abelian & non-Abelian anyons

protected edge states & edge transport

topology at finite T: what is left ??

• topology in non-equilibrium driven, open systems??

 topology at finite T: what is left ??

 topology in non-equilibrium driven, open systems??

the 10-fold way

 Topological insulators of non-interacting fermions

$$H = \sum_{ij} h_{ij} \, \hat{c}_i^{(\dagger)} \hat{c}_j$$

$$U_T^{\dagger} h^* U_T = +h$$

$$U_C^{\dagger} h^* U_C = -h$$

Cartan label	Т	C	S	Hamiltonian
A (unitary)	0	0	0	$\mathrm{U}(N)$
AI (orthogonal)	+1	0	0	U(N)/O(N)
AII (symplectic)	-1	0	0	U(2N)/Sp(2N)
AIII (ch. unit.)	0	0	1	$U(N+M)/U(N) \times U(M)$
BDI (ch. orth.)	+1	+1	1	$O(N+M)/O(N) \times O(M)$
CII (ch. sympl.)	-1	-1	1	$\operatorname{Sp}(N+M)/\operatorname{Sp}(N) \times \operatorname{Sp}(M)$
D (BdG)	0	+1	0	SO(2N)
C (BdG)	0	-1	0	$\operatorname{Sp}(2N)$
DIII (BdG)	-1	+1	1	SO(2N)/U(N)
CI (BdG)	+1	-1	1	$\operatorname{Sp}(2N)/\operatorname{U}(N)$

Non-interacting (Gaussian) open systems

density matrix
$$\rho \sim \exp\left\{-\sum_{ij} \hat{c}_i^{\dagger} G_{ij} c_j\right\}$$

single-particle correlations

 $[\tanh(G/2)]_{ij} = \left\langle [\hat{c}_i^{\dagger}, \hat{c}_j] \right\rangle$

$$H = \sum_{ij} h_{ij} \, \hat{c}_i^{(\dagger)} \hat{c}_j$$

$$L_j \sim \alpha \, \hat{c}_j^\dagger + \beta \, \hat{c}_j$$

- topological invariants & polarization
- topological pumps
- Ensemble Geometric Phase
- detecting polarization & realizing the effective Hamiltonian

- topological invariants & polarization
- topological pumps
- Ensemble Geometric Phase
- detecting polarization & realizing the effective Hamiltonian

- topological invariants & polarization
- topological pumps
- Ensemble Geometric Phase
- detecting polarization & realizing the effective Hamiltonian

- topological invariants & polarization
- topological pumps
- Ensemble Geometric Phase
- detecting polarization & realizing the effective Hamiltonian

topological invariants & polarization

topological invariants: geometric phases

Zak (Berry) phase

$$\phi_{\rm Zak} = \int_{-\pi/a}^{\pi/a} dk \, \langle u_k | i \partial_k | u_k \rangle$$

• 1D: winding number $\hat{H} = \hat{H}(\lambda)$

$$\nu = \frac{1}{2\pi} \oint d\lambda \, \frac{\partial \phi_{\rm Zak}}{\partial \lambda}$$

2D: Chern number

$$C = \frac{i}{2\pi} \iint_{\mathrm{BZ}} \mathrm{d}^2 k \sum_{\alpha} \left\{ \langle \partial_{k_y} u_k^{\alpha} | \partial_{k_x} u_k^{\alpha} \rangle - \langle \partial_{k_x} u_k^{\alpha} | \partial_{k_y} u_k^{\alpha} \rangle \right\}$$

Thouless, Kohmoto, Nightingale, den Nijs (TKNN) PRL (1982)

$$\Delta n = \frac{1}{2\pi} \oint d\lambda \, \frac{\partial \phi_{\text{Zak}}}{\partial \lambda}$$

Su-Shrieffer-Heeger model

$$\hat{\mathcal{H}}_{\text{SSH}} = -t_1 \sum_{j:\text{even}} a_{j+1}^{\dagger} a_j - t_2 \sum_{j:\text{odd}} a_{j+1}^{\dagger} a_j + \text{h.a.}$$
chiral symmetry
$$\left\{\hat{\mathcal{H}}, \hat{\Sigma}_z\right\} = 0$$

$$t_1$$

Su, Schrieffer, Heeger. Phys. Rev. Lett. (1979)

