

Laboratoire Kastler Brossel

Collège de France, ENS, UPMC, CNRS

Coherent spectroscopy of interacting bosons using a clock transition

Fabrice Gerbier

Jérôme Beugnon Manel Bosch Aguilera Raphaël Bouganne Alexis Ghermaoui

Workshop on Quantum Science and Quantum Technologies, ICTP, Trieste

September 12, 2017

Ytterbium team at LKB

Recent work :

Probing topology of quasicrystals with Fourier optics

[Dareau et al., arXiv:1607.00901

Clock spectroscopy of interacting bosons in deep optical lattices

[Bouganne et al., arXiv:1707.04307

Orbital magnetism with ultracold atoms

Pealizing Hofstadter optical lattices with an optical clock transition

イロト イポト イヨト イヨト

Obtained to the clock transition

Orbital magnetism of electronic systems

Vector potential A in quantum mechanics : $\hat{H} = \frac{(\hat{p}-qA)^2}{2m}, \nabla \times A = B$

Electrons in a magnetic field exhibit many different and fascinating effects :

- Landau diamagnetism, Shubnikov-De Haas oscillations,
- Vortices in type II superconductors,

Fractional Quantum Hall effect:

Emergence of strongly correlated phases of matter :

- incompressible liquids (gap)
- Exotic excitations with fractional charge and statistics ("anyons")
- Very similar Quantum Hall states are predicted for ultracold atomic gases [Cooper, Adv. Phys. 2008].

- Coherence in mesoscopic physics, ...
- Quantum Hall effect (integer and fractional)

Laughlin state Dubail, Read, Rezayi, PRB 2012

Key elements : flat dispersion relation and interactions

(注) ▲ 注 ▶ ● 注 ● の Q ()

Aharonov-Bohm and geometric phases

Can we explore orbital magnetism with electrically neutral atoms ?

What about neutral particles (atoms) ?

Orbital magnetism can be simulated by generating geometric phases

$$\phi_{
m geo} \equiv rac{1}{\hbar} \int_{\mathcal{S}} \left(q \boldsymbol{B}
ight)_{
m eff} \cdot d \boldsymbol{\mathcal{S}}$$

· Coherent atom-light coupling in quantum optics

Review articles : J. Dalibard, F. Gerbier, P. Ohberg, G. Juzeliunas, RMP 2011 N. Goldman, G. Juzeliunas, P. Ohberg, I. Spielman, Rep. Progress. Physics 2014 + A Physics 2014 + A Physics 2014 Orbital magnetism with ultracold atoms

Realizing Hofstadter optical lattices with an optical clock transition Coherent spectroscopy on the clock transition

Harper Hamiltonian for a charged particle on a tight-binding lattice

Tight-binding lattice :

$$H = -\sum_{\langle \pmb{r}_i, \pmb{r}_j \rangle} J e^{i\phi_{\rm AB}(\pmb{r}_i \rightarrow \pmb{r}_j)} \hat{a}_i^{\dagger} \hat{a}_j + {\rm h.c.}$$

J: single-particle tunnel energy

Complex tunnel coefficients:

$$\phi_{AB}(\boldsymbol{r}_i \rightarrow \boldsymbol{r}_j) = rac{q}{\hbar} \int_{\boldsymbol{r}_i}^{\boldsymbol{r}_j} \boldsymbol{A} \cdot d\boldsymbol{l}$$

 $\alpha = \frac{|q|Bd^2}{h} = \frac{\text{Magnetic flux/unit cell}}{\text{Magnetic flux quantum}}$

Landau gauge : $A = -Bye_x$

 $\alpha = \begin{cases} \sim 10^{-4} \text{ in usual solids with } \sim 50 \text{ T} \\ \sim 2\pi \text{ in solid-state superlattices or cold atoms.} \end{cases}$

A quick glance at experiments

Two broad categories of experiments :

- "Quantum optics" approaches : internal states coupled by one or two-photon transitions [NIST 2008, Florence 2015]
- Floquet approach : [Pisa, Hamburg, Zürich, Chicago, Munich, MIT]

In all cases, break some symmetry of the "bare" lattice Hamiltonian and project onto a low-energy subspace.

