

Engineered dissipative reservoir for microwave light using circuit optomechanics

L. D. Tóth¹, N. R. Bernier¹, A. Nunnenkamp², <u>A. K. Feofanov¹</u>, T. J. Kippenberg¹

EPFL – Institute of Physics
 University of Cambridge – Cavendish laboratory

Workshop on Quantum Science and Quantum Technologies, Trieste, Italy

September 14, 2017

National Centre of Competence in Research

OPTOMECHANICAL TECHNOLOGIES

Swiss National Science Foundation

Hybrid Optomechanical Technologies

Canonical model for a cavity optomechanical system

(a)
$$L$$

 $in(t)$ $a(t)$ $a(t)$ $hint = -\hbar G \hat{a}^{\dagger} \hat{a} \hat{x}$

Optical frequency shift

Radiation pressure force

 $\dot{\hat{a}} = i \left[\hat{H}, \hat{a} \right] / \hbar = i \left(\omega_{c} - G \hat{x} \right) \hat{a}$ $\hat{F}_{rp} = -\frac{d\hat{H}_{int}}{d\hat{x}} = \hbar G \hat{a}^{\dagger} \hat{a}$ measurement leads to a radiation pressure

'backaction'

ÉCOLE POLYTEC

Vacuum optomechanical coupling rate

$$g_0 = G_{\sqrt{\frac{\hbar}{2m\Omega_m}}}$$

Radiation pressure Dynamical backaction

Optical field responds on the mechanical motion with delay $\tau \approx \kappa^{-1}$

$$\frac{d^{2}x}{dt^{2}} + \Gamma_{m}\frac{dx}{dt} + \Omega_{m}^{2}x = \frac{F_{rp}\left(x\left(t-\tau\right)\right)}{m_{eff}}$$
Taylor expansion yields:
$$F_{rp}\left(x\left(t-\tau\right)\right) \approx \frac{dF}{dx}x - \tau\frac{dF}{dx}\frac{dx}{dt}$$

 $\Gamma_{\text{opt}} \approx \tau \frac{dF}{dx} \cdot \frac{1}{m_{\text{eff}}} \qquad \frac{\Delta > 0}{\Delta < 0}$

Amplification Blue detuning Dynamical backaction induced Parametric instability (JETP 1970, Braginsky)

Cooling Red detuning (JETP 1970, Braginsky)

Braginsky, V. B. & Manukin A. B. *Measurement of Weak Forces in Physics Experiments*. (1977) Braginsky, V. B. & Khalili, F. Y. *Quantum Measurement*. (1992) Braginsky, V. B., Strigin, S. E. & Vyatchanin, S. P. Analysis of parametric oscillatory instability in power recycled LIGO interferometer. *Physics Letters A* **305**, 111-124 (2002)

Frequency domain picture

$$\Delta = -\Omega_{\rm m} \quad H_{\rm int} \approx -\hbar g_0 \sqrt{n_{\rm c}} \left(\delta \hat{a}^{\dagger} \hat{b} + \delta \hat{a} \hat{b}^{\dagger} \right)$$

Coherent exchange of quanta, cooling

Two-mode squeezing, amplification

I. Wilson-Rae, N. Nooshi, W. Zwerger, T. J. Kippenberg. *Phys. Rev. Lett.* **99**, 093901 (2007) F. Marquardt, J. P. Chen, A. A. Clerk, S. M. Girvin. *Phys. Rev. Lett.* **99**, 093902 (2007)

Cavity optomechanics today

ÉCOLE POLYTECHNIQUE Fédérale de lausanne

M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. *Rev. Mod. Phys.* 86, 1391 (2014)

$$\delta \hat{a} = +i\Delta \delta \hat{a} - \frac{\kappa}{2} \delta \hat{a} + ig_0 \sqrt{n_c} (\hat{b} + \hat{b}^{\dagger}) + \sqrt{\kappa_{ex}} \delta \hat{a}_{in,ex} + \sqrt{\kappa_0} \delta \hat{a}_{in,0}$$
$$\dot{\hat{b}} = -i\Omega_m \hat{b} - \frac{\Gamma_m}{2} \hat{b} + ig_0 \sqrt{n_c} (\delta \hat{a} + \delta \hat{a}^{\dagger}) + \sqrt{\Gamma_m} \hat{b}_{in}$$

M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. *Rev. Mod. Phys.* **86**, 1391 (2014)

Electromagnetic mode constitutes a cold dissipative bath for the mechanical sub-system. We can *prepare* the state (e.g. ground state or squeezed state) of the *mechanical* oscillator by *controlling coupling* between the mechanical resonator and the electromagnetic mode.

