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I. INTRODUCTION

Schwarzschild’s 1916 solution1 of the Einstein field equa-
tions is perhaps the most well known of the exact solutions.
In polar coordinates, the line element for a mass m is

ds2 ¼ " 1" 2m

r

! "
dt2 þ 1" 2m

r

! ""1

dr2

þ r2ðdh2 þ sin2 hd/2Þ; (1)

where we adopt units for which G¼ 1¼ c. The realization
that Eq. (1) describes what is now called a black hole was far
from immediate. It was not realized until the work of Oppen-
heimer and Snyder2 that such objects might exist and could
result from the collapse of sufficiently massive stars.

In contrast, investigations leading to the study of worm-
holes began almost immediately. Within one year of Ein-
stein’s final formulation of the field equations, Flamm
recognized that the Schwarzschild solution could represent
what we now describe as a wormhole, and in the 1920s,
Weyl speculated about related possibilities.3

In 1935 Einstein and Rosen4 introduced what would be
called the Einstein-Rosen bridge as a possible geometrical
model of particles which avoided the singularities of points
with infinite mass or charge densities. In the uncharged case,
the bridge arises from the coordinate change y2¼ r" 2m,
which transforms Eq. (1) to

ds2 ¼ " y2

y2 þ 2m
dt2 þ 4ðy2 þ 2mÞdy2

þ ðy2 þ 2mÞ2ðdh2 þ sin2 hd/2Þ: (2)

For "1< y<1 these coordinates omit the region inside
the event horizon, 0< r< 2m, and twice cover the asymptoti-
cally flat region r & 2m. The region near y¼ 0 is the bridge
connecting the two asymptotically flat regions close to
y¼1 and y¼"1. Although the Einstein-Rosen bridge was
not successful as a model of particles, it emerged as the pro-
totype wormhole in gravitational physics and led to the study
of traversable wormholes (see, for example, Refs. 3 and 5,
and for visual appearances Ref. 6).

It can be seen from Eq. (1) that if r< 2m, then r is a time-
like coordinate, t is spacelike, and within the event horizon,
Schwarzschild spacetime is not static. A test particle within
the event horizon moves inexorably to smaller r values

because the flow of time is toward r¼ 0. Therefore, to under-
stand the dynamics of the Einstein-Rosen bridge or Schwarzs-
child wormhole, we require a spacetime that includes not
only the two asymptotically flat regions associated with
Eq. (2) but also the region near r¼ 0.

For this purpose, the maximal extension of Schwarzschild
spacetime by Kruskal7 and Szekeres,8 along with their global
coordinate system,9 plays an important role. The maximal
extension includes not only the interior and exterior of the
Schwarzschild black hole [covered by the coordinates of Eq.
(1)] but also a second copy of the exterior, as well as a region
surrounding a white hole, from which particles may emerge
but not enter (see Fig. 2).

Fuller and Wheeler10 employed Kruskal coordinates to
describe the geometry of the Schwarzschild wormhole and
showed that it is nontraversable, even by a photon. Their
paper includes sketches of a sequence of wormhole profiles
for particular spacelike slices, illustrating the formation, col-
lapse, and subsequent “pinching-off” of the wormhole, but
calculations for the embeddings in R3 were not provided.
The nontraversability of the Schwarzschild wormhole makes
the embeddings of its stages tricky, and this difficulty might
account for the dearth of explanations in the literature.
Although several widely used general relativity textbooks
include qualitative descriptions and sketches of the dynamics
of the Schwarzschild wormhole (or its profiles) similar to
those in Fig. 1, we are not aware of any published explana-
tion for the calculations of embeddings.11

In this article, we show how to embed spacelike slices of
the Schwarzschild wormhole in R3. The embeddings may be
thought of as snapshots of the wormhole in its various stages
as measured by a party of explorers (represented by test par-
ticles) at fixed times, along particular spacelike slices of
spacetime. The most natural spacelike slices from the point
of view of Kruskal coordinates are slices of constant Kruskal
time v, and we consider these first. Other slices are also pos-
sible and give rise to interesting geometries, as we illustrate
in Secs. V and VI. The calculations and examples, apart
from supplying the missing material to interested readers,
are also suitable for general relativity and differential geome-
try courses.

Our paper is organized as follows. In Sec. II, we review
Kruskal coordinates for the maximal extension of Schwarzs-
child spacetime, display the metric in this coordinate system,
and give a qualitative description of the dynamics of the
Schwarzschild wormhole. In Sec. III, we develop a general
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ER bridges = non- traversable wormholes

method for embedding space slices as surfaces of revolution
in R3. Section IV applies this method to embeddings of con-
stant Kruskal times between !1 and 1 to reveal the full dy-
namics of the wormhole from formation to collapse. At
Kruskal times v> 1, the two universes, connected by the
wormhole at earlier times jvj< 1, have separated into two
connected components. In Sec. V, we show how to treat a
technical issue in order to embed space slices of nearly con-
stant Kruskal time v> 1 (or v<!1). In Sec. VI, we show by
example how more general embeddings can be done, includ-
ing an embedding consisting of three separated components.
Concluding remarks are given in Sec. VII.

II. KRUSKAL COORDINATES

Kruskal coordinates u,v and Schwarzschild coordinates
are related by

u2 ! v2 ¼ r

2m
! 1

! "
er=2m ðr $ 0Þ; (3)

and

2uv
u2 þ v2

¼ tanh
t

2m

! "
; (4)

where t and r are the time and radial Schwarzschild coordi-
nates, respectively, of Eq. (1) and the angular coordinates are
unchanged. The coordinate v is timelike and it follows from
Eq. (4) that constant values of the ratio v/u correspond to
constant Schwarzschild t. In Kruskal coordinates, the
Schwarzschild metric (1) becomes

ds2 ¼ 32m3

r
e!r=2mð!dv2 þ du2Þ þ r2ðdh2 þ sin2 hd/2Þ;

(5)

where r¼ r(u,v) is determined implicitly by Eq. (3) and may
be expressed in terms of the Lambert W function22 as fol-
lows. We divide both sides of Eq. (3) by e and write

f ¼ WðfÞeWðfÞ; (6)

where in the present case

f ¼ u2 ! v2

e
: (7)

The Lambert W function, W(f), satisfies Eq. (6), that is, it
is the inverse function to f(x)¼ xex. We have

W
u2 ! v2

e

# $
¼ rðu; vÞ

2m
! 1; (8)

and

rðu; vÞ ¼ 2m 1þW
u2 ! v2

e

# $% &
: (9)

Figure 2 shows the maximally extended Schwarzschild
spacetime in terms of Kruskal coordinates, with the angular
coordinates suppressed so that each point in the diagram rep-
resents a 2-sphere.

The original Schwarzschild coordinates cover only regions
I and II in Fig. 2. Region II is the interior of the black hole.
Region III is a copy of region I, and region IV is the interior
of a white hole, which lies in the past of any event. The sin-
gularity at r¼ 0 is given by the “singularity hyperbola”
vsðuÞ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2
p

. Lines making 45' angles with the coor-
dinate axes are null paths (that is, paths of light rays). Addi-
tional details may be found, for example, in Refs. 15 and 16.

The dynamics of the wormhole can be described qualita-
tively using Figs. 1 and 2. Figure 2 shows two distinct,
asymptotically flat Schwarzschild manifolds or universes,
one consisting of regions I and II, and the other of regions III
and IV. Regions I and III are asymptotically flat or Minkow-
skian far from the singularities. They may be identified as
the top and bottom horizontal planes, respectively, in each
diagram of Fig. 1.

If v<!1, the two universes are disconnected, each con-
taining an infinite curvature singularity at r¼ 0. At time
v¼!1, the singularities join to form a nonsingular bridge.
As the universes evolve, the bridge increases until v¼ 0. At
this instant, the wormhole has maximum width, with the
observer at u¼ 0 exactly on the event horizon r¼ 2m. As
v increases the observer at u¼ 0 enters the region r< 2m,
and the bridge narrows. By the time v¼ 1 the bridge pinches

Fig. 1. Schematic for the dynamical evolution of the Schwarzschild wormhole. From left to right: Kruskal time v<!1 prior to the formation of the bridge;
formation at v¼!1; maximum extent at v¼ 0 (middle); separation at v¼ 1; Post separation at Kruskal time v> 1 (far right).

Fig. 2. Kruskal diagram of the Schwarzschild geometry.
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size of the simulated throat radius. These limitations coming
from quantum phase fluctuations can be seen as an analogue
of Hawking’s chronology protection mechanism [16], where
quantum effects prevent us from building spacetime geome-
tries which might collide with the causality principle.

Methods

Let us start by introducing the family of spacetime metrics
considered in this work. A traversable wormhole spacetime
can be characterised by [15]:
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where the redshift function �(r) and the shape function b(r)
are functions of the radius r only. There is a value b0 of r at
which b (r = b0) = r = b0, which determines the position
of the wormhole’s throat. Then, the proper radial distance to
the throat is defined by [15] l = ±

R
r

b0
dr

0(1 � b(r0)/r

0)�1/2,
defining two different Universes or regions within the same
Universe for l > 0 (as r goes from 1 to b0) and l < 0 (as the
non-monotonic r goes back from b0 to 1). Thus, as r ! 1
we have two asymptotically flat spacetime regions l ! ±1
connected by the wormhole throat at l = 0 (r = b0). (See
the embedding diagram in Fig. (1a), which is obtained using
standard embedding techniques [15]).

In this work, we will consider for simplicity that �(r) = 0
(massless wormhole). The properties of the wormhole will
depend on the form of the shape function b(r). In particular, as
shown in [15] the parameters of this function can be adjusted
in order to make traversability possible and convenient. We
will consider some particular shape function later.

First, we will restrict ourselves to 1D spacetimes:

ds
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2
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In this way, we can exploit the invariance of the 1D Klein-
Gordon equation under conformal factors [27]. This means
that the dynamics of a 1D electromagnetic field in the space-
time given by Eq. (2) is totally equivalent to the one in the
following spacetime

ds
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) dt
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2
, (3)

since the line element in Eq. (2) differs to the one in Eq. (3)
by the conformal factor 1/(1 � b(r)/r) only.

