

Elements for scalable quantum information science with trapped ions

Christof Wunderlich

ICTP, Trieste, 14 September 2017

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Trapped Atomic Ions in QIS

- High Fidelity Preparation, Quantum Gates, Read-out
- Programmable Small-Scale Quantum Computer
- Quantum Simulations using Spins and Phonons

Perspective:

- Integrated Micro-Structured 2-D Trap Arrays
- Scalable Quantum Computer

J. Chiaverini et al., Quant. Inf. Comput. **5**, 419 (2005). C. Monroe et al., PRA **89**, 022317 (2014)

B. Lekitsch et al., Science Advances **3** (2017)

ANOMALOUS HEATING

SHUTTLING OF IONS

MAGIC: QUANTUM TOOLBOX

ANOMOULOS HEATING Ivan Boldin, Alexander Kraft

 Heating of harmonic motion of trapped ion: A major source of decoherence

$$\Gamma_{\rm h} \simeq \frac{e^2}{4m_{\rm I}\hbar\omega_{\rm t}}S_E(\omega_{\rm t}).$$

$$S_E(\omega) = 2 \int_{-\infty}^{\infty} \mathrm{d}\tau \langle \delta E_{\mathrm{t}}(\tau) \delta E_{\mathrm{t}}(0) \rangle \mathrm{e}^{-\mathrm{i}\omega\tau}$$

- Micro-structuring advantageous for scaling up
- Important open question: dependence on ion-surface distance

M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Rev. Mod. Phys. 87 (2015)

- Sources for δE_t :
 - Blackbody Radiation
 - Direct EM Interference
 - EM Pickup
 - Johnson Noise
 - Technical Noise
 - Space Charge
 - Patch Potentials ...

$$\mathsf{S}_{\mathsf{E}} \propto \omega^{-\alpha} \mathsf{d}^{-\beta} \mathsf{T}^{\gamma}$$

- Sources for δE_t :
 - Blackbody Radiation
 - Direct EM Interference
 - EM Pickup
 - Johnson Noise
 - Technical Noise
 - Space Charge
 - Patch Potentials ...

 $\beta = 2$ $\beta = 2$ $\beta = 2$ $\beta = 4$

$$\beta = 4$$

 $\beta = 0$

M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Rev. Mod. Phys. 87 (2015)

M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Rev. Mod. Phys. 87 (2015)

10⁸

10⁷

M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Rev. Mod. Phys. 87 (2015)

M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Rev. Mod. Phys. 87 (2015)

Planar ion trap

- 5-electrode trap
- Central electrode 150 µm
- ¹⁷²Yb⁺

Appl. Phys. B **114** (2014).

Planar ion trap

- 5-electrode trap
- Central electrode 150 µm
- ¹⁷²Yb⁺

Appl. Phys. B **114** (2014).

Vertical shuttling

Also: Cetina, et al. Phys. Rev. A 76, 041401 (2007)

Vertical shuttling

Trapping height: 61 – 154 µm

Measuring the vibrational energy

- Cooling laser off: ion heats up
- Cooling laser on: record ion images
- Oscillation amplitude -> Vibrational energy

Measuring the vibrational energy

Average vibrational energy from $\sigma^2 = E / m\omega^2$

Also: S. Knünz et al., PRA **85**, 023427 (2012)

Heating rate: trapping frequency dependence

Heating rate: trapping height dependence

Conclusion:

- **Power law** of heating rate vs. trapping height dependence
- Exponent *α* = -3.79±0.12
- Close to often cited, though never before directly measured, $\alpha = -4$
- Measured frequency and trapping height dependencies in agreement with
 - Model of small fluctuating patch potentials
 - Model of thin dielectric layer covering the electrodes

SHUTTLING OF IONS Peter Kaufmann, Timm F. Gloger Delia Kaufmann, Michael Johanning

Trapped Atomic Ions in QIS

- High Fidelity Preparation, Quantum Gates, Read-out
- Programmable Small-Scale Quantum Computer
- Quantum Simulations using Spins and Phonons

Perspective:

- Integrated Micro-Structured 2-D Trap Arrays
- Scalable Quantum Computer

J. Chiaverini et al., Quant. Inf. Comput. **5**, 419 (2005). C. Monroe et al., PRA **89**, 022317 (2014)

B. Lekitsch et al., Science Advances **3** (2017)

QI after shuttling of ions

Microstructurd linear Paul trap, three layer structure

Appl. Phys. B **107** (2012) Also: Schulz et al., NJP **10**, 045007 (2008)

QI after shuttling of ions

- Microstructurd linear Paul trap, three layer structure
- Move ion by 280 μm in 12.8 μs with update rate 12.5 MHz

QI after shuttling of ions

- 4000 shuttling events reduce Ramsey contrast by 3%
- Fidelity per shuttling F = 0.999994(+6/-7)

- Individual Addressing
- Processor Qubit or Memory Qubit
- Simultaneous Conditional Dynamics

MAGIC QUANTUM TOOLBOX Ch. Piltz, Th. Sriarunothai, G. Giri S. Ivanov, S. Wölk

Magnetic Gradient Induced Coupling: MAGIC

 $-\frac{\hbar}{2}\sum_{i < j}^{N}\sigma_{z,i}\sigma_{z,j}\,J_{ij}$

1. Individual Addressing

2. Spin-Spin Coupling

PRL **87** (2001) In "*Laser Physics at the Limit"*, Springer, 2002 = quant-ph/0111158. Adv. At. Mol. Opt. Phys. **49** (2003) = quant-ph/0305129

Coupling and Addressing Trapped Ions

Coupling and Addressing Trapped Ions

Addressing a Quantum Byte

Magnetic Gradient 19 T/m

Addressing a Quantum Byte

Magnetic Gradient 19 T/m

Addressing a Quantum Byte

Measured cross-talk matrix of interacting ions

addressed qubits (rows); observed qubits (columns)

C_{i,j} (10⁻⁵)

-	3.0(9)	1.9(8)	2.2(9)	2.3(9)	1.0(8)	0.7(6)	old
3.8(1.4)	-	4.1(1.1)	2.3(9)	2.3(1.1)	1.6(1.1	res	. .
2.1(1.0)	3.7(1.2)	-	4.5(1.2)	1.6/~	on	J.8(7)	1.1(6)
0.9(9)	1.7(6)	2.7(1.1)		recl	J.8(7)	0.6(6)	0.6(6)
1.9(9)	1.6(9)	31/	Cor	-	3.1(1.0)	1.8(9)	0.5(5)
1.5(5)	1	Erro	1.0(8)	5.5(1.4)	-	3.6(1.3)	0.8(8)
RE	104	1.5(7)	1.2(8)	1.2(8)	2.9(1.1)		2.6(8)
0.8	1.1(5)	0.6(6)	0.8(8)	2.5(9)	1.1(8)	3.4(1.2)	-

Nat. Commun. 5 (2014)

- Individual Addressing
- Processor Qubit or Memory Qubit
- Simultaneous Conditional Dynamics

MAGIC QUANTUM TOOLBOX

MAGIC: Spin-Spin Interaction

Memory: Qubit 1. Phase Gate: Qubits 2,3

 Q_3 :

 $|0\rangle$

 $|1\rangle$

Science Advances 2 (2016)

- Individual Addressing
- Processor Qubit or Memory Qubit
- Simultaneous Conditional Dynamics

MAGIC QUANTUM TOOLBOX

MAGIC QUANTUM TOOLBOX

- single-qubit gates: rotations and Hadamard gate
- conditional dynamics: all mutual couplings
- conditional dynamics: selected coupling

Science Advances 2 (2016)

Science Advances 2 (2016)

probability

Coherent QFT: Period Finding

|111>

|+11>

2

1

3

 $S(p,q) = \left(\sum_{i} \sqrt{p_i q_i}\right)^2$

4

output state

5

6

7

output state

Science Advances 2 (2016)

probability

0

0

MAGIC Outlook

- Stronger coupling $J \propto (\partial B)^2$
- Integrated Micro-Structured 2-D Trap Arrays
- Q-Simulations using Spins and Phonons e.g., D. Yang et al., PRA 94 (2016), PRA 89 (2014)
- Scalable Q-Computer

B. Lekitsch et al., Science Advances **3** (2017)