Electromagnetic mode constitutes a cold dissipative bath for the mechanical sub-system. We can *prepare* the state (e.g. ground state or squeezed state) of the *mechanical* oscillator by *controlling coupling* between the mechanical resonator and the electromagnetic mode.

Electromagnetic mode constitutes a cold dissipative bath for the mechanical sub-system. We can *prepare* the state (e.g. ground state or squeezed state) of the *mechanical* oscillator by *controlling coupling* between the mechanical resonator and the electromagnetic mode.

Electromagnetic mode constitutes a cold dissipative bath for the mechanical sub-system. We can *prepare* the state (e.g. ground state or squeezed state) of the *mechanical* oscillator by *controlling coupling* between the mechanical resonator and the electromagnetic mode.

Optomechanical interactions

 $\Delta = -\Omega_{\rm m}$

$$H_{\rm int} \approx -\hbar g_0 \sqrt{n_{\rm c}} \left(\delta \hat{a}^{\dagger} \hat{b} + \delta \hat{a} \hat{b}^{\dagger} \right)$$

Coherent exchange of quanta, cooling Electromagnetic mode damps mechanical oscillator on red sideband

Conventional dissipation hierarchy:

$$\kappa \gg \Gamma_{\rm m}$$

Optomechanical interactions

 $\Delta = -\Omega_{\rm m}$

$$H_{\rm int} \approx -\hbar g_0 \sqrt{n_{\rm c}} \Big(\delta \hat{a}^{\dagger} \hat{b} + \delta \hat{a} \hat{b}^{\dagger}$$

Coherent exchange of quanta, cooling Electromagnetic mode damps mechanical oscillator on red sideband

$$\Delta = +\Omega_{\rm m}$$
$$H_{\rm int} \approx -\hbar g_0 \sqrt{n_{\rm c}} \left(\delta \hat{a}^{\dagger} \hat{b}^{\dagger} + \delta \hat{a} \hat{b} \right)$$

Amplification and two mode squeezing Electromagnetic mode amplifies mechanical oscillator on blue sideband

Conventional dissipation hierarchy:

mechanical oscillator Microwave cavity

$$\begin{array}{c} \Omega_{\rm m} & -\Delta \\ \hline \hat{b} & \delta \hat{a} \\ \hline \delta \hat{a} \\ \Gamma_{\rm m}(\bar{n}_{\rm th}+1) \end{array} \\ \Gamma_{\rm m}\bar{n}_{\rm th} \end{array}$$

 $\kappa \gg \Gamma_{\rm m}$

Optomechanical interactions

 $\Delta = -\Omega_{m}$

$$H_{\rm int} \approx -\hbar g_0 \sqrt{n_{\rm c}} \left(\delta \hat{a}^{\dagger} \hat{b} + \delta \hat{a} \hat{b}^{\dagger} \right)$$

Coherent exchange of quanta, cooling Electromagnetic mode damps mechanical oscillator on red sideband

$$\begin{split} \Delta &= +\Omega_{\rm m} \\ H_{\rm int} \approx -\hbar g_0 \sqrt{n_{\rm c}} \left(\delta \hat{a}^{\dagger} \hat{b}^{\dagger} + \delta \hat{a} \hat{b} \right) \end{split}$$

Amplification and two mode squeezing Electromagnetic mode amplifies mechanical oscillator on blue sideband

Conventional dissipation hierarchy:

$$\kappa \gg \Gamma_{\rm m}$$

 $\kappa \ll \Gamma$

 $\Gamma_{\rm eff} \rightarrow \kappa_{\rm eff}$

Change in the *mechanical* damping rate, becomes change in the *optical* decay rate.