The spacetime given by the line element in Eq. (3) is a
spacetime in which the speed of propagation of the electro-
magnetic field depends on the radius r according to:

c
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2 (1 � b(r)

r

), (4)

which suggests that any experimental setup in which the ef-
fective speed of light of Eq. (4) can be produced is a suitable
analog quantum simulator of a 1D wormhole spacetime.

In this work we consider a dc-SQUID array embedded in
an open transmission line [21, 28–30]. The speed of propa-
gation along the transmission line is given by c = 1/

p
L C,

where C and L are the capacitance and inductance per unit
length respectively. We will assume that the number of em-
bedded SQUIDs is large enough to consider that C and L are
given by the capacitance and inductance of a single SQUID
C

s

and L

s

. If the SQUIDs area is small enough we can ne-
glect their self-inductance. In this case and considering that
the two Josephson junctions (JJ) of each dc-SQUID possess
identical critical current I

c

, we can treat any SQUID as a sin-
gle JJ with a tunable inductance for frequencies well below
the plasma frequency of the SQUID [31]:

L

s

(�
ext

) =
�0

4⇡ I

c

cos ⇡�

ext

�0
cos 

, (5)

where �0 = h/(2 e) is the flux quantum, �
ext

is the exter-
nal magnetic flux threading the SQUID and  is the SQUID
phase, which gives rise to a nonlinearity. We will remain
within the linear regime, that is we can assume the approx-
imation cos ' 1 (we will comment on this in more detail
below) and then the speed of light becomes
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where we are denoting c as the speed of light in the absence
of external flux c

2 = c

2(�
ext

= 0) = 1/(L
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).
By inspection of Eqs. (4) and (6), we find that a wormhole

spacetime can be realised as long as the external magnetic flux
has the following dependence on the radius:
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Before specialising to particular shape functions b(r) it is
important to make an important remark on Eq. (7). There will
always be a point at which b(r) = r and then �

ext

= �0/2,
determining the simulated wormhole’s throat as a point of in-
finite inductance in the array. It is well-known that if all the
SQUIDs of the array were biased with such a value of the ex-
ternal flux, the approximation cos ' 1 would be no longer
valid. Indeed, the array would not be in the superconduct-
ing state [28], since quantum fluctuations of the phase would
become dominant, triggering a quantum phase transition to
an insulating state. This is because in an SQUID array, the
impedance Z of a SQUID does not depend on the impedance
Z

E

of the electromagnetic environment only (typically negli-
gible) but also on the impedance of the rest of the array Z

A

,
which depends on the external flux. In some experiments,
the parameters of the array are chosen precisely to use the
array as a high impedance electromagnetic environment [28–
30]. We pursue the opposite goal here. More specifically,
we need to make sure that Z

A

/R

Q

 1 everywhere, where
R

Q

= h/(4e

2) is the resistance quantum. In our case, the
impedance is r-dependent and will be given by [22, 28]:
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In this way, we can exploit the invariance of the 1D Klein-
Gordon equation under conformal factors [27]. This means
that the dynamics of a 1D electromagnetic field in the space-
time given by Eq. (2) is totally equivalent to the one in the
following spacetime
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since the line element in Eq. (2) differs to the one in Eq. (3)
by the conformal factor 1/(1 � b(r)/r) only.

The spacetime given by the line element in Eq. (3) is a
spacetime in which the speed of propagation of the electro-
magnetic field depends on the radius r according to:
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which suggests that any experimental setup in which the ef-
fective speed of light of Eq. (4) can be produced is a suitable
analog quantum simulator of a 1D wormhole spacetime.

In this work we consider a dc-SQUID array embedded in
an open transmission line [21, 28–30]. The speed of propa-
gation along the transmission line is given by c = 1/

p
L C,

where C and L are the capacitance and inductance per unit
length respectively. We will assume that the number of em-
bedded SQUIDs is large enough to consider that C and L are
given by the capacitance and inductance of a single SQUID
C

s

and L

s

. If the SQUIDs area is small enough we can ne-
glect their self-inductance. In this case and considering that
the two Josephson junctions (JJ) of each dc-SQUID possess
identical critical current I

c

, we can treat any SQUID as a sin-
gle JJ with a tunable inductance for frequencies well below
the plasma frequency of the SQUID [31]:
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where �0 = h/(2 e) is the flux quantum, �
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is the exter-
nal magnetic flux threading the SQUID and  is the SQUID
phase, which gives rise to a nonlinearity. We will remain
within the linear regime, that is we can assume the approx-
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By inspection of Eqs. (4) and (6), we find that a wormhole

spacetime can be realised as long as the external magnetic flux
has the following dependence on the radius:
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Before specialising to particular shape functions b(r) it is
important to make an important remark on Eq. (7). There will
always be a point at which b(r) = r and then �
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= �0/2,
determining the simulated wormhole’s throat as a point of in-
finite inductance in the array. It is well-known that if all the
SQUIDs of the array were biased with such a value of the ex-
ternal flux, the approximation cos ' 1 would be no longer
valid. Indeed, the array would not be in the superconduct-
ing state [28], since quantum fluctuations of the phase would
become dominant, triggering a quantum phase transition to
an insulating state. This is because in an SQUID array, the
impedance Z of a SQUID does not depend on the impedance
Z

E

of the electromagnetic environment only (typically negli-
gible) but also on the impedance of the rest of the array Z

A

,
which depends on the external flux. In some experiments,
the parameters of the array are chosen precisely to use the
array as a high impedance electromagnetic environment [28–
30]. We pursue the opposite goal here. More specifically,
we need to make sure that Z
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2) is the resistance quantum. In our case, the
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size of the simulated throat radius. These limitations coming
from quantum phase fluctuations can be seen as an analogue
of Hawking’s chronology protection mechanism [16], where
quantum effects prevent us from building spacetime geome-
tries which might collide with the causality principle.

Methods

Let us start by introducing the family of spacetime metrics
considered in this work. A traversable wormhole spacetime
can be characterised by [15]:
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where the redshift function �(r) and the shape function b(r)
are functions of the radius r only. There is a value b0 of r at
which b (r = b0) = r = b0, which determines the position
of the wormhole’s throat. Then, the proper radial distance to
the throat is defined by [15] l = ±
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defining two different Universes or regions within the same
Universe for l > 0 (as r goes from 1 to b0) and l < 0 (as the
non-monotonic r goes back from b0 to 1). Thus, as r ! 1
we have two asymptotically flat spacetime regions l ! ±1
connected by the wormhole throat at l = 0 (r = b0). (See
the embedding diagram in Fig. (1a), which is obtained using
standard embedding techniques [15]).

In this work, we will consider for simplicity that �(r) = 0
(massless wormhole). The properties of the wormhole will
depend on the form of the shape function b(r). In particular, as
shown in [15] the parameters of this function can be adjusted
in order to make traversability possible and convenient. We
will consider some particular shape function later.

First, we will restrict ourselves to 1D spacetimes:
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In this way, we can exploit the invariance of the 1D Klein-
Gordon equation under conformal factors [27]. This means
that the dynamics of a 1D electromagnetic field in the space-
time given by Eq. (2) is totally equivalent to the one in the
following spacetime
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since the line element in Eq. (2) differs to the one in Eq. (3)
by the conformal factor 1/(1 � b(r)/r) only.

The spacetime given by the line element in Eq. (3) is a
spacetime in which the speed of propagation of the electro-
magnetic field depends on the radius r according to:
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which suggests that any experimental setup in which the ef-
fective speed of light of Eq. (4) can be produced is a suitable
analog quantum simulator of a 1D wormhole spacetime.

In this work we consider a dc-SQUID array embedded in
an open transmission line [21, 28–30]. The speed of propa-
gation along the transmission line is given by c = 1/

p
L C,

where C and L are the capacitance and inductance per unit
length respectively. We will assume that the number of em-
bedded SQUIDs is large enough to consider that C and L are
given by the capacitance and inductance of a single SQUID
C

s

and L

s

. If the SQUIDs area is small enough we can ne-
glect their self-inductance. In this case and considering that
the two Josephson junctions (JJ) of each dc-SQUID possess
identical critical current I

c

, we can treat any SQUID as a sin-
gle JJ with a tunable inductance for frequencies well below
the plasma frequency of the SQUID [31]:
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where �0 = h/(2 e) is the flux quantum, �
ext

is the exter-
nal magnetic flux threading the SQUID and  is the SQUID
phase, which gives rise to a nonlinearity. We will remain
within the linear regime, that is we can assume the approx-
imation cos ' 1 (we will comment on this in more detail
below) and then the speed of light becomes
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where we are denoting c as the speed of light in the absence
of external flux c

2 = c

2(�
ext

= 0) = 1/(L
s

(�
ext=0)Cs

).
By inspection of Eqs. (4) and (6), we find that a wormhole

spacetime can be realised as long as the external magnetic flux
has the following dependence on the radius:
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Before specialising to particular shape functions b(r) it is
important to make an important remark on Eq. (7). There will
always be a point at which b(r) = r and then �
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= �0/2,
determining the simulated wormhole’s throat as a point of in-
finite inductance in the array. It is well-known that if all the
SQUIDs of the array were biased with such a value of the ex-
ternal flux, the approximation cos ' 1 would be no longer
valid. Indeed, the array would not be in the superconduct-
ing state [28], since quantum fluctuations of the phase would
become dominant, triggering a quantum phase transition to
an insulating state. This is because in an SQUID array, the
impedance Z of a SQUID does not depend on the impedance
Z

E

of the electromagnetic environment only (typically negli-
gible) but also on the impedance of the rest of the array Z

A

,
which depends on the external flux. In some experiments,
the parameters of the array are chosen precisely to use the
array as a high impedance electromagnetic environment [28–
30]. We pursue the opposite goal here. More specifically,
we need to make sure that Z
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/R

Q

 1 everywhere, where
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= h/(4e

2) is the resistance quantum. In our case, the
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size of the simulated throat radius. These limitations coming
from quantum phase fluctuations can be seen as an analogue
of Hawking’s chronology protection mechanism [16], where
quantum effects prevent us from building spacetime geome-
tries which might collide with the causality principle.

