Fast and Robust Phase Gates with Trapped-Ion Hyperfine Qubits

Universidad del País Vasco Euskal Herriko Unibertsitatea

Iñigo Arrazola University of the Basque Country, Bilbao, Spain

Trieste, September, 2017

Rodrigo Asensio B. Sc. Miguel Peidro B. Sc. Ibai Aedo M. Sc. Adrián Parra-Rodríguez M. Sc. Iñigo Arrazola M. Sc. Xiao-Hang Cheng Prof. Enrique Solano

QUTIS Research

Quantum optics Quantum information Superconducting circuits Quantum biomimetics Prof. Íñigo Egusquiza Dr. Lucas Lamata Dr. Enrique Rico Dr. Mikel Sanz Dr. Unai Alvarez-Rodriguez M. Sc. Laura García-Álvarez

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

del País Vasco Unibertsitatea

• The System

• Microwave Pulse Sequence & Results

• Conclusions

I. Arrazola, J. Casanova, J. S. Pedernales, Z.-Y. Wang, E. Solano and M. B. Plenio, arXiv: 1706.02877

• The System

O Microwave Pulse Sequence & Results
O Conclusions

• Two trapped ions / The motion

$$V = \frac{1}{2}M\nu^2(z_1(t)^2 + z_2(t)^2) + \frac{e^2}{4\pi\epsilon_0}\frac{1}{z_2(t) - z_1(t)}$$

• Two trapped ions / The motion

$$V = \frac{1}{2}M\nu^2(z_1(t)^2 + z_2(t)^2) + \frac{e^2}{4\pi\epsilon_0}\frac{1}{z_2(t) - z_1(t)}$$

• Small Oscillations $z_i(t) \approx z_i^0 + q_i(t)$

Equilibrium positions

• Two trapped ions / The motion

$$V = \frac{1}{2}M\nu^2(z_1(t)^2 + z_2(t)^2) + \frac{e^2}{4\pi\epsilon_0}\frac{1}{z_2(t) - z_1(t)}$$

• Small Oscillations $z_i(t) \approx z_i^0 + q_i(t)$

Equilibrium positions

> Breathing mode ν_2 Center of mass mode ν_1

$$H_{\nu} = \nu_1 a_1^{\dagger} a_1 + \nu_2 a_2^{\dagger} a_2$$

The magnetic field breaks the degeneracy

$$H = H_{\nu} + [\omega_0 + \gamma B(z_1)]\sigma_1^z + [\omega_0 + \gamma B(z_2)]\sigma_2^z$$

The magnetic field breaks the degeneracy

 $H = H_{\nu} + [\omega_0 + \gamma B(z_1)]\sigma_1^z + [\omega_0 + \gamma B(z_2)]\sigma_2^z$

Magnetic field gradient

$$H_q = \omega_1 \sigma_1^z + \omega_2 \sigma_2^z$$

 $\omega_i = \omega_0 + \gamma B(z_i^0)$

 $m_F = 1 |\mathbf{e}\rangle_1$ $|e\rangle_2$ $\Omega_1(t)$ ω_1 $\Omega_2(t)$ $\dot{\omega}_2$ $m_F = 0$ $g\rangle$ $|g\rangle_2$ B(z) \mathcal{Z}

The magnetic field breaks the degeneracy

$$H = H_{\nu} + [\omega_0 + \gamma B(z_1)]\sigma_1^z + [\omega_0 + \gamma B(z_2)]\sigma_2^z$$

Magnetic field gradient

$$H_a = \omega_1 \sigma_1^z + \omega_2 \sigma_2^z$$

$$\omega_i = \omega_0 + \gamma B(z_i^0)$$

The System

• The interaction term

del País Vasco Unibertsitatea

O The System

• Microwave Pulse Sequence & Results

O Conclusions

 \bullet π -pulses for control and protection

$$U_{\pi} = e^{i\frac{\pi}{2}\sigma^{\phi}} \qquad \sigma^{\phi} = \sigma^{+}e^{i\phi} + \sigma^{-}e^{-i\phi}$$

 \bullet π -pulses for control and protection

$$H(t) = H_0 + \sum_{j,m} f_j(t) \Delta_{j,m} (a_m + a_m^{\dagger}) \sigma_j^z$$

 π -pulses $\longrightarrow f_j = \pm 1$

Symmetry is important ——— • Oynamical Decoupling ✓

Results

Fidelities above 99,9%

Infidelity (×10 ⁻⁴)	$\exp(i\frac{\pi}{4}\sigma_1^z\sigma_2^z)$	$\exp(i\frac{\pi}{8}\sigma_1^z\sigma_2^z)$	$\exp(i\frac{\pi}{4}\sigma_1^z\sigma_2^z)$	$\exp(i\frac{\pi}{8}\sigma_1^z\sigma_2^z)$
	$g_B = 150 \text{ T/m}$	$g_B = 150 \text{ T/m}$	$g_B = 300 \text{ T/m}$	$g_B = 300 \text{ T/m}$
	$\nu/(2\pi) = 150 \text{ kHz}$	$\nu/(2\pi) = 150 \mathrm{kHz}$	$\nu/(2\pi) = 220 \text{ kHz}$	$\nu/(2\pi) = 220 \text{ kHz}$
	$t_{\rm gate} = 80 \ \mu s$	$t_{\rm gate} = 80 \ \mu s$	$t_{\text{gate}} = 36.3 \mu\text{s}$	$t_{\text{gate}} = 36.3 \ \mu \text{s}$
$ g\rangle \otimes (g\rangle + e\rangle)$	1.172	0.128	2.060	0.144
$(g\rangle + e\rangle) \otimes (g\rangle + e\rangle)$	2.229	0.136	4.905	0.304
$ g\rangle \otimes (g\rangle + i e\rangle) + e\rangle \otimes e\rangle$	3.052	0.116	5.899	0.371
$ \mathbf{e}\rangle\otimes(\mathbf{g}\rangle-i \mathbf{e}\rangle)+ \mathbf{g}\rangle\otimes \mathbf{g}\rangle$	4.631	0.172	5.946	0.413
$ \mathbf{e}\rangle\otimes(\mathbf{g}\rangle-i \mathbf{e}\rangle)+ \mathbf{g}\rangle\otimes(\mathbf{g}\rangle+i \mathbf{e}\rangle)$	3.250	0.110	4.635	0.293

 π -pulse time: 77ns

 π -pulse time: 49ns

Sources of error:

$$\langle n \rangle_{a_1,a_2} = 0.5$$

$$\tilde{\Omega} = \Omega(1 + \epsilon_{\Omega}) \quad \epsilon_{\Omega} = 0.01$$
$$\tilde{\nu} = \nu(1 + \epsilon_{\nu}) \quad \epsilon_{\nu} = 0.001$$

O The System
O Microwave Pulse Sequence & Result
O Conclusions

Conclusions

- Fast approach to generate two qubit phase gates with microwave ions Best experiments: F = 99,7% in milliseconds
- Robust against main sources of decoherence
- We validated our ideas with detailed numerical simulations
- Microwave control comparable in precision and speed to lasercontrolled gates.

THANK YOU FOR YOUR ATTENTION

Universidad del País Vasco Euskal Herriko Unibertsitatea

Iñigo Arrazola University of the Basque Country, Bilbao, Spain

Trieste, September, 2017