Reversed dissipation hierarchy :

mechanical oscillator Microwave cavity

$$\begin{array}{c} \Omega_{\rm m} & -\Delta \\ \hline \hat{b} & \hline & \delta \hat{a} \\ \hline \hat{b} & \hline & \delta \hat{a} \\ \Gamma_{\rm m}(\bar{n}_{\rm th}+1) \end{array} \\ \Gamma_{\rm m}\bar{n}_{\rm th} \end{array}$$

The reversed dissipation regime

 $\Gamma_{\rm eff} \to \kappa_{\rm eff} \xrightarrow{\rm \acute{e}cole\ polytechnique} \kappa_{\rm eff}$

Change in the *mechanical* damping rate, becomes change in the *optical* decay rate.

Change in the electromagnetic decay rate (mechanical damping)

$${}_{\rm om} = \frac{\Gamma_{\rm eff} g_0^2 n_{\rm c}}{(\Gamma_{\rm eff} / 2)^2 + (\Delta + \Omega_{\rm m})^2} - \frac{\Gamma_{\rm eff} g_0^2 n_{\rm c}}{(\Gamma_{\rm eff} / 2)^2 + (\Delta - \Omega_{\rm m})^2}$$

The reversed dissipation regime

Reversed dissipation hierarchy : $\kappa \ll \Gamma_{m}$ $\Gamma_{\rm eff} \to \kappa_{\rm eff}$ Change in the *mechanical* damping rate, becomes change in the *optical* decay rate. 0.4 $\Omega_m/\kappa = 10^4$ Change in the electromagnetic decay rate $\Omega_m / \Gamma_m = G / \kappa = 10$ 0.2 (mechanical damping) $\frac{\mathcal{L}}{\mathcal{L}}$ 0.0 \mathcal{L} 0.2 $\kappa_{\rm om} = \frac{\Gamma_{\rm eff} g_0^2 n_{\rm c}}{(\Gamma_{\rm eff}/2)^2 + (\Delta + \Omega_{\rm m})^2} - \frac{\Gamma_{\rm eff} g_0^2 n_{\rm c}}{(\Gamma_{\rm eff}/2)^2 + (\Delta - \Omega_{\rm m})^2}$ -0.4-2-10 Change in the electromagnetic resonance freq. Δ/Ω_m $\Delta \omega_{\rm om} = \frac{\Gamma_{\rm eff} g_0^2 n_{\rm c} (\Delta - \Omega_{\rm m})}{(\Gamma_{\rm m}/2)^2 + (\Delta + \Omega_{\rm m})^2} - \frac{\Gamma_{\rm eff} g_0^2 n_{\rm c} (\Delta + \Omega_{\rm m})}{(\Gamma_{\rm m}/2)^2 + (\Delta - \Omega_{\rm m})^2}$ 0.10 0.05 $\Delta_{\rm om}/\kappa$ 0.00 -0.05-0.102 Δ/Ω_m

The reversed dissipation regime

Reversed dissipation hierarchy : $\kappa \ll \Gamma_{m}$ $\Gamma_{\rm eff} \to \kappa_{\rm eff}$ Change in the *mechanical* damping rate, becomes change in the *optical* decay rate. 0.4 $\Omega_m/\kappa = 10^4$ Change in the electromagnetic decay rate $\Omega_m / \Gamma_m = G / \kappa = 10$ 0.2 (mechanical damping) $\frac{\varkappa}{100}$ 0.0 $\frac{1}{3}$ 0.0 $\kappa_{\rm om} = \frac{\Gamma_{\rm eff} g_0^2 n_{\rm c}}{\left(\Gamma_{\rm eff} / 2\right)^2 + \left(\Delta + \Omega_{\rm m}\right)^2} - \frac{\Gamma_{\rm eff} g_0^2 n_{\rm c}}{\left(\Gamma_{\rm eff} / 2\right)^2 + \left(\Delta - \Omega_{\rm m}\right)^2}$ -0.4-10 Change in the electromagnetic resonance freq. Δ/Ω_m $\Delta \omega_{\rm om} = \frac{\Gamma_{\rm eff} g_0^2 n_{\rm c} (\Delta - \Omega_{\rm m})}{(\Gamma_{\rm m}/2)^2 + (\Delta + \Omega_{\rm m})^2} - \frac{\Gamma_{\rm eff} g_0^2 n_{\rm c} (\Delta + \Omega_{\rm m})}{(\Gamma_{\rm m}/2)^2 + (\Delta - \Omega_{\rm m})^2}$ 0.10 0.05 $\Delta_{\rm om}/$ 0.00 Modified cavity response -0.05 $S_{11}(\omega) = 1 - \frac{\kappa_{\text{ex}}}{(\kappa_0 + \kappa_{\text{ex}} + \kappa_{\text{om}})/2 + i(\omega_c + \Delta\omega_{\text{om}} - \omega)}$ -0.102 Δ/Ω_m