Methods

Let us start by introducing the family of spacetime metrics
considered in this work. A traversable wormhole spacetime
can be characterised by [15]:
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where the redshift function �(r) and the shape function b(r)
are functions of the radius r only. There is a value b0 of r at
which b (r = b0) = r = b0, which determines the position
of the wormhole’s throat. Then, the proper radial distance to
the throat is defined by [15] l = ±

R
r

b0
dr

0(1 � b(r0)/r

0)�1/2,
defining two different Universes or regions within the same
Universe for l > 0 (as r goes from 1 to b0) and l < 0 (as the
non-monotonic r goes back from b0 to 1). Thus, as r ! 1
we have two asymptotically flat spacetime regions l ! ±1
connected by the wormhole throat at l = 0 (r = b0). (See
the embedding diagram in Fig. (1a), which is obtained using
standard embedding techniques [15]).

In this work, we will consider for simplicity that �(r) = 0
(massless wormhole). The properties of the wormhole will
depend on the form of the shape function b(r). In particular, as
shown in [15] the parameters of this function can be adjusted
in order to make traversability possible and convenient. We
will consider some particular shape function later.

First, we will restrict ourselves to 1D spacetimes:
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2
. (2)

In this way, we can exploit the invariance of the 1D Klein-
Gordon equation under conformal factors [27]. This means
that the dynamics of a 1D electromagnetic field in the space-
time given by Eq. (2) is totally equivalent to the one in the
following spacetime
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) dt
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since the line element in Eq. (2) differs to the one in Eq. (3)
by the conformal factor 1/(1 � b(r)/r) only.

The spacetime given by the line element in Eq. (3) is a
spacetime in which the speed of propagation of the electro-
magnetic field depends on the radius r according to:

c
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2 (1 � b(r)
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), (4)

which suggests that any experimental setup in which the ef-
fective speed of light of Eq. (4) can be produced is a suitable
analog quantum simulator of a 1D wormhole spacetime.

In this work we consider a dc-SQUID array embedded in
an open transmission line [21, 28–30]. The speed of propa-
gation along the transmission line is given by c = 1/

p
L C,

where C and L are the capacitance and inductance per unit
length respectively. We will assume that the number of em-
bedded SQUIDs is large enough to consider that C and L are
given by the capacitance and inductance of a single SQUID
C

s

and L

s

. If the SQUIDs area is small enough we can ne-
glect their self-inductance. In this case and considering that
the two Josephson junctions (JJ) of each dc-SQUID possess
identical critical current I

c

, we can treat any SQUID as a sin-
gle JJ with a tunable inductance for frequencies well below
the plasma frequency of the SQUID [31]:
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where �0 = h/(2 e) is the flux quantum, �
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is the exter-
nal magnetic flux threading the SQUID and  is the SQUID
phase, which gives rise to a nonlinearity. We will remain
within the linear regime, that is we can assume the approx-
imation cos ' 1 (we will comment on this in more detail
below) and then the speed of light becomes
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where we are denoting c as the speed of light in the absence
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By inspection of Eqs. (4) and (6), we find that a wormhole

spacetime can be realised as long as the external magnetic flux
has the following dependence on the radius:
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Before specialising to particular shape functions b(r) it is
important to make an important remark on Eq. (7). There will
always be a point at which b(r) = r and then �

ext

= �0/2,
determining the simulated wormhole’s throat as a point of in-
finite inductance in the array. It is well-known that if all the
SQUIDs of the array were biased with such a value of the ex-
ternal flux, the approximation cos ' 1 would be no longer
valid. Indeed, the array would not be in the superconduct-
ing state [28], since quantum fluctuations of the phase would
become dominant, triggering a quantum phase transition to
an insulating state. This is because in an SQUID array, the
impedance Z of a SQUID does not depend on the impedance
Z

E

of the electromagnetic environment only (typically negli-
gible) but also on the impedance of the rest of the array Z

A

,
which depends on the external flux. In some experiments,
the parameters of the array are chosen precisely to use the
array as a high impedance electromagnetic environment [28–
30]. We pursue the opposite goal here. More specifically,
we need to make sure that Z
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 1 everywhere, where
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2) is the resistance quantum. In our case, the
impedance is r-dependent and will be given by [22, 28]:
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size of the simulated throat radius. These limitations coming
from quantum phase fluctuations can be seen as an analogue
of Hawking’s chronology protection mechanism [16], where
quantum effects prevent us from building spacetime geome-
tries which might collide with the causality principle.

Methods

Let us start by introducing the family of spacetime metrics
considered in this work. A traversable wormhole spacetime
can be characterised by [15]:
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where the redshift function �(r) and the shape function b(r)
are functions of the radius r only. There is a value b0 of r at
which b (r = b0) = r = b0, which determines the position
of the wormhole’s throat. Then, the proper radial distance to
the throat is defined by [15] l = ±

R
r

b0
dr

0(1 � b(r0)/r

0)�1/2,
defining two different Universes or regions within the same
Universe for l > 0 (as r goes from 1 to b0) and l < 0 (as the
non-monotonic r goes back from b0 to 1). Thus, as r ! 1
we have two asymptotically flat spacetime regions l ! ±1
connected by the wormhole throat at l = 0 (r = b0). (See
the embedding diagram in Fig. (1a), which is obtained using
standard embedding techniques [15]).

In this work, we will consider for simplicity that �(r) = 0
(massless wormhole). The properties of the wormhole will
depend on the form of the shape function b(r). In particular, as
shown in [15] the parameters of this function can be adjusted
in order to make traversability possible and convenient. We
will consider some particular shape function later.

First, we will restrict ourselves to 1D spacetimes:
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In this way, we can exploit the invariance of the 1D Klein-
Gordon equation under conformal factors [27]. This means
that the dynamics of a 1D electromagnetic field in the space-
time given by Eq. (2) is totally equivalent to the one in the
following spacetime
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since the line element in Eq. (2) differs to the one in Eq. (3)
by the conformal factor 1/(1 � b(r)/r) only.

The spacetime given by the line element in Eq. (3) is a
spacetime in which the speed of propagation of the electro-
magnetic field depends on the radius r according to:
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which suggests that any experimental setup in which the ef-
fective speed of light of Eq. (4) can be produced is a suitable
analog quantum simulator of a 1D wormhole spacetime.

In this work we consider a dc-SQUID array embedded in
an open transmission line [21, 28–30]. The speed of propa-
gation along the transmission line is given by c = 1/

p
L C,

where C and L are the capacitance and inductance per unit
length respectively. We will assume that the number of em-
bedded SQUIDs is large enough to consider that C and L are
given by the capacitance and inductance of a single SQUID
C

s

and L

s

. If the SQUIDs area is small enough we can ne-
glect their self-inductance. In this case and considering that
the two Josephson junctions (JJ) of each dc-SQUID possess
identical critical current I

c

, we can treat any SQUID as a sin-
gle JJ with a tunable inductance for frequencies well below
the plasma frequency of the SQUID [31]:
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where �0 = h/(2 e) is the flux quantum, �
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is the exter-
nal magnetic flux threading the SQUID and  is the SQUID
phase, which gives rise to a nonlinearity. We will remain
within the linear regime, that is we can assume the approx-
imation cos ' 1 (we will comment on this in more detail
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By inspection of Eqs. (4) and (6), we find that a wormhole

spacetime can be realised as long as the external magnetic flux
has the following dependence on the radius:
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Before specialising to particular shape functions b(r) it is
important to make an important remark on Eq. (7). There will
always be a point at which b(r) = r and then �
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= �0/2,
determining the simulated wormhole’s throat as a point of in-
finite inductance in the array. It is well-known that if all the
SQUIDs of the array were biased with such a value of the ex-
ternal flux, the approximation cos ' 1 would be no longer
valid. Indeed, the array would not be in the superconduct-
ing state [28], since quantum fluctuations of the phase would
become dominant, triggering a quantum phase transition to
an insulating state. This is because in an SQUID array, the
impedance Z of a SQUID does not depend on the impedance
Z

E

of the electromagnetic environment only (typically negli-
gible) but also on the impedance of the rest of the array Z

A

,
which depends on the external flux. In some experiments,
the parameters of the array are chosen precisely to use the
array as a high impedance electromagnetic environment [28–
30]. We pursue the opposite goal here. More specifically,
we need to make sure that Z
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2) is the resistance quantum. In our case, the
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size of the simulated throat radius. These limitations coming
from quantum phase fluctuations can be seen as an analogue
of Hawking’s chronology protection mechanism [16], where
quantum effects prevent us from building spacetime geome-
tries which might collide with the causality principle.
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where the redshift function �(r) and the shape function b(r)
are functions of the radius r only. There is a value b0 of r at
which b (r = b0) = r = b0, which determines the position
of the wormhole’s throat. Then, the proper radial distance to
the throat is defined by [15] l = ±
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defining two different Universes or regions within the same
Universe for l > 0 (as r goes from 1 to b0) and l < 0 (as the
non-monotonic r goes back from b0 to 1). Thus, as r ! 1
we have two asymptotically flat spacetime regions l ! ±1
connected by the wormhole throat at l = 0 (r = b0). (See
the embedding diagram in Fig. (1a), which is obtained using
standard embedding techniques [15]).

In this work, we will consider for simplicity that �(r) = 0
(massless wormhole). The properties of the wormhole will
depend on the form of the shape function b(r). In particular, as
shown in [15] the parameters of this function can be adjusted
in order to make traversability possible and convenient. We
will consider some particular shape function later.

