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● Less assumptions      more security
– No Hilbert space, black-box devices can be untrusted
– Loophole-free Bell tests have already been performed

● Also at MPQ

[Hensen et al. Nature 526 (2015), Giustina et al., PRL 115 (2015), Shalm et al. PRL 115 (2015)]
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[W. Rosenfeld, D.Burchardt, R. Garthoff, K. 
Redeker, N.Ortegel, M. Rau, H. Weinfurter 
arXiv:1611.04604 [quant-ph] (2016)]
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● Most of the studies/applications of Bell 
correlations deal with small systems

● Do Bell correlations appear naturally in low-
energy states of physical systems?
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What about Bell correlations in the 
many-body regime?

● Less studied, because of
● Mathematical complexity
● Experimentally demanding
● Quantum description of multipartite states grows 

exponentially

● Recent developments
● Permutationally invariant systems

● This talk: spin systems in one spatial dimension

[Tura et al, Science 344 1256 (2014), Tura et al, Ann. Phys. 362, 370-423 (2015)]
[Schmied et al, Science 352 441(2016), Engelsen et al, Phys. Rev. Lett. 118, 140401 (2017)]
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transverse magnetic field
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– Jordan Wigner

– MPS/DMRG

● Make it experimentally accessible
– Few- (2-)body correlators, ground state energy

● Translationally invariant case
● Closed formulas/Speed improvement

● Toolset to study nonlocality in physically relevant system

● Spin systems, 1 spatial dimension, short-range interactions
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● Look for the optimal Bell inequality for a given Hamiltonian

– Only the classical bound needs to be found
● In the fully TI case, how does monogamy of correlations 

affect nonlocality?

● Generalization to more spatial dimensions?

● Chordal extension and semi-definite programming

● Study persistence of nonlocality
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