Su-Shrieffer-Heeger model

Rice-Mele model

$$\hat{\mathcal{H}}_{\rm RM} = \mathcal{H}_{\rm SSH} + \Delta \sum_{j} (-1)^{j} a_{j}^{\dagger} a_{j} \qquad \left\{ \hat{\mathcal{H}}, \hat{\Sigma}_{z} \right\} \neq 0$$

Rice & Mele, Phys. Rev. Lett. (1982)

geometric phase

topological pumps

mixed states

charge pumps at finite T

Wang, Troyer, Dai, Phys. Rev. Lett. **111**, 026802 (2013)

polarization to quantify topology

polarization

King-Smith, Vanderbildt PRB (1983)

$$\Delta \phi_{\text{Zak}} = \frac{2\pi}{a} \Delta P$$

$$P = \int dx \, w^*(x) \, x \, w(x)$$
R. Resta PRL **80**, 1800 (1998)
$$P = \frac{1}{2\pi} \text{Im} \ln \left\langle \exp\left\{i\frac{2\pi}{L}\hat{X}\right\} \right\rangle$$

topological pumps

 \sim \wedge

I. finite-temperature Rice-Mele model

finite-T Rice-Mele

finite-T Rice-Mele

- polarization winding remains non-trivial for all T
- changes sign at $T = \infty$, i.e. going to negative T

II. reservoir-induced topological pump

D. Linzner, L. Wawer, F. Grusdt, M. F., PRB (R) 94, 201105 (2016)

model

model

action of Lindblad generators

steady-state Thouless pump

robustness

Hamiltonian disorder

robust to disorder and losses

Ensemble Geometric Phase

Bardyn, Wawer, Altland, Fleischhauer, Diehl (arxiv: 1706.02741)

ensemble geometric phase

Bardyn, Wawer, Altland, Fleischhauer, Diehl (arxiv: 1706.02741)

ensemble geometric phase

Bardyn, Wawer, Altland, Fleischhauer, Diehl (arxiv: 1706.02741)

ensemble geometric phase

Bardyn, Wawer, Altland, Fleischhauer, Diehl (arxiv: 1706.02741)

Ensemble Geometric Phase

Bardyn, Wawer, Altland, Fleischhauer, Diehl (arxiv: 1706.02741)

$$P(\rho_{\rm ss}) = P(|\psi\rangle\langle\psi|) + \mathcal{O}(L^{-1})$$

$$|\psi\rangle\,$$
 ground state of $\,\,H_{\rm eff}=\sum_{ij}G_{ij}\hat{c}_i^\dagger\hat{c}_j\,$

$$\Delta P(\rho_{\rm ss}) = \oint d\lambda \, \frac{\partial}{\partial \lambda} P(\rho_{\rm ss}) = \Delta P(|\psi\rangle \langle \psi|)$$

$$\Delta\phi_{\rm EGP} = \frac{2\pi}{a} \Delta P \;\; {\rm = Zak \; phase \; of \;} \left|\psi\right\rangle \label{eq:delta_egp}$$

$$H_{\rm eff} = \sum_{ij} G_{ij} \hat{c}_i^{\dagger} \hat{c}_j$$

symmetries of effective Hamiltonian classify topology

C.E. Bardyn, et al. New J. Phys (2013)

topological phase transitions

- (I) closing of the damping gap (criticality)
- (II) closing of the purity gap = gap of effective Hamiltonian
- extention to interacting systems ?

see also: V. Gurarie, PRB (2011)

finite-T Rice-Mele

• thermal state:

$$G_{ij} = \beta h_{ij}$$

reservoir-induced topological pump

reservoir-induced topological pump

damping spectrum

spectrum of G_{ij}

detecting polarization

detecting polarization

• interferometer

$$H_{\text{eff}} = \sum_{j} \frac{g^2}{\Delta} |f_j|^2 \, \hat{a}_j^{\dagger} \hat{a}_j \hat{c}^{\dagger}(z_j) \hat{c}(z_j) \sim \underbrace{\sum_{j} x_j \hat{a}_j^{\dagger} \hat{a}_j}_{\hat{X}} \hat{c}^{\dagger}(z_j) \hat{c}(z_j)$$