First, we will restrict ourselves to 1D spacetimes:
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In this way, we can exploit the invariance of the 1D Klein-
Gordon equation under conformal factors [27]. This means
that the dynamics of a 1D electromagnetic field in the space-
time given by Eq. (2) is totally equivalent to the one in the
following spacetime
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since the line element in Eq. (2) differs to the one in Eq. (3)
by the conformal factor 1/(1 � b(r)/r) only.

The spacetime given by the line element in Eq. (3) is a
spacetime in which the speed of propagation of the electro-
magnetic field depends on the radius r according to:
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which suggests that any experimental setup in which the ef-
fective speed of light of Eq. (4) can be produced is a suitable
analog quantum simulator of a 1D wormhole spacetime.

In this work we consider a dc-SQUID array embedded in
an open transmission line [21, 28–30]. The speed of propa-
gation along the transmission line is given by c = 1/

p
L C,

where C and L are the capacitance and inductance per unit
length respectively. We will assume that the number of em-
bedded SQUIDs is large enough to consider that C and L are
given by the capacitance and inductance of a single SQUID
C

s

and L

s

. If the SQUIDs area is small enough we can ne-
glect their self-inductance. In this case and considering that
the two Josephson junctions (JJ) of each dc-SQUID possess
identical critical current I
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, we can treat any SQUID as a sin-
gle JJ with a tunable inductance for frequencies well below
the plasma frequency of the SQUID [31]:
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nal magnetic flux threading the SQUID and  is the SQUID
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By inspection of Eqs. (4) and (6), we find that a wormhole

spacetime can be realised as long as the external magnetic flux
has the following dependence on the radius:
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Before specialising to particular shape functions b(r) it is
important to make an important remark on Eq. (7). There will
always be a point at which b(r) = r and then �
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determining the simulated wormhole’s throat as a point of in-
finite inductance in the array. It is well-known that if all the
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valid. Indeed, the array would not be in the superconduct-
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become dominant, triggering a quantum phase transition to
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size of the simulated throat radius. These limitations coming
from quantum phase fluctuations can be seen as an analogue
of Hawking’s chronology protection mechanism [16], where
quantum effects prevent us from building spacetime geome-
tries which might collide with the causality principle.
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connected by the wormhole throat at l = 0 (r = b0). (See
the embedding diagram in Fig. (1a), which is obtained using
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In this work, we will consider for simplicity that �(r) = 0
(massless wormhole). The properties of the wormhole will
depend on the form of the shape function b(r). In particular, as
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We present an analog quantum simulator of spacetimes containing traversable wormholes. A suitable spa-
tial dependence in the external bias of a dc-SQUID array mimics the propagation of light in a 1D wormhole
background. The impedance of the array places severe limitations on the type of spacetime that we are able to
implement. However, we find that wormhole throat radius in the sub-mm range are achievable. We show how
to modify this spacetime in order to allow the existence of closed timelike curves. The quantum fluctuations
of the phase associated to the finite array impedance might be seen as an analogue of Hawking’s chronology
protection mechanism.

Introduction

Quantum simulators [1] are becoming increasingly popu-
lar as non-universal quantum computers with the potential of
proving the long-sought quantum supremacy [2]. In addition
to this most practical application, quantum simulators have
proven to be useful tools to explore the frontiers of quan-
tum physics, ranging from open problems in well-established
theories such as quantum field theory [3] to untested physics
whose observability is hard or dubious [4–8] or even probably
impossible [9, 10].

Wormholes or Einstein-Rosen bridges are compelling
mathematical objects appearing in some solutions of Ein-
stein’s General Relativity equations. Since they provide a
bridge between distant regions of spacetime, they have at-
tracted a great deal of attention from a foundational view-
point as well as at a pedagogical level [11–15]. However,
it seems that they do not appear naturally in our Universe
and moreover there are reasons to expect that even a hypo-
thetical manufacture must be forbidden [16]. The stability
of a wormhole relies on the use of exotic material violating
the weak energy condition -namely, the existence of space-
time regions with negative energy density for some observers-
and wormhole spacetimes may contain closed timelike curves
(CTCs) [14] which are typically deemed as incompatible with
the physical principle of causality. However, at least at the
quantum level it is possible to reconcile causality and CTCs
[17]. Indeed, CTCs would boost the capabilities of quantum
computers [18]- an observation that has motivated the interest
of quantum simulation of CTCs [19].

In this work we introduce a quantum simulator of
traversable wormhole spacetimes by means of a su-
peconducting circuit architecture consisting of an array
of dc-Superconducting Quantum Interferometric Devices
(SQUIDs). Superconducting setups have already proven use-
ful for the simulation of relativistic physics [20–23]. We show
that the wide tunability of the SQUIDs can be exploited to
mimic the propagation of a microwave electromagnetic field
near a one-dimensional (1D) wormhole, thus generating an
effective wormhole spacetime for the quantum field. This is
a remarkable difference with previous proposals [24, 25] to
simulate wormholes in metamaterials or in water, which are

a)

b)

l ! 1l ! �1

l ! 1

l ! �1

l = 0

l = 0

FIG. 1: (Color online) a) Embedding diagram of a traversable worm-
hole spacetime. Two asymptotically flat regions of spacetime at
l ! ±1 are connected by a throat centered at l = 0, where l is
defined by the proper radial distance to the wormhole throat. b) An
array of dc-SQUIDS embedded in a superconducting open transmis-
sion line. A suitable strongly inhomogenous external flux bias (gray)
generates an effective speed of propagation for the electromagnetic
quantum field, which can mimic the one in the spacetime depicted in
a).

based on the classical Maxwell equations- a classical simula-
tor of a wormhole for magnetostatic fields has been recently
implemented in the laboratory with a magnetic metamaterial
[26]. We consider a paradigmatic family of traversable worm-
holes [15], as well as a modification of them which can con-
tain CTCs [14]. We see that the electromagnetic impedance
of the array places severe limitations on the simulated space-
time parameters, by generating quantum fluctuations of the
superconducting phase in the surroundings of the simulated
wormhole throat. We try to minimise the region of the array
where the impedance is large, ideally to a single point rep-
resenting the throat which in turn establishes a limit on the

2

size of the simulated throat radius. These limitations coming
from quantum phase fluctuations can be seen as an analogue
of Hawking’s chronology protection mechanism [16], where
quantum effects prevent us from building spacetime geome-
tries which might collide with the causality principle.

Methods

Let us start by introducing the family of spacetime metrics
considered in this work. A traversable wormhole spacetime
can be characterised by [15]:
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where the redshift function �(r) and the shape function b(r)
are functions of the radius r only. There is a value b0 of r at
which b (r = b0) = r = b0, which determines the position
of the wormhole’s throat. Then, the proper radial distance to
the throat is defined by [15] l = ±

R
r

b0
dr

0(1 � b(r0)/r

0)�1/2,
defining two different Universes or regions within the same
Universe for l > 0 (as r goes from 1 to b0) and l < 0 (as the
non-monotonic r goes back from b0 to 1). Thus, as r ! 1
we have two asymptotically flat spacetime regions l ! ±1
connected by the wormhole throat at l = 0 (r = b0). (See
the embedding diagram in Fig. (1a), which is obtained using
standard embedding techniques [15]).

In this work, we will consider for simplicity that �(r) = 0
(massless wormhole). The properties of the wormhole will
depend on the form of the shape function b(r). In particular, as
shown in [15] the parameters of this function can be adjusted
in order to make traversability possible and convenient. We
will consider some particular shape function later.

First, we will restrict ourselves to 1D spacetimes:
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. (2)

In this way, we can exploit the invariance of the 1D Klein-
Gordon equation under conformal factors [27]. This means
that the dynamics of a 1D electromagnetic field in the space-
time given by Eq. (2) is totally equivalent to the one in the
following spacetime

ds
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) dt
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since the line element in Eq. (2) differs to the one in Eq. (3)
by the conformal factor 1/(1 � b(r)/r) only.

The spacetime given by the line element in Eq. (3) is a
spacetime in which the speed of propagation of the electro-
magnetic field depends on the radius r according to:
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), (4)

which suggests that any experimental setup in which the ef-
fective speed of light of Eq. (4) can be produced is a suitable
analog quantum simulator of a 1D wormhole spacetime.

In this work we consider a dc-SQUID array embedded in
an open transmission line [21, 28–30]. The speed of propa-
gation along the transmission line is given by c = 1/

p
L C,

where C and L are the capacitance and inductance per unit
length respectively. We will assume that the number of em-
bedded SQUIDs is large enough to consider that C and L are
given by the capacitance and inductance of a single SQUID
C

s

and L

s

. If the SQUIDs area is small enough we can ne-
glect their self-inductance. In this case and considering that
the two Josephson junctions (JJ) of each dc-SQUID possess
identical critical current I

c

, we can treat any SQUID as a sin-
gle JJ with a tunable inductance for frequencies well below
the plasma frequency of the SQUID [31]:
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where �0 = h/(2 e) is the flux quantum, �
ext

is the exter-
nal magnetic flux threading the SQUID and  is the SQUID
phase, which gives rise to a nonlinearity. We will remain
within the linear regime, that is we can assume the approx-
imation cos ' 1 (we will comment on this in more detail
below) and then the speed of light becomes

c

2(�
ext

) = c

2 cos
⇡�

ext

�0
(6)

where we are denoting c as the speed of light in the absence
of external flux c
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By inspection of Eqs. (4) and (6), we find that a wormhole

spacetime can be realised as long as the external magnetic flux
has the following dependence on the radius:
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Before specialising to particular shape functions b(r) it is
important to make an important remark on Eq. (7). There will
always be a point at which b(r) = r and then �

ext

= �0/2,
determining the simulated wormhole’s throat as a point of in-
finite inductance in the array. It is well-known that if all the
SQUIDs of the array were biased with such a value of the ex-
ternal flux, the approximation cos ' 1 would be no longer
valid. Indeed, the array would not be in the superconduct-
ing state [28], since quantum fluctuations of the phase would
become dominant, triggering a quantum phase transition to
an insulating state. This is because in an SQUID array, the
impedance Z of a SQUID does not depend on the impedance
Z

E

of the electromagnetic environment only (typically negli-
gible) but also on the impedance of the rest of the array Z

A

,
which depends on the external flux. In some experiments,
the parameters of the array are chosen precisely to use the
array as a high impedance electromagnetic environment [28–
30]. We pursue the opposite goal here. More specifically,
we need to make sure that Z

A

/R

Q

 1 everywhere, where
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Q

= h/(4e

2) is the resistance quantum. In our case, the
impedance is r-dependent and will be given by [22, 28]:
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size of the simulated throat radius. These limitations coming
from quantum phase fluctuations can be seen as an analogue
of Hawking’s chronology protection mechanism [16], where
quantum effects prevent us from building spacetime geome-
tries which might collide with the causality principle.