Observation of single-particle effects

BEC reported only for $\alpha = 1/2$

- 2D : Aidelsburger *et al.*, PRL 2011, Struck *et al.*, Nature Physics 2012.
- 3D : Kennedy et al., Nature Physics 2015.

- Heating generally observed
- short BEC lifetime ($\sim 50 \text{ ms}$)

Orbital magnetism with ultracold atoms

Pealizing Hofstadter optical lattices with an optical clock transition

Obtained to the clock transition

Optical atomic clock technology for many-body physics

- New generation of optical atomic clocks with frequency stability $\lesssim 10$ mHz (quality factor $\frac{\bar{\nu}}{\Delta\nu}\gtrsim 10^{17})$
- *N*-component Fermi gases with **symmetric** interactions : novel many-body problems : $N \le 6$ for ¹⁷³Yb, $N \le 10$ for ⁸⁷Sr.

Photon recoil couples internal and external quantum states :

- spin-orbit coupling with fermions [LENS, JILA 2016]
- Artificial magnetic fields : Hofstadter optical lattices [Gerbier/Dalibard, NJP 2010].

Ytterbium and clock transition

State-dependent optical potentials :

Tailored trapping potentials (without heating, unlike alkali atoms)

Potential for quantum information processing and emulation of many-body systems

State-dependent 2D optical lattice :

- y lattice at "magic" wavelength : $V_e(y) = V_g(y)$
- x lattice at "anti-magic" wavelength : $V_e(x) = -V_g(x)$
- regular tunneling along y

Laser-induced tunneling in a state-dependent optical lattice

Proposal for alkali atoms in [Jaksch and Zoller, NJP 2003]

- two internal states g and e
- state-dependent potential confining the atoms at distinct places depending on their internal state

• • • • • • • • • • • • • •

Coupling laser $|g; \mathbf{R}_g \rangle \rightarrow |e; \mathbf{R}_e \rangle$:

- resonant $\omega_L = \omega_{eg}$
- plane wave with wavevector k_L
- electric field $E_0 e^{i k_L \cdot r}$

Transition matrix elements :

$$\langle e; \mathbf{R}_e | \hat{V}_{AL} | g; \mathbf{R}_g \rangle = \underbrace{\langle e | -\hat{d} \cdot \mathbf{E}_0 | g \rangle}_{\text{internal}} \underbrace{\langle \mathbf{R}_e | e^{i \mathbf{k}_L \cdot \hat{r}} | \mathbf{R}_g \rangle}_{\text{external}} \propto e^{i \mathbf{k}_L \cdot \frac{\mathbf{R}_g + \mathbf{R}_e}{2}}$$

Not enough to get $\oint \mathbf{A} \cdot d\mathbf{l} \neq 0$, but good starting point !

Hofstadter optical lattice for Ytterbium atoms

State-dependent optical lattice :

- regular tunneling along y
- laser-induced along x
- additional superlattice along x
- → Harper Hamiltonian for low energies [Gerbier/Dalibard , NJP 2010].

Effective Aharonov-Bohm phase :

$$\phi_{\rm AB}(\boldsymbol{r}_i \to \boldsymbol{r}_i + \boldsymbol{e}_x) = \boldsymbol{k}_L \cdot \boldsymbol{r}_i \equiv 2\pi\alpha y$$

Maximum "Flux" per unit cell:

$$2\pi\alpha_{\max} = k_L d \sim 2\pi \times 0.66$$

 α can be varied between 0 and $\alpha_{\rm max}$ by changing the orientation of the clock laser.