detecting polarization

interferometer

realizing the effective Hamiltonian: topology transfer

R. Li, M. Fleischhauer (in progress)

coupling to auxiliary system

coupling of open (finite-T) system to closed fermion system at T = 0

coupling to auxiliary system

coupling of open (finite-T) system to closed fermion system at T = 0

•

induced Thouless pump

• mean-field limit $a_n^{\dagger}a_m^{} \rightarrow \langle a_n^{\dagger}a_m^{} \rangle$

$$H = -\eta \sum_{k,\alpha,\alpha'} c^{\dagger}_{\alpha k} c_{\alpha' k} a^{\dagger}_{\alpha k} a_{\alpha' k}$$

$$h_{ij}^{\mathrm{aux}} \sim G_{ij}(k)$$

winding of $P_{\rm open}$ ightarrow quantized particle transport in auxiliary system

$$\oint d\phi \frac{\partial P}{\partial \phi}\Big|_{\text{open}} = \oint d\phi \frac{\partial P}{\partial \phi}\Big|_{\text{aux}} = \Delta n_{\text{aux}}$$
$$\uparrow T = 0 (!)$$

induced Thouless pump

reservoir-induced topological pump (numerics)

summary

topological classification of Gaussian systems

$$H_{\rm eff} = \sum_{ij} G_{ij} \hat{c}_i^{\dagger} \hat{c}_j$$

- topological invariant: Ensemble Geometric Phase = many-particle polarization $\Delta \phi_{\rm EGP} = \frac{2\pi}{a} \Delta P$
- Detection of polarization & realization of effective Hamiltonian via topology transfer

thanks to

Dominik Linzner (now Darmstadt)

Lukas

Wawer

SFB TR 158

Charles Bardyn (Geneva)

Sebastian Diehl

(Cologne)

Rui

Li

Alex Altland (Cologne)

previous contributors: Grusdt (now Harvard),

topology transfer from interacting to non-interacting systems

R. Li, D. Linzner, M. Fleischhauer (in progress)

topology transfer

fractional charge transport

coupling to auxiliary fermion chain

topology transfer

charge transport in boson system

topology transfer

charge transport in fermion system

An

transported charge

An

geometric phase & parallel transport

Berry phase and parallel transport

Berry parallel transport

Berry (Zak) phase: picked up at parallel transport cycle

$$\phi_{\rm Zak} = \int_{-\pi/a}^{\pi/a} dk \, \langle u_k | i \partial_k | u_k \rangle$$

geometric phases for density matrices

Uhlmann connection

$$\rho = w \, w^{\dagger}$$

gauge degree of freedom: U(n)

$$w \to w \ U \qquad w^{\dagger} \to U^{\dagger} \ w^{\dagger}$$

Berry for mixed states: Uhlmann phase

Uhlmann parallel transport

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Berry for mixed states: Uhlmann phase

Rice-Mele model at finite T FBP 0.8 T 0.6 0.4 Viyuela, Rivas, Martin-Delgado 0.2 Phys.Rev.Lett. (2014) 0 0.2 0.2 0.4 $t_{2}^{0.4}$ 0.6 t_1 0.8 1.2 1.2

• 2D Chern insulator at finite T $H(k) = \sum_{j} d^{j}(k) \hat{\sigma}_{j}$ $d^{1} = \sin(k_{x}) \quad d^{2} = 3\sin(k_{y}) \quad d^{3} = 1 - \cos(k_{x}) - \cos(k_{y})$ $C = \frac{1}{2\pi} \int dk_{y} \left(\frac{\partial \phi(k_{y})}{\partial k_{y}}\right) \neq C' = \frac{1}{2\pi} \int dk_{x} \left(\frac{\partial \phi(k_{x})}{\partial k_{x}}\right)$ Budich, Diehl Phys.Rev. B (2015)

parallel transport & momentum shift

Berry parallel transport

$$\phi_{\rm Zak} = \int_{-\pi/a}^{\pi/a} dk \, \langle u_k | i \partial_k | u_k \rangle$$

$$\hat{T}$$
 $e^{i\phi}|\psi
angle$
 λ
 λ
 λ
 λ
 $\rho = |\psi
angle\langle\psi|$

$$\phi_{\text{Zak}} = \text{Im } \ln \prod_{j} \langle u(k_j) | u(k_{j+1}) \rangle$$
$$\langle u(k_j) | u(k_{j+1}) \rangle = \langle u(k_j) | T(\Delta k) | u(k_j) \rangle$$

momentum shift operator

$$T(q) = \exp\left\{iq\hat{X}\right\}$$