Methods

Let us start by introducing the family of spacetime metrics
considered in this work. A traversable wormhole spacetime
can be characterised by [15]:
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where the redshift function �(r) and the shape function b(r)
are functions of the radius r only. There is a value b0 of r at
which b (r = b0) = r = b0, which determines the position
of the wormhole’s throat. Then, the proper radial distance to
the throat is defined by [15] l = ±
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0(1 � b(r0)/r

0)�1/2,
defining two different Universes or regions within the same
Universe for l > 0 (as r goes from 1 to b0) and l < 0 (as the
non-monotonic r goes back from b0 to 1). Thus, as r ! 1
we have two asymptotically flat spacetime regions l ! ±1
connected by the wormhole throat at l = 0 (r = b0). (See
the embedding diagram in Fig. (1a), which is obtained using
standard embedding techniques [15]).

In this work, we will consider for simplicity that �(r) = 0
(massless wormhole). The properties of the wormhole will
depend on the form of the shape function b(r). In particular, as
shown in [15] the parameters of this function can be adjusted
in order to make traversability possible and convenient. We
will consider some particular shape function later.

First, we will restrict ourselves to 1D spacetimes:
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since the line element in Eq. (2) differs to the one in Eq. (3)
by the conformal factor 1/(1 � b(r)/r) only.

The spacetime given by the line element in Eq. (3) is a
spacetime in which the speed of propagation of the electro-
magnetic field depends on the radius r according to:
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which suggests that any experimental setup in which the ef-
fective speed of light of Eq. (4) can be produced is a suitable
analog quantum simulator of a 1D wormhole spacetime.

In this work we consider a dc-SQUID array embedded in
an open transmission line [21, 28–30]. The speed of propa-
gation along the transmission line is given by c = 1/

p
L C,

where C and L are the capacitance and inductance per unit
length respectively. We will assume that the number of em-
bedded SQUIDs is large enough to consider that C and L are
given by the capacitance and inductance of a single SQUID
C

s

and L

s

. If the SQUIDs area is small enough we can ne-
glect their self-inductance. In this case and considering that
the two Josephson junctions (JJ) of each dc-SQUID possess
identical critical current I

c

, we can treat any SQUID as a sin-
gle JJ with a tunable inductance for frequencies well below
the plasma frequency of the SQUID [31]:
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By inspection of Eqs. (4) and (6), we find that a wormhole

spacetime can be realised as long as the external magnetic flux
has the following dependence on the radius:

�

ext

(r) =
�0

⇡

arccos(1 � b(r)

r

). (7)

Before specialising to particular shape functions b(r) it is
important to make an important remark on Eq. (7). There will
always be a point at which b(r) = r and then �
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determining the simulated wormhole’s throat as a point of in-
finite inductance in the array. It is well-known that if all the
SQUIDs of the array were biased with such a value of the ex-
ternal flux, the approximation cos ' 1 would be no longer
valid. Indeed, the array would not be in the superconduct-
ing state [28], since quantum fluctuations of the phase would
become dominant, triggering a quantum phase transition to
an insulating state. This is because in an SQUID array, the
impedance Z of a SQUID does not depend on the impedance
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of the electromagnetic environment only (typically negli-
gible) but also on the impedance of the rest of the array Z
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which depends on the external flux. In some experiments,
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array as a high impedance electromagnetic environment [28–
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size of the simulated throat radius. These limitations coming
from quantum phase fluctuations can be seen as an analogue
of Hawking’s chronology protection mechanism [16], where
quantum effects prevent us from building spacetime geome-
tries which might collide with the causality principle.
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where the redshift function �(r) and the shape function b(r)
are functions of the radius r only. There is a value b0 of r at
which b (r = b0) = r = b0, which determines the position
of the wormhole’s throat. Then, the proper radial distance to
the throat is defined by [15] l = ±
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defining two different Universes or regions within the same
Universe for l > 0 (as r goes from 1 to b0) and l < 0 (as the
non-monotonic r goes back from b0 to 1). Thus, as r ! 1
we have two asymptotically flat spacetime regions l ! ±1
connected by the wormhole throat at l = 0 (r = b0). (See
the embedding diagram in Fig. (1a), which is obtained using
standard embedding techniques [15]).

In this work, we will consider for simplicity that �(r) = 0
(massless wormhole). The properties of the wormhole will
depend on the form of the shape function b(r). In particular, as
shown in [15] the parameters of this function can be adjusted
in order to make traversability possible and convenient. We
will consider some particular shape function later.
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c

2(r) = c

2 (1 � b(r)

r

), (4)

which suggests that any experimental setup in which the ef-
fective speed of light of Eq. (4) can be produced is a suitable
analog quantum simulator of a 1D wormhole spacetime.

In this work we consider a dc-SQUID array embedded in
an open transmission line [21, 28–30]. The speed of propa-
gation along the transmission line is given by c = 1/
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where C and L are the capacitance and inductance per unit
length respectively. We will assume that the number of em-
bedded SQUIDs is large enough to consider that C and L are
given by the capacitance and inductance of a single SQUID
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. If the SQUIDs area is small enough we can ne-
glect their self-inductance. In this case and considering that
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c

2(�
ext

) = c
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⇡�

ext

�0
(6)

where we are denoting c as the speed of light in the absence
of external flux c

2 = c

2(�
ext

= 0) = 1/(L
s

(�
ext=0)Cs

).
By inspection of Eqs. (4) and (6), we find that a wormhole

spacetime can be realised as long as the external magnetic flux
has the following dependence on the radius:

�

ext

(r) =
�0

⇡

arccos(1 � b(r)

r

). (7)

Before specialising to particular shape functions b(r) it is
important to make an important remark on Eq. (7). There will
always be a point at which b(r) = r and then �

ext

= �0/2,
determining the simulated wormhole’s throat as a point of in-
finite inductance in the array. It is well-known that if all the
SQUIDs of the array were biased with such a value of the ex-
ternal flux, the approximation cos ' 1 would be no longer
valid. Indeed, the array would not be in the superconduct-
ing state [28], since quantum fluctuations of the phase would
become dominant, triggering a quantum phase transition to
an insulating state. This is because in an SQUID array, the
impedance Z of a SQUID does not depend on the impedance
Z

E

of the electromagnetic environment only (typically negli-
gible) but also on the impedance of the rest of the array Z

A

,
which depends on the external flux. In some experiments,
the parameters of the array are chosen precisely to use the
array as a high impedance electromagnetic environment [28–
30]. We pursue the opposite goal here. More specifically,
we need to make sure that Z

A

/R

Q

 1 everywhere, where
R

Q

= h/(4e

2) is the resistance quantum. In our case, the
impedance is r-dependent and will be given by [22, 28]:

Z
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, (8)

C.S. PRD 94, 081501 (2016)  



Wormhole spacetimes, CTCs and chronology protection in a dc-SQUID array

Carlos Sabı́n1

1

Instituto de F

´

ısica Fundamental, CSIC, Serrano 113-bis 28006 Madrid, Spain

(Dated: March 15, 2016)

We present an analog quantum simulator of spacetimes containing traversable wormholes. A suitable spa-
tial dependence in the external bias of a dc-SQUID array mimics the propagation of light in a 1D wormhole
background. The impedance of the array places severe limitations on the type of spacetime that we are able to
implement. However, we find that wormhole throat radius in the sub-mm range are achievable. We show how
to modify this spacetime in order to allow the existence of closed timelike curves. The quantum fluctuations
of the phase associated to the finite array impedance might be seen as an analogue of Hawking’s chronology
protection mechanism.

Introduction

Quantum simulators [1] are becoming increasingly popu-
lar as non-universal quantum computers with the potential of
proving the long-sought quantum supremacy [2]. In addition
to this most practical application, quantum simulators have
proven to be useful tools to explore the frontiers of quan-
tum physics, ranging from open problems in well-established
theories such as quantum field theory [3] to untested physics
whose observability is hard or dubious [4–8] or even probably
impossible [9, 10].

Wormholes or Einstein-Rosen bridges are compelling
mathematical objects appearing in some solutions of Ein-
stein’s General Relativity equations. Since they provide a
bridge between distant regions of spacetime, they have at-
tracted a great deal of attention from a foundational view-
point as well as at a pedagogical level [11–15]. However,
it seems that they do not appear naturally in our Universe
and moreover there are reasons to expect that even a hypo-
thetical manufacture must be forbidden [16]. The stability
of a wormhole relies on the use of exotic material violating
the weak energy condition -namely, the existence of space-
time regions with negative energy density for some observers-
and wormhole spacetimes may contain closed timelike curves
(CTCs) [14] which are typically deemed as incompatible with
the physical principle of causality. However, at least at the
quantum level it is possible to reconcile causality and CTCs
[17]. Indeed, CTCs would boost the capabilities of quantum
computers [18]- an observation that has motivated the interest
of quantum simulation of CTCs [19].

In this work we introduce a quantum simulator of
traversable wormhole spacetimes by means of a su-
peconducting circuit architecture consisting of an array
of dc-Superconducting Quantum Interferometric Devices
(SQUIDs). Superconducting setups have already proven use-
ful for the simulation of relativistic physics [20–23]. We show
that the wide tunability of the SQUIDs can be exploited to
mimic the propagation of a microwave electromagnetic field
near a one-dimensional (1D) wormhole, thus generating an
effective wormhole spacetime for the quantum field. This is
a remarkable difference with previous proposals [24, 25] to
simulate wormholes in metamaterials or in water, which are

a)

b)

l ! 1l ! �1

l ! 1

l ! �1

l = 0

l = 0

FIG. 1: (Color online) a) Embedding diagram of a traversable worm-
hole spacetime. Two asymptotically flat regions of spacetime at
l ! ±1 are connected by a throat centered at l = 0, where l is
defined by the proper radial distance to the wormhole throat. b) An
array of dc-SQUIDS embedded in a superconducting open transmis-
sion line. A suitable strongly inhomogenous external flux bias (gray)
generates an effective speed of propagation for the electromagnetic
quantum field, which can mimic the one in the spacetime depicted in
a).

based on the classical Maxwell equations- a classical simula-
tor of a wormhole for magnetostatic fields has been recently
implemented in the laboratory with a magnetic metamaterial
[26]. We consider a paradigmatic family of traversable worm-
holes [15], as well as a modification of them which can con-
tain CTCs [14]. We see that the electromagnetic impedance
of the array places severe limitations on the simulated space-
time parameters, by generating quantum fluctuations of the
superconducting phase in the surroundings of the simulated
wormhole throat. We try to minimise the region of the array
where the impedance is large, ideally to a single point rep-
resenting the throat which in turn establishes a limit on the

2

size of the simulated throat radius. These limitations coming
from quantum phase fluctuations can be seen as an analogue
of Hawking’s chronology protection mechanism [16], where
quantum effects prevent us from building spacetime geome-
tries which might collide with the causality principle.

Methods

Let us start by introducing the family of spacetime metrics
considered in this work. A traversable wormhole spacetime
can be characterised by [15]:

ds

2 = �c

2
e

2�(r)
dt

2 +
1

1 � b(r)
r

dr

2 + r

2(d✓2 + sin2
✓d�

2),

(1)
where the redshift function �(r) and the shape function b(r)
are functions of the radius r only. There is a value b0 of r at
which b (r = b0) = r = b0, which determines the position
of the wormhole’s throat. Then, the proper radial distance to
the throat is defined by [15] l = ±

R
r

b0
dr

0(1 � b(r0)/r

0)�1/2,
defining two different Universes or regions within the same
Universe for l > 0 (as r goes from 1 to b0) and l < 0 (as the
non-monotonic r goes back from b0 to 1). Thus, as r ! 1
we have two asymptotically flat spacetime regions l ! ±1
connected by the wormhole throat at l = 0 (r = b0). (See
the embedding diagram in Fig. (1a), which is obtained using
standard embedding techniques [15]).

In this work, we will consider for simplicity that �(r) = 0
(massless wormhole). The properties of the wormhole will
depend on the form of the shape function b(r). In particular, as
shown in [15] the parameters of this function can be adjusted
in order to make traversability possible and convenient. We
will consider some particular shape function later.

First, we will restrict ourselves to 1D spacetimes:

ds

2 = �c

2
dt

2 +
1

1 � b(r)
r

dr

2
. (2)

In this way, we can exploit the invariance of the 1D Klein-
Gordon equation under conformal factors [27]. This means
that the dynamics of a 1D electromagnetic field in the space-
time given by Eq. (2) is totally equivalent to the one in the
following spacetime

ds

2 = �c

2 (1 � b(r)

r

) dt

2 + dr

2
, (3)

since the line element in Eq. (2) differs to the one in Eq. (3)
by the conformal factor 1/(1 � b(r)/r) only.

The spacetime given by the line element in Eq. (3) is a
spacetime in which the speed of propagation of the electro-
magnetic field depends on the radius r according to:

c

2(r) = c

2 (1 � b(r)

r

), (4)

which suggests that any experimental setup in which the ef-
fective speed of light of Eq. (4) can be produced is a suitable
analog quantum simulator of a 1D wormhole spacetime.

In this work we consider a dc-SQUID array embedded in
an open transmission line [21, 28–30]. The speed of propa-
gation along the transmission line is given by c = 1/

p
L C,

where C and L are the capacitance and inductance per unit
length respectively. We will assume that the number of em-
bedded SQUIDs is large enough to consider that C and L are
given by the capacitance and inductance of a single SQUID
C

s

and L

s

. If the SQUIDs area is small enough we can ne-
glect their self-inductance. In this case and considering that
the two Josephson junctions (JJ) of each dc-SQUID possess
identical critical current I

c

, we can treat any SQUID as a sin-
gle JJ with a tunable inductance for frequencies well below
the plasma frequency of the SQUID [31]:
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where �0 = h/(2 e) is the flux quantum, �
ext

is the exter-
nal magnetic flux threading the SQUID and  is the SQUID
phase, which gives rise to a nonlinearity. We will remain
within the linear regime, that is we can assume the approx-
imation cos ' 1 (we will comment on this in more detail
below) and then the speed of light becomes

c
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where we are denoting c as the speed of light in the absence
of external flux c

2 = c

2(�
ext

= 0) = 1/(L
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ext=0)Cs

).
By inspection of Eqs. (4) and (6), we find that a wormhole

spacetime can be realised as long as the external magnetic flux
has the following dependence on the radius:
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Before specialising to particular shape functions b(r) it is
important to make an important remark on Eq. (7). There will
always be a point at which b(r) = r and then �

ext

= �0/2,
determining the simulated wormhole’s throat as a point of in-
finite inductance in the array. It is well-known that if all the
SQUIDs of the array were biased with such a value of the ex-
ternal flux, the approximation cos ' 1 would be no longer
valid. Indeed, the array would not be in the superconduct-
ing state [28], since quantum fluctuations of the phase would
become dominant, triggering a quantum phase transition to
an insulating state. This is because in an SQUID array, the
impedance Z of a SQUID does not depend on the impedance
Z

E

of the electromagnetic environment only (typically negli-
gible) but also on the impedance of the rest of the array Z

A

,
which depends on the external flux. In some experiments,
the parameters of the array are chosen precisely to use the
array as a high impedance electromagnetic environment [28–
30]. We pursue the opposite goal here. More specifically,
we need to make sure that Z

A

/R

Q

 1 everywhere, where
R

Q

= h/(4e

2) is the resistance quantum. In our case, the
impedance is r-dependent and will be given by [22, 28]:
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FIG. 2: (Color online) Flux bias �

ext

/(⇡ �0) vs. x(mm) as given
by Eq. (11) for different wormhole throat radius b0 = 1 mm, (blue,
dotted), b0 = 0.5 mm (yellow, dashed) and b0 = 0.1 mm (green,
solid). The value �

ext

= 0.45⇡�0 (red,solid) is plotted as a refer-
ence of critical threshold. The array region above the critical thresh-
old is proportional to the simulated wormhole’s throat radius

FIG. 3: (Color online) Flux bias �
ext

/(⇡ �0) vs. x(mm) as given by
Eq. (13) for a wormhole throat radius b0 = 0.1 mm, l0 = 0.2 mm
and different values of the acceleration g = 0 (blue, solid), g =
c

2
/(20 l0) (yellow, dashed) and g = �c

2
/(20 l0) (green, dotted).

The value �

ext

= 0.45⇡�0 (red,solid) is plotted as a reference of
critical threshold. Outside the plotted region, the flux bias should be
equal to the corresponding plot in Fig. (2).

where C0 is the capacitance-to-the-ground of the transmission
line. Assuming for instance the realistic values I

c

= 10 µA,
C0 = 0.1 pF, we find that Z

A

/R

Q

' 1 for �

ext

' 0.45�0.
Therefore, we would like to minimise the region of the array
where the flux takes values above this threshold. Ideally, we
would like to have a single SQUID only above the threshold
- the one defining the throat. If that is the case, we do not
need to consider the array as a high-impedance electromag-
netic environment and we only worry about remaining within
the small-phase approximation for any SQUID of the array,
which amounts to the standard condition I

b

/I

c

<< 1, where
I

b

is the external current bias [31]. We keep this in mind when
choosing shape functions.

Results

Of particular interest is the following family of wormholes
[14, 32–34]:

b(r) =
b

2
0

r

, (9)

for which the proper radial distance to the wormhole throat
is simply l

2(r) = r

2 � b

2
0. Neither the non-monotonic r nor

the proper distance l are suitable coordinates to identify them
with a position coordinate along the transmission line in the
laboratory. To this end, we define a coordinate x such that:

|x| = r � b0, x 2 (�1, 1). (10)

Clearly, x possesses similar features as l, since x = 0 at the
wormhole’s throat r = b0 and acquires different sign at both
sides of the throat. Unlike l, it has the advantage that the
spacetime metric does not change when transforming coor-
dinates from r to x. Notice that l

2 = |x|(|x| + 2b0). Thus,
using Eq. (7) and expressing it as a function of x, we find:

�

ext

(x) =
�0

⇡

arccos(1 � b

2
0

(|x| + b0)2
). (11)

In Figure 2, we plot Eq. (11) for several values of the throat
radius b0. If we identify x with the position coordinate along
the array e. g. we set the wormhole throat x = 0 in the
center of the array, we find that for b0 = 0.1 mm the flux is
below the critical threshold everywhere but in a small region
of around 0.02 mm. This could be consistent with the idea of
having only one SQUID above the critical value. If the separa-
tion d among the SQUIDs is around 0.05 mm, the array could
still be regarded as a continuum for microwave photons up to
200 GHz (� = 0.5 mm >> d). This frequency cutoff does
not represent a stronger limitation than the plasma frequency
of the SQUID which is typically smaller than 100 GHz. No-
tice that while inhomogeneities in the magnetic field bias of
the array are usually regarded as problematic and the aim is to
minimise them, in our case our goal is to achieve a strongly
inhomogeneous field.

In [14] it is shown how to turn a traversable wormhole into
a time machine, i.e. a spacetime containing CTC’s. The idea
is to induce a time shift between the spacetime region at l > 0
and the one at l < 0. For instance, an observer at one mouth

of the wormhole at l = l0 could be initially at rest with respect
to the other mouth at l = �l0 and then follow a twin-paradox
trajectory, accelerating up to relativistic speeds in order to
travel to a distant star and coming back to the same place.
After the trajectory, there is a time shift between l < 0 and
l > 0 from the point of view of external observers, however
if the throat geometry does not change during the trip -which
amounts to enforce that 2 gl0/c

2
<< 1 where g is the maxi-

mum acceleration- time does not experience any shift through
the throat. Thus, if after the trip an observer travels from l < 0
to l > 0 and then back to l < 0 she would travel along a CTC,
accessing in principle her own past.

Ellis 1973, Morris-Thorne 1988 
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FIG. 2: (Color online) Flux bias �
ext

/(⇡ �0) vs. x(mm) as given by Eq. (11) for different wormhole throat radius b0 = 1 mm, (blue, dotted),
b0 = 0.5 mm (yellow, dashed) and b0 = 0.1 mm (green, solid). The value �

ext

= 0.45⇡�0 (red,solid) is plotted as a reference of critical
threshold. The array region above the critical threshold is proportional to the simulated wormhole’s throat radius

FIG. 3: (Color online) Flux bias �

ext

/(⇡ �0) vs. x(mm) as given by Eq. (13) for a wormhole throat radius b0 = 0.1 mm, l0 = 0.2 mm
and different values of the acceleration g = 0 (blue, solid), g = c

2
/(20 l0) (yellow, dashed) and g = �c

2
/(20 l0) (green, dotted). The value

�

ext

= 0.45⇡�0 (red,solid) is plotted as a reference of critical threshold. Outside the plotted region, the flux bias should be equal to the
corresponding plot in Fig. (2).

In Figure 2, we plot Eq. (11) for several values of the throat radius b0. If we identify x with the position coordinate along the
array e. g. we set the wormhole throat x = 0 in the center of the array, we find that for b0 = 0.1 mm the flux is below the
critical threshold everywhere but in a small region of around 0.02 mm. This could be consistent with the idea of having only one
SQUID above the critical value. If the separation d among the SQUIDs is around 0.05 mm, the array could still be regarded as
a continuum for microwave photons up to 200 GHz (� = 0.5 mm >> d). This frequency cutoff does not represent a stronger
limitation than the plasma frequency of the SQUID which is typically smaller than 100 GHz. Notice that while inhomogeneities
in the magnetic field bias of the array are usually regarded as problematic and the aim is to minimise them, in our case our goal
is to achieve a strongly inhomogeneous field.

In [14] it is shown how to turn a traversable wormhole into a time machine, i.e. a spacetime containing CTC’s. The idea is to
induce a time shift between the spacetime region at l > 0 and the one at l < 0. For instance, an observer at one mouth of the
wormhole at l = l0 could be initially at rest with respect to the other mouth at l = �l0 and then follow a twin-paradox trajectory,
accelerating up to relativistic speeds in order to travel to a distant star and coming back to the same place. After the trajectory,
there is a time shift between l < 0 and l > 0 from the point of view of external observers, however if the throat geometry does
not change during the trip -which amounts to enforce that 2 gl0/c

2
<< 1 where g is the maximum acceleration- time does not

experience any shift through the throat. Thus, if after the trip an observer travels from l < 0 to l > 0 and then back to l < 0 she
would travel along a CTC, accessing in principle her own past.
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The trip of the wormhole mouth in a traversable wormhole spacetime would be codified in the following metric [14]:

ds

2 = �c

2
e

2�(r)(1 + g(t) l F (l) cos ✓)2dt

2 +
1
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2), (12)

where g(t) is the acceleration and F (l) is a form factor function of the radial distance, vanishing at l < 0 and rising smoothly
up to 1 in the travelling mouth. Again, we consider �(r) = 0, restrict ourselves to 1D and pull out a conformal factor in order
to get the shape of the external flux:

�

ext

(r, t) =
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⇡

arccos(1 � b(r)

r

)(1 + g(t) l F (l))2, (13)

where we have further assumed ✓ = 0 for the sake of simplicity. In Fig. (3) we choose again b(r) = b

2
0/r and also F (l) = l/l0 for

0 < l  l0 and F (l) = 0 otherwise. We plot the form of the flux in the region between �x0 and x0 for g = 0, g = c

2
/(20 l0) and

g = �c

2
/(20 l0), which would characterise the different stages of the accelerated mouth trajectory. Outside this region the flux

should be the same as in the case of no acceleration. Notice that if c = 108 m/s and l0 = 0.2 mm, then g = 2.5 · 1018 m/s2.
The mentioned value of l0 would imply that we only need to adjust the flux of a few SQUIDs, perhaps only 1 if we look
at Fig. (3). For simplicity, we are assuming that the simulated acceleration is instantaneous, meaning that the magnetic flux
switches instantaneously among the different curves in Fig. (3). An abrupt change of the magnetic flux might generate unwanted
dynamics, so it would be desirable to include a switching function for the transitions.

After performing the series of modifications of the flux corresponding to a simulated full twin paradox trajectory for a worm-
hole mouth, the effective spacetime region between x0 and �x0 contains effective CTCs, which in our case could be probed by
sending microwave photons back and forth along this region -e.g. by means of a mirror interrupting the transmission line. If t

and T are the times measured by observers at x0 and �x0 respectively, the time shift between them will be given by T/t = �

where � is the standard relativistic factor � = 1/

p
(1 � v

2
/c

2). The relative velocity v in our case will be determined by the
acceleration g and the duration of the acceleration as seen by the inertial observer T

a

, v = g T

a

/

p
(1 + g

2
T

2
a

/c

2). Thus, finally:
� =

p
(1 + g

2
T

2
a

/c

2). For the acceleration considered above, � ⇡ 25 after T

a

= 1 ns of acceleration. If the total trajectory
lasts T ns as seen by an observer at �x0 this means that the elapsed time for observers at x0 is T/25 ns, generating a time
shift of 24/25T ns. Thus photons that have lived in the left side of the transmission line during the acceleration have now the
opportunity of travelling back in time 24/25T ns by going first to the right side of the transmission line and back again to the
left side. For T of a few ns this time is much larger than the time needed to traverse the wormhole t =

R
x0

�x0 dx/c(x) ' 0.04 ns.
The assumption that a photon is travelling along the left part of the transmission line only during a few ns would imply a trans-
mission line length around 10 cm and thus a number of several thousand SQUIDs. Transmission lines of more than 2 m [35] and
arrays of more than 500 SQUDs [36] have already been achieved in the laboratory. These numbers have been derived within the
assumption that the accelerations are instantaneous. Including realistic switching functions to smooth unwanted dynamics might
push them even higher.

Letting alone the time-machine spacetime, a straightforward way of probing the effective wormhole geometry given by Eq.
(11) would be to measure the time that light takes to travel along the transmission line, which should be slightly delayed with
respect to the flat spacetime case. In Fig. (4) we see that this delay is as high as 1 ps after travelling from x0 = 10 cm to x0 = 0.

Discussion

It is interesting to reflect upon the implications of the above results. In [16], Hawking posed the chronology protection
conjecture, according to which quantum effects would prevent the formation of CTCs, triggering a fascinating open debate on the
subject (see [37] and references therein). Of course, here we do not have a real curved spacetime so Hawking’s argument -which
is based on divergencies of the quantum propagator of the gravitational energy-momentum tensor- does not apply. However,
in our case microwave photons would follow equations of motion that are indistinguishable from the ones of a 1D reduction
of the spacetime in Eq. (12). Therefore, it is natural to ask: are CTCs forbidden in this cm-size 1D effective spacetime? As
a matter of fact, in [38] Reece Boston tried to build up an optical metamaterial containing CTCs -more precisely, closed null
geodesics- and finally found that it was actually impossible since the physical parameters of such a metamaterial would be
unphysical. In our case, this does not seem to be the case, since there is anything unphysical in the parameters of the external
flux bias, although there are of course important technical challenges. However, we have acknowledged the role of the finite
impedance array, which would generate quantum fluctuations of the phase. We have tried to mimimise the impedance so it does
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to modify this spacetime in order to allow the existence of closed timelike curves. The quantum fluctuations
of the phase associated to the finite array impedance might be seen as an analogue of Hawking’s chronology
protection mechanism.

Introduction

Quantum simulators [1] are becoming increasingly popu-
lar as non-universal quantum computers with the potential of
proving the long-sought quantum supremacy [2]. In addition
to this most practical application, quantum simulators have
proven to be useful tools to explore the frontiers of quan-
tum physics, ranging from open problems in well-established
theories such as quantum field theory [3] to untested physics
whose observability is hard or dubious [4–8] or even probably
impossible [9, 10].

Wormholes or Einstein-Rosen bridges are compelling
mathematical objects appearing in some solutions of Ein-
stein’s General Relativity equations. Since they provide a
bridge between distant regions of spacetime, they have at-
tracted a great deal of attention from a foundational view-
point as well as at a pedagogical level [11–15]. However,
it seems that they do not appear naturally in our Universe
and moreover there are reasons to expect that even a hypo-
thetical manufacture must be forbidden [16]. The stability
of a wormhole relies on the use of exotic material violating
the weak energy condition -namely, the existence of space-
time regions with negative energy density for some observers-
and wormhole spacetimes may contain closed timelike curves
(CTCs) [14] which are typically deemed as incompatible with
the physical principle of causality. However, at least at the
quantum level it is possible to reconcile causality and CTCs
[17]. Indeed, CTCs would boost the capabilities of quantum
computers [18]- an observation that has motivated the interest
of quantum simulation of CTCs [19].

In this work we introduce a quantum simulator of
traversable wormhole spacetimes by means of a su-
peconducting circuit architecture consisting of an array
of dc-Superconducting Quantum Interferometric Devices
(SQUIDs). Superconducting setups have already proven use-
ful for the simulation of relativistic physics [20–23]. We show
that the wide tunability of the SQUIDs can be exploited to
mimic the propagation of a microwave electromagnetic field
near a one-dimensional (1D) wormhole, thus generating an
effective wormhole spacetime for the quantum field. This is
a remarkable difference with previous proposals [24, 25] to
simulate wormholes in metamaterials or in water, which are
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FIG. 1: (Color online) a) Embedding diagram of a traversable worm-
hole spacetime. Two asymptotically flat regions of spacetime at
l ! ±1 are connected by a throat centered at l = 0, where l is
defined by the proper radial distance to the wormhole throat. b) An
array of dc-SQUIDS embedded in a superconducting open transmis-
sion line. A suitable strongly inhomogenous external flux bias (gray)
generates an effective speed of propagation for the electromagnetic
quantum field, which can mimic the one in the spacetime depicted in
a).

based on the classical Maxwell equations- a classical simula-
tor of a wormhole for magnetostatic fields has been recently
implemented in the laboratory with a magnetic metamaterial
[26]. We consider a paradigmatic family of traversable worm-
holes [15], as well as a modification of them which can con-
tain CTCs [14]. We see that the electromagnetic impedance
of the array places severe limitations on the simulated space-
time parameters, by generating quantum fluctuations of the
superconducting phase in the surroundings of the simulated
wormhole throat. We try to minimise the region of the array
where the impedance is large, ideally to a single point rep-
resenting the throat which in turn establishes a limit on the
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where g(t) is the acceleration and F (l) is a form factor function of the radial distance, vanishing at l < 0 and rising smoothly
up to 1 in the travelling mouth. Again, we consider �(r) = 0, restrict ourselves to 1D and pull out a conformal factor in order
to get the shape of the external flux:
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where we have further assumed ✓ = 0 for the sake of simplicity. In Fig. (3) we choose again b(r) = b
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/(20 l0), which would characterise the different stages of the accelerated mouth trajectory. Outside this region the flux

should be the same as in the case of no acceleration. Notice that if c = 108 m/s and l0 = 0.2 mm, then g = 2.5 · 1018 m/s2.
The mentioned value of l0 would imply that we only need to adjust the flux of a few SQUIDs, perhaps only 1 if we look
at Fig. (3). For simplicity, we are assuming that the simulated acceleration is instantaneous, meaning that the magnetic flux
switches instantaneously among the different curves in Fig. (3). An abrupt change of the magnetic flux might generate unwanted
dynamics, so it would be desirable to include a switching function for the transitions.

After performing the series of modifications of the flux corresponding to a simulated full twin paradox trajectory for a worm-
hole mouth, the effective spacetime region between x0 and �x0 contains effective CTCs, which in our case could be probed by
sending microwave photons back and forth along this region -e.g. by means of a mirror interrupting the transmission line. If t

and T are the times measured by observers at x0 and �x0 respectively, the time shift between them will be given by T/t = �
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2). For the acceleration considered above, � ⇡ 25 after T

a

= 1 ns of acceleration. If the total trajectory
lasts T ns as seen by an observer at �x0 this means that the elapsed time for observers at x0 is T/25 ns, generating a time
shift of 24/25T ns. Thus photons that have lived in the left side of the transmission line during the acceleration have now the
opportunity of travelling back in time 24/25T ns by going first to the right side of the transmission line and back again to the
left side. For T of a few ns this time is much larger than the time needed to traverse the wormhole t =

R
x0

�x0 dx/c(x) ' 0.04 ns.
The assumption that a photon is travelling along the left part of the transmission line only during a few ns would imply a trans-
mission line length around 10 cm and thus a number of several thousand SQUIDs. Transmission lines of more than 2 m [35] and
arrays of more than 500 SQUDs [36] have already been achieved in the laboratory. These numbers have been derived within the
assumption that the accelerations are instantaneous. Including realistic switching functions to smooth unwanted dynamics might
push them even higher.

Letting alone the time-machine spacetime, a straightforward way of probing the effective wormhole geometry given by Eq.
(11) would be to measure the time that light takes to travel along the transmission line, which should be slightly delayed with
respect to the flat spacetime case. In Fig. (4) we see that this delay is as high as 1 ps after travelling from x0 = 10 cm to x0 = 0.

Discussion

It is interesting to reflect upon the implications of the above results. In [16], Hawking posed the chronology protection
conjecture, according to which quantum effects would prevent the formation of CTCs, triggering a fascinating open debate on the
subject (see [37] and references therein). Of course, here we do not have a real curved spacetime so Hawking’s argument -which
is based on divergencies of the quantum propagator of the gravitational energy-momentum tensor- does not apply. However,
in our case microwave photons would follow equations of motion that are indistinguishable from the ones of a 1D reduction
of the spacetime in Eq. (12). Therefore, it is natural to ask: are CTCs forbidden in this cm-size 1D effective spacetime? As
a matter of fact, in [38] Reece Boston tried to build up an optical metamaterial containing CTCs -more precisely, closed null
geodesics- and finally found that it was actually impossible since the physical parameters of such a metamaterial would be
unphysical. In our case, this does not seem to be the case, since there is anything unphysical in the parameters of the external
flux bias, although there are of course important technical challenges. However, we have acknowledged the role of the finite
impedance array, which would generate quantum fluctuations of the phase. We have tried to mimimise the impedance so it does
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conjecture, according to which quantum effects would prevent the formation of CTCs, triggering a fascinating open debate on the
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is based on divergencies of the quantum propagator of the gravitational energy-momentum tensor- does not apply. However,
in our case microwave photons would follow equations of motion that are indistinguishable from the ones of a 1D reduction
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a matter of fact, in [38] Reece Boston tried to build up an optical metamaterial containing CTCs -more precisely, closed null
geodesics- and finally found that it was actually impossible since the physical parameters of such a metamaterial would be
unphysical. In our case, this does not seem to be the case, since there is anything unphysical in the parameters of the external
flux bias, although there are of course important technical challenges. However, we have acknowledged the role of the finite
impedance array, which would generate quantum fluctuations of the phase. We have tried to mimimise the impedance so it does
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The assumption that a photon is travelling along the left part of the transmission line only during a few ns would imply a trans-
mission line length around 10 cm and thus a number of several thousand SQUIDs. Transmission lines of more than 2 m [35] and
arrays of more than 500 SQUDs [36] have already been achieved in the laboratory. These numbers have been derived within the
assumption that the accelerations are instantaneous. Including realistic switching functions to smooth unwanted dynamics might
push them even higher.

Letting alone the time-machine spacetime, a straightforward way of probing the effective wormhole geometry given by Eq.
(11) would be to measure the time that light takes to travel along the transmission line, which should be slightly delayed with
respect to the flat spacetime case. In Fig. (4) we see that this delay is as high as 1 ps after travelling from x0 = 10 cm to x0 = 0.
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It is interesting to reflect upon the implications of the above results. In [16], Hawking posed the chronology protection
conjecture, according to which quantum effects would prevent the formation of CTCs, triggering a fascinating open debate on the
subject (see [37] and references therein). Of course, here we do not have a real curved spacetime so Hawking’s argument -which
is based on divergencies of the quantum propagator of the gravitational energy-momentum tensor- does not apply. However,
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He chose a very short wormhole: length 2a¼ 0.01q as in
the top panel of Fig. 7; for greater lengths, the multiple
images would be confusing to a mass audience. And he chose
a modest lensing width: W ¼ 0:05q also as in the top panel
of Fig. 7 and in between the two lensing widths of Fig. 9.
This gives enough gravitational lensing to be interesting (see
below), but far less lensing than for a black hole, thereby

enhancing the visual distinction between Interstellar’s worm-
hole and its black hole Gargantua.

A. Interstellar’s distant galaxy

For Interstellar, a team under the leadership of authors
Paul Franklin and Eug!enie von Tunzelmann constructed
images of the distant galaxy through a multistep process.

Fig. 7. Images of Saturn on the camera sky as seen through the wormhole, for small lensing widthW ¼ 0:05q and various wormhole lengths (from top to bot-
tom) 2a/q¼ 0.01, 1, 10. The camera is at ‘¼ 6.25q þ a; i.e., at a distance 6.25q from the wormhole’s mouth—the edge of its cylindrical interior. [Adapted
from Fig. 15.2 of The Science of Interstellar (Ref. 5), and used by permission of W. W. Norton & Company, Inc. TM & Copyright 2015 Warner Bros.
Entertainment Inc. (s15), and Kip Thorne. Interstellar and all related characters and elements are trademarks of and Copyright Warner Bros. Entertainment
Inc. (s15). The images on the right may be used under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)
license. Any further distribution of these images must maintain attribution to the author(s) and the title of the work, journal citation and DOI. You may not use
the images for commercial purposes and if you remix, transform or build upon the images, you may not distribute the modified images.]
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Conclusions

We have introduced an analogue quantum 
simulator of a 1+1 D wormhole spacetime 
and shown how to turn it into a time 
machine. 

An analogue chronology-protection 
mechanism emerges naturally in this 
superconducting setup. 

The detection of a real wormhole might be in 
principle possible with space-based laser 
interferometers.



Do not go gentle into that good night, 
Old age should burn and rave at close of day; 

Rage, rage against the dying of the light. 

Though wise men at their end know dark is right, 
Because their words had forked no lightning they 

Do not go gentle into that good night. 

Good men, the last wave by, crying how bright 
Their frail deeds might have danced in a green bay, 

Rage, rage against the dying of the light. 

Wild men who caught and sang the sun in flight, 
And learn, too late, they grieved it on its way, 

Do not go gentle into that good night. 

Grave men, near death, who see with blinding sight 
Blind eyes could blaze like meteors and be gay, 

Rage, rage against the dying of the light. 

And you, my father, there on the sad height, 
Curse, bless, me now with your fierce tears, I pray. 

Do not go gentle into that good night. 
Rage, rage against the dying of the light. 

(Dylan Thomas) 