1 Orbital magnetism with ultracold atoms

Pealizing Hofstadter optical lattices with an optical clock transition

Obtained to the clock transition

Quantum-degenerate ¹⁷⁴Yb atoms in a 3D optical lattice

Superfluid-Mott insulator transition :

Spectroscopy on the clock transition :

- "magic" optical lattice : identical for both internal states g/e
- selective detection of g, e or both together

- Lattice depth $V \approx 30 E_R$: negligible tunneling
- about 20 planes
- $N \sim 8 \cdot 10^3$ in central plane

Rabi spectroscopy on the clock transition : time domain

Strong driving: Rabi oscillations of a BEC in the optical domain

High initial atom number : $N \approx 8 \times 10^4$

Rabi spectroscopy on the clock transition : time domain

Strong driving: Rabi oscillations of a BEC in the optical domain

Low initial atom number : $N \approx 8 \times 10^3$

Optical spectroscopy in a Mott insulator

Doubly-occupied sites :

Probing the atomic distribution

Proportion of singly-occupied sites:

Solid line : model of the loading assuming

- *T* = 0
- adiabatic loading
- decay of triply-occupied sites (three-body recombination in *g*)

Inelastic decay and dephasing

• Doubly-occupied sites decay by inelastic collisions (\leftrightarrow "T₁"):

• Inhomogeneous coupling $\Omega_L(\mathbf{r}) \iff "T_2"$:

$$\frac{1}{T_{2,\text{inhom.}}} \sim \Omega_L(0) \frac{R^2}{w^2}$$

 $\begin{array}{ll} \mbox{Explains dephasing for $N\approx8\times10^4$:} & R\approx19\,\mu\mbox{m, $T_{2,inhom.}\approx9$\,ms} \\ \mbox{Negligible for $N\approx8\times10^3$:} & R\approx8\,\mu\mbox{m, $T_{2,inhom.}\approx50$\,ms} \end{array}$

• Clock laser frequency fluctuations $\delta \omega_L(\mathbf{r}) \lesssim 2\pi \times 100 \,\text{Hz} \ (\leftrightarrow \ \underline{\ }^*T_2^*)$

Rabi spectroscopy on the clock transition : frequency domain

Weak-coupling resonance for doubly-occupied sites:

Strong-coupling resonance for doubly-occupied sites:

Inelastic losses in state-dependent lattice

Typical values for lattice depth $V_0 = 10 E_B$:

• $J/h \sim 70$ Hz,

•
$$\gamma_{ee}[n=2] \sim U_{gg}/\hbar$$

Zeno-like supression of losses:

Three-well model, unit filling, $U_{ii} \gg J$:

Effective loss rate in the one-particle subspace

$$U_{ee} \approx \gamma_{ee} \approx U_{gg} \implies \gamma_{\rm eff} \approx 2 \frac{J^2}{\hbar U_{gg}} \ll \frac{J}{\hbar} \ll U_{ii}, \gamma_{ee}$$

Towards atomic fractional Quantum Hall states ?

Relevant parameter :

 $\nu = \frac{\text{atomic density}}{\text{flux per unit cell}} = \frac{n}{\alpha}$

• Analogue of continuum (\equiv Lowest Landau level) states exist.

Example : Laughlin states

- fermions : $\nu = \frac{1}{3}, \cdots$
- bosons : $\nu = \frac{1}{2}, \cdots$

Sorensen *et al.*, PRL 2005 Hafezi *et al.*, PRA 2007, EPL 2008 Palmer, Klein, Jaksch, PRL 2006; PRA 2008 Möller, Cooper, PRL 2009 ...

Many possible states without continuum counterparts [Möller and Cooper, PRL 2009].

Example for $\alpha = \frac{1}{5}$:

- Laughlin state for particles at $n = \frac{1}{10}$
- Laughlin state for holes at $n = 1 \frac{1}{10}$

Gaps are small :

at most $\sim 0.1J$ for the $\nu=\frac{1}{2}$ bosonic Laughlin state [Hafezi et al., PRA 2007]

Narrow slices in the global phase diagram

Hofstadter butterfly

Energy spectrum vs flux :

Flux per unit cell : $2\pi\alpha$

- Fragmentation of the Bloch bands
- wide gaps, flat bands

Rational flux $\alpha = p/q$:

Magnetic unit cell $(1 \times q)$: q topological bands with Chern number $C \neq 0$:

