Superconducting qubits for analogue quantum simulation

Gerhard Kirchmair

Workshop on Quantum Science and Quantum Technologies ICTP Trieste

September 13th 2017

Global

Scholars

erc

European Research Council Established by the European Commission

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

Experiments in Innsbruck on cQED

Quantum Simulation using cQED

Quantum Magnetomechanic

Josephson Junction array resonators

Outline

- Introduction to Circuit QED
 - Cavities
 - Qubits
 - Coupling

- Analog quantum simulation of spin models
 - 3D Transmons as Spins
 - Simulating dipolar quantum magnetism
 - First experiments

QIP, quantum optics, quantum measurement...

Many groups around the world:

Yale University, UC Santa Barbara, ETH Zurich, TU Delft, Princeton, University of Chicago, Chalmers, Saclay, KIT Karlsruhe ...

Cavities

Waveguide microwave resonator

Reagor et.al. Appl. Phys. Lett. 102, 192604 (2013)

Quantum Circuits

Around a resonance:

$$H = \frac{\hat{Q}^2}{2C} + \frac{\hat{\Phi}^2}{2L}$$

$$\hat{Q} = \sqrt{\frac{\hbar}{2 Z_0}} (a + a^{\dagger}) \quad \hat{\Phi} = i \sqrt{\frac{\hbar Z_0}{2}} (a - a^{\dagger})$$
$$H = \hbar \omega_0 \left(a^{\dagger} a + \frac{1}{2} \right)$$

Quantum Harmonic Oscillator

$$Z_0 = \sqrt{\frac{L}{C}} \longrightarrow 1 \dots 100 \ \Omega$$

$$\omega_0 = \sqrt{\frac{1}{LC}} \longrightarrow 4 \dots 10 \ GHz$$

Qubits – 3D Transmon

Josephson Junction

$$\widehat{H} = -E_j \cos \widehat{\varphi}$$

$$\int$$

$$\widehat{H} = -E_j \cos \widehat{\varphi} + \frac{\widehat{Q}^2}{2 C}$$

Superconducting Qubits - Transmon

Using the same replacement rules as for the Harmonic Oscillator

$$H = \hbar\omega_0 b^{\dagger} b - \frac{E_c}{2} (b^{\dagger} b)^2$$

$$H = \hbar \frac{\omega_0}{2} \sigma_z$$

Koch et.al. Phys. Rev. A 76, 042319

 $\omega_0 = 5 - 10 GHz$ $E_c = 300 MHz = \alpha$

Transmon coupled to a Resonators

Jaynes Cummings Hamiltonian

driving, readout, interactions

Transmon - Transmon coupling

Direct capacitive qubit-qubit interaction

$$H_{int} = \hbar J (\sigma^+ \sigma^- + \sigma^- \sigma^+) \quad J = 50 - 250 \text{ MHz}$$

3D Transmon coupled to a Resonator

$$\left| \vec{d} \right| = 2e \cdot 1mm \approx 10^7 \text{Debye}$$

Observed Q's up to 5 M

 T_1 , $T_2 \leq 100~\mu s$

Superconducting qubits for analog quantum simulation of spin models

Phys. Rev. B 92, 174507 (2015)

Viehmann et.al. Phys. Rev. Lett. 110, 030601 (2013) & NJP 15, 3 (2013)

European Research Council

Established by the European Commission

Quantum Simulation

The problem: Simulating interacting quantum many-body systems on a classical computer is very hard.

The approach: Engineer a well controlled system that can be used as a **quantum simulator** for the system of interest.

The basic idea & some systems of interest...

O...spins

____...interactions

Finite Element modeling - HFSS

Qubit – Qubit interaction

$$J(r,\theta_1,\theta_2) = J_0 d_m^2 \frac{\cos(\theta_1 - \theta_2) - 3\cos\theta_1\cos\theta_2}{r^3} + J_{cav}$$

Interaction tunability

- Qubit Qubit angle and position
 - tailor interactions
- Qubit Cavity angle
 - tailor readout & driving
 - measure correlations

Scaling the system

- Fine grained readout
- Competition between short range dipole and long range photonic interaction
- Band engineering is possible
- Inbuilt Purcell protection
- Dissipative state engineering

Open quantum systems

To do list – theory input

• How to best **characterize** these systems?

• What do we want to **measure**?

• How do we **verify/validate** our measurements

• How does it work in the **open system** case?

Simulating dipolar quantum magnetism

Phys. Rev. B 92, 174507 (2015)

Model to simulate

XY model on a ladder: Superfluid and Dimer phase

Analogue Quantum Simulation with Superconducting qubits

$$H = \sum_{i,j} \frac{J(\theta_1, \theta_2)}{|r_{i,j}|^3} (S_i^+ S_j^- + h.c.) + \sum_i h_j S_i^z$$

In Collaboration with M. Dalmonte & D. Marcos & P. Zoller

Static properties of the model

Bond order parameter shows formation of triplets for $J_2/J_1=0.5$

Adiabatic state preparation

Including disorder $\delta h/J_1$ =0.25

Experimental progress

Experimental progress - Qubits

✓ Single qubit control, frequency tunable $T_1 \approx 40 \ \mu s, T_2 \le 25 \ \mu s$

Experimental progress - Qubits

Multiple qubits and interactions

B-field (a.u.)

 $J \approx 70 \text{ MHz}$

Qubit measurements & state preparation

• During the simulation:

$$\omega_i = \omega_j \,\,\forall_{i,j}$$

 $\sigma_i^m \otimes \sigma_j^m$

• We want to measure:

• We want to be able to bring excitations into the system

➔ fast flux tunability necessary

Tuning fields with a Magnetic Hose

• Transport B-field from A to B

Long-distance Transfer and Routing of Static Magnetic Fields Phys. Rev. Let. **112**, 253901(2014)

Experimental progress - Magnetic Hose

 $T_1 \ge 15 \ \mu s$ Purcell limited $T_2 < 15 \ \mu s$ depends on flux bias

Experimental progress - Magnetic Hose

Experimental progress – Waveguides

High Q Stripline resonators for waveguides

AIP Advances 7, 085118 (2017)

Experimental progress - Waveguides

Waveguides with resonators and qubits

Conclusion

• 3D Transmons behave like dipoles

• Simulate models on 1D and 2D lattices

• Work in progress

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

European Research Council Established by the European Commission

Quantum Circuits Group Innsbruck – April 2017

Quantum Circuits

Around a resonance:

Lagrangian
$$\longrightarrow H = \frac{\hat{Q}^2}{2C} + \frac{\hat{\Phi}^2}{2L}$$

 \Leftrightarrow

$$H = \frac{\hat{p}^{2}}{2m} + \frac{m\omega^{2}\hat{x}^{2}}{2}$$

$$H = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2}$$

Resonators and Cavities

Coplanar Waveguide Resonators

Why interfaces matter... dirt happens

"participation ratio" = fraction of energy stored in material

even a thin (few nanometer) surface layer will store $\approx 1/1000$ of the energy

If surface loss tangent is poor (tan $\delta \approx 10^{-2}$) would limit Q $\approx 10^{5}$

Increase spacing

- decreases energy on surfaces
- ➡ increases Q

as shown in:

Gao et al. 2008 (Caltech) O'Connell et al. 2008 (UCSB) Wang et al. 2009 (UCSB) tech. solution: Bruno et al. 2015 (Delft)

Circuit model explanation

Josephson Junction

Josephson relations: $I(\varphi) = I_c \sin \varphi$

$$\dot{\varphi} = \frac{2e}{\hbar}V(t)$$

Regular inductance

 $V_L = L\dot{I}$

 $E = \frac{\Phi^2}{2L}$

$$V_{jj} = \frac{\hbar}{2e} \frac{1}{I_c \cos \varphi} \dot{I}$$

Josephson Junction

$$E = -E_j \cos(\varphi) \approx E_j \frac{\varphi^2}{2} - E_j \frac{\varphi^4}{12} + \cdots$$

$$\varphi = \frac{2e}{\hbar} \Phi = 2\pi \frac{\Phi}{\Phi_0}$$

 \Leftrightarrow

 \Leftrightarrow

Josephson Junction

Junction fabrication:

- thin film deposition
- Shadow bridge technique

Charge Qubit Coherence

Jahr