Amplification in the reversed dissipation regime

$$\hat{a}_{\text{out}} = A(\omega)\hat{a}_{\text{in}} + \underbrace{B(\omega)}_{|B| \ll |A|}\hat{a}_{\text{in}}^{\dagger} + C(\omega)\hat{b}_{\text{in}} + \underbrace{D(\omega)}_{|C| \ll |D|}\hat{b}_{\text{in}}^{\dagger}$$

The system operates as a **phase** preserving parametric amplifier

Gain of the amplifier

$$\mathcal{G}\left(\Delta_{s}\right) = \left|1 - \frac{\kappa}{\kappa_{\text{eff}} / 2 - i(\Delta_{s} + \Delta_{\text{eff}})}\right|^{2} \qquad \qquad \mathcal{G}\left(0\right) = \left|\frac{1 + \mathcal{C}}{1 - \mathcal{C}}\right|^{2}$$

A. Nunnenkamp, V. Sudhir, A. K. Feofanov, A. Roulet, T. J. Kippenberg. *Phys. Rev. Lett.* **113**, 023604 (2014) C. M. Caves. *Phys. Rev. D* **26**, 1817 (1982)

Amplification in the reversed dissipation regime

Noise added by the amplifier

$$\mathcal{N} = (n_{\text{eff}} + \frac{1}{2}) \left| \frac{D(\omega)}{A(\omega)} \right|^2 = \frac{4\mathcal{C}\left(n_{\text{eff}} + \frac{1}{2}\right)}{(\mathcal{C} + 1)^2} \to n_{\text{eff}} + \frac{1}{2}$$

Providing a dissipative but cold mechanical oscillator therefore realizes a **quantum limited phase preserving amplifier** based on a mechanical oscillator

A. Nunnenkamp, V. Sudhir, A. K. Feofanov, A. Roulet, T. J. Kippenberg. *Phys. Rev. Lett.* **113**, 023604 (2014) C. M. Caves. *Phys. Rev. D* **26**, 1817 (1982)

Two-mode implementation of the reversed dissipation regime

Two-mode implementation of the reversed dissipation regime

Circuit design and fabrication

Process flow – dual-mode circuits

CMi EPFL Center of MicroNanoTechnology

- 1, 3, 9: metal and sacrificial layer (Si) deposition
- 2, 8, 10: metal and Si etch
- 4, 5: planarization of Si layer (for split-plate drums)
- 6, 7: lithography to open Si layer (with reflow)
- 11: releasing the drum capacitor (XeF₂)

K. Cicak et al. Appl. Phys. Lett. 96, 093502 (2010)

 $\hat{H}_{\text{int}} = \hbar J (\hat{a}_1^{\dagger} \hat{a}_2 + \hat{a}_2^{\dagger} \hat{a}_1) + \hbar g_0 \hat{a}_1^{\dagger} \hat{a}_1 (\hat{b} + \hat{b}^{\dagger})$

 $\hat{H}_{\text{int}} = \hbar J (\hat{a}_1^{\dagger} \hat{a}_2 + \hat{a}_2^{\dagger} \hat{a}_1) + \hbar g_0 \hat{a}_1^{\dagger} \hat{a}_1 (\hat{b} + \hat{b}^{\dagger})$

$$\hat{H}_{int} = \hbar J (\hat{a}_1^{\dagger} \hat{a}_2 + \hat{a}_2^{\dagger} \hat{a}_1) + \hbar g_0 \hat{a}_1^{\dagger} \hat{a}_1 (\hat{b} + \hat{b}^{\dagger})$$

$$\hat{H}_{\text{int}} = \hbar J(\hat{a}_{\text{s}}^{\dagger}\hat{a}_{\text{s}} - \hat{a}_{\text{a}}^{\dagger}\hat{a}_{\text{a}}) + \hbar \frac{g_0}{2}(\hat{a}_{\text{a}}^{\dagger}\hat{a}_{\text{a}} + \hat{a}_{\text{s}}^{\dagger}\hat{a}_{\text{s}})(\hat{b} + \hat{b}^{\dagger})$$

$$\begin{aligned} \widehat{\mathcal{H}} &= \hbar \boldsymbol{\omega}_0 \left(\hat{a}_1^{\dagger} \hat{a}_1 + \hat{a}_2^{\dagger} \hat{a}_2 \right) + \sum_k \hbar \boldsymbol{\omega}_k \hat{c}_k^{\dagger} \hat{c}_k + \hbar J \left(\hat{a}_1^{\dagger} \hat{a}_2 + \text{H.c.} \right) \\ &+ \hbar \sum_k \left(g_k^{(1)} \hat{a}_1 \hat{c}_k^{\dagger} + \text{H.c.} \right) + \hbar \sum_k \left(g_k^{(2)} \hat{a}_2 \hat{c}_k^{\dagger} + \text{H.c.} \right) \end{aligned}$$

$$\widehat{\mathcal{H}} = \hbar(\boldsymbol{\omega}_{0} + J)\hat{a}_{s}^{\dagger}\hat{a}_{s} + \hbar(\boldsymbol{\omega}_{0} - J)\hat{a}_{a}^{\dagger}\hat{a}_{a} + \sum_{k}\hbar\boldsymbol{\omega}_{k}\hat{c}_{k}^{\dagger}\hat{c}_{k}$$
$$+\hbar\sum_{k} \left(\frac{g_{k}^{(1)} + g_{k}^{(2)}}{\sqrt{2}}\hat{a}_{s}\hat{c}_{k}^{\dagger} + \text{H.c.}\right) + \hbar\sum_{k} \left(\frac{g_{k}^{(1)} - g_{k}^{(2)}}{\sqrt{2}}\hat{a}_{a}\hat{c}_{k}^{\dagger} + \text{H.c.}\right)$$

L. D. Tóth et al. Nature Physics 13, 787-793 (2017)

L. D. Tóth et al. Nature Physics 13, 787-793 (2017)

Circuit layout

L. D. Tóth et al. Nature Physics 13, 787-793 (2017)

Measurement setup

THEFT. ω_{c}

a_{in}

With these parameters we can easily damp the mechanics to $\Gamma_{eff} \sim 2\pi \times 550$ kHz $\approx 5\kappa$

 $\Omega_m \gg \Gamma_{\rm eff} \gg \kappa$

for electromagnetic mode

L. D. Tóth et al. Nature Physics 13, 787-793 (2017)

"Mechanical" spring effect

Fix pump power (5 dBm) and sweep detuning

Fix pump power (5 dBm) and sweep detuning

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

 $\kappa_{\rm om} = \pm C \kappa$

Demonstrates electromagnetic control over the *cavity damping rate*, via mechanical dissipative reservoir

Maser using a mechanical dissipative reservoir

$$\omega_{_{\mathrm{pump}}} = \omega_{_{\mathrm{signal}}} + \Omega_{_{\mathrm{phonon}}}$$

Phonons (*idler mode* population) decay quickly

N. Bloembergen. Nonlinear Optics.

$$\mathcal{G} = \left| S_{11}(\boldsymbol{\omega}_{\rm c}) \right|^2 = \left| \frac{\left(2\kappa_{\rm ex} / \kappa - 1 \right) + \mathcal{C}}{1 - \mathcal{C}} \right|^2 \qquad \kappa_{\rm eff} = (1 - \mathcal{C})\kappa$$

$$N = \mathcal{N} + n_{\text{HEMT}} / (\alpha \cdot \mathcal{G})$$

$$\mathcal{N}_{\rm QL} = \frac{1}{2} + \frac{\kappa_0}{\kappa_{ex}} \approx 0.78$$

The system noise is $(2.09 \pm 0.13) \times QL$

*n*_{HEMT} = 22.5 ± 0.25 quanta

 $n_{\rm eff}$ = 0.65 ± 0.08 quanta

Realized electromechanics in the reversed dissipation regime

- Control over electromagnetic cavity properties via cold dissipative mechanical reservoir
- Near-quantum-limited amplification of microwave field
- Maser action

More generally, realized a **dissipative mechanical reservoir for microwaves**: a prerequisite for a **new class of dissipative optomechanical interaction**

Nature Physics 13, 787-793 (2017)

Thank you

L. D. Tóth

N. R. Bernier

A. Nunnenkamp T. J. Kippenberg