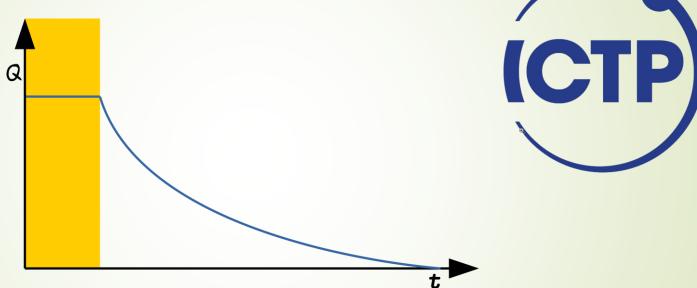


FROZEN QUANTUM CORRELATIONS

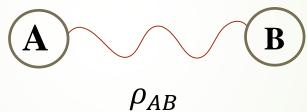


Titas Chanda

Harish-Chandra Research Institute, Allahabad, India

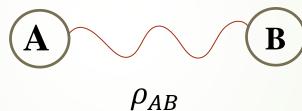
Quantum Correlation Information Theoretic Quantum Entanglement Correlation

Quantum Entanglement Information Theoretic Correlation



Quantum Correlation

Quantum Entanglement Information Theoretic Correlation



$$\rho_{AB} \neq \sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}$$

Quantum Correlation

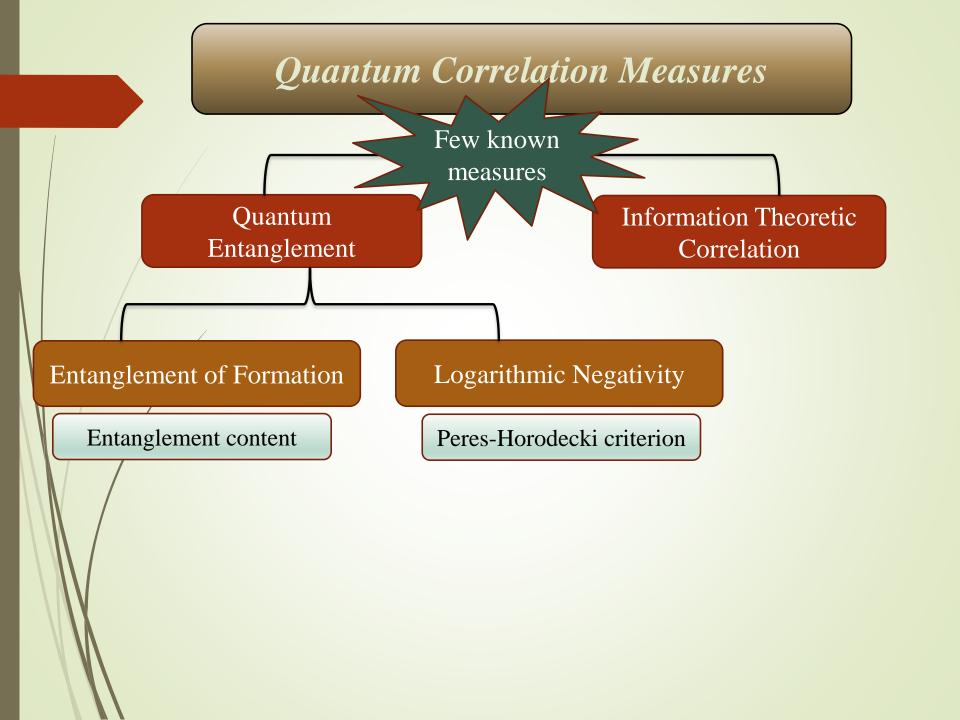
Quantum Entanglement Information Theoretic Correlation

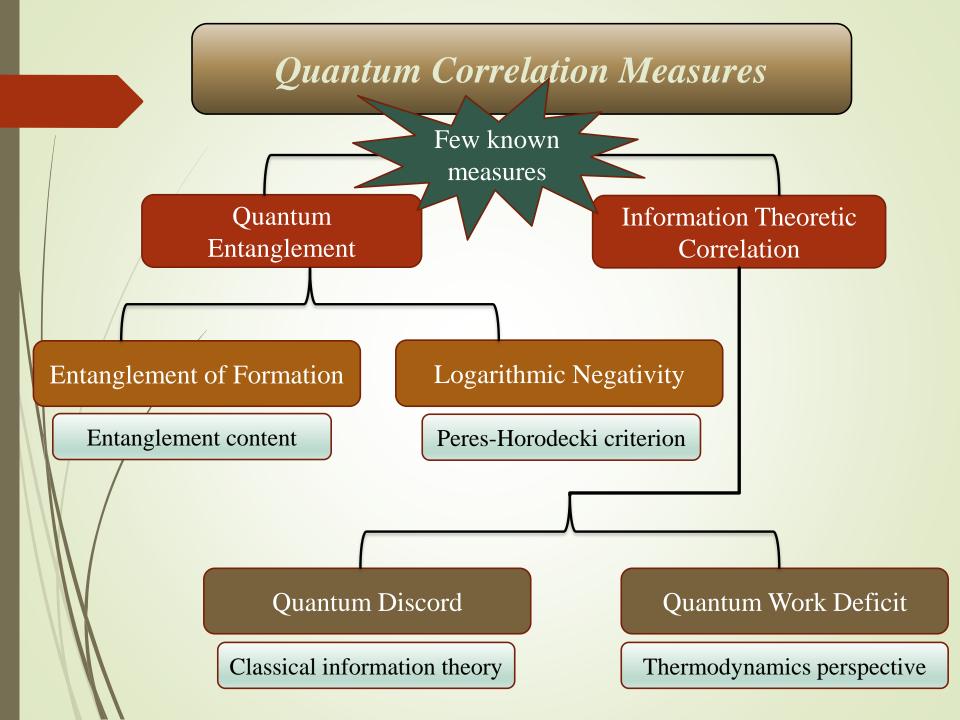
$$\rho_{AB} \neq \sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}$$

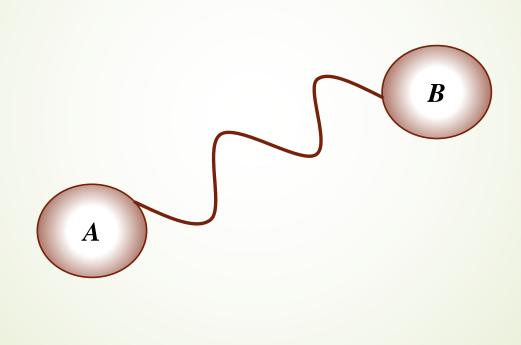
$$\rho_{AB} \neq \sum_{i} p_i |i_A\rangle \langle i_A| \otimes \rho_B^i$$

or

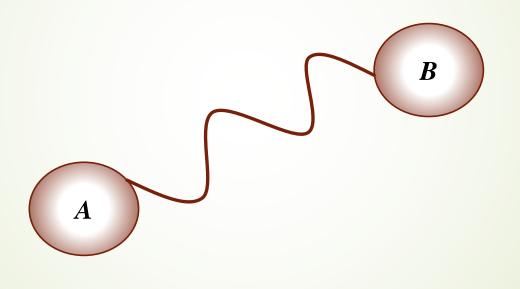
$$\rho_{AB} \neq \sum_{i} p_{i} \rho_{A}^{i} \otimes |i_{B}\rangle \langle i_{B}|$$



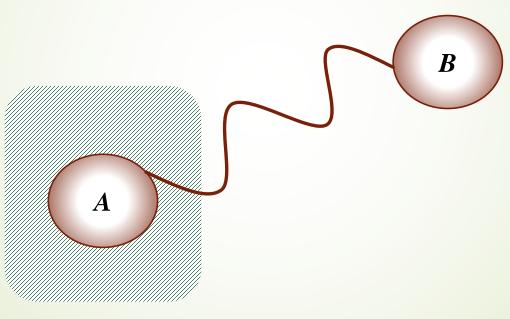




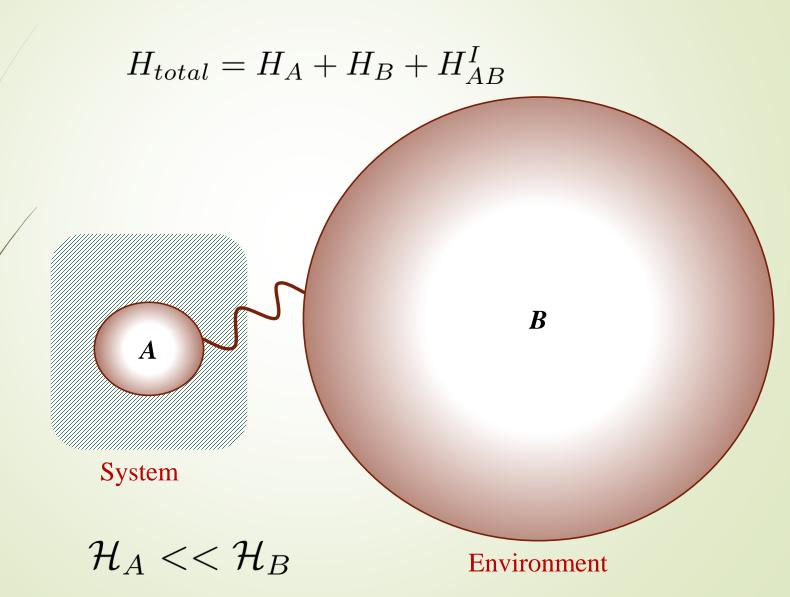
$$H_{total} = H_A + H_B + H_{AB}^I$$



$$H_{total} = H_A + H_B + H_{AB}^I$$



Open quantum system



Dynamical evolution...

Kraus operator representation:

$$\rho_S(t) = \sum_i K_i(t) \rho_S(0) K_i(t)^{\dagger}$$

with

$$\sum_{i} K_{i}(t)^{\dagger} K_{i}(t) = \mathbb{I}$$

Dynamical evolution...

Kraus operator representation:

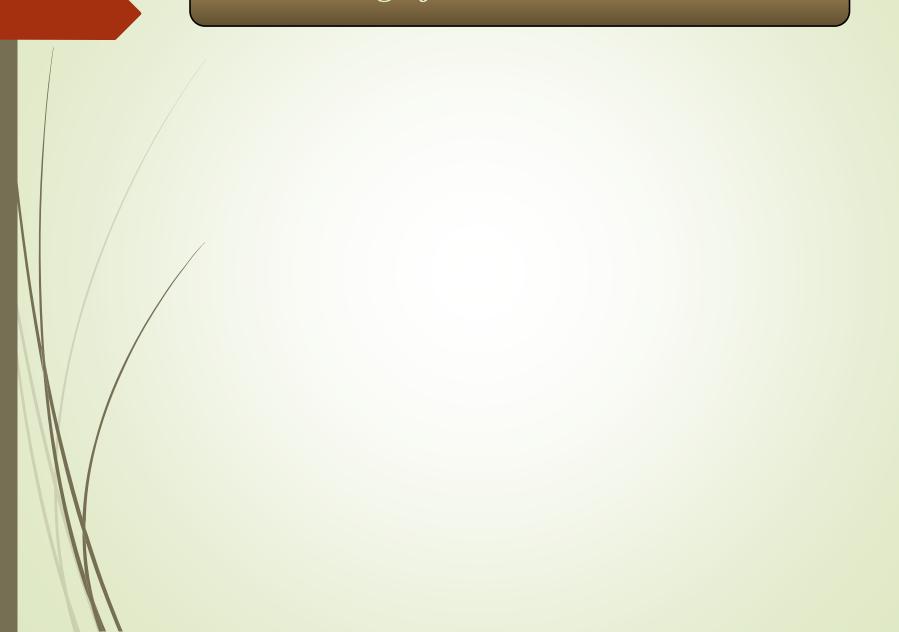
$$\rho_S(t) = \sum_i K_i(t) \rho_S(0) K_i(t)^{\dagger}$$

with

$$\sum_{i} K_{i}(t)^{\dagger} K_{i}(t) = \mathbb{I}$$

Master equation:

$$\frac{d\rho_S(t)}{dt} = -\frac{i}{\hbar}[H_s, \rho_S(t)] + \mathcal{D}_t[\rho_S(t)]$$



• Initial two qubit state: ρ_{AB}

- Initial two qubit state: ρ_{AB}
- Independent local environments act on each qubit

- Initial two qubit state: ρ_{AB}
- Independent local environments act on each qubit
- Evolution:

$$\rho_{AB}(\gamma) = \sum_{\mu\nu} K_{\mu}^{A}(\gamma) K_{\nu}^{B}(\gamma) \rho_{AB} K_{\mu}^{A\dagger}(\gamma) K_{\nu}^{B\dagger}(\gamma)$$

- Initial two qubit state: ρ_{AB}
- Independent local environments act on each qubit
- Evolution:

$$\rho_{AB}(\gamma) = \sum_{\mu\nu} K_{\mu}^{A}(\gamma) K_{\nu}^{B}(\gamma) \rho_{AB} K_{\mu}^{A\dagger}(\gamma) K_{\nu}^{B\dagger}(\gamma)$$

• Bit-flip (BF), phase-flip (PF), bit-phase-flip channels

$$K_0(\gamma) = \sqrt{1 - \gamma/2} \mathbb{I}$$
 and $K_1 = \sqrt{\gamma/2} \sigma_{\alpha}$

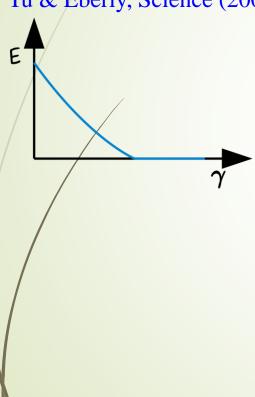
 $\alpha = 1$ (bit-flip), $\alpha = 2$ (bit-phase-flip), $\alpha = 3$ (phase-flip)

Dynamics under noisy channels: there are several types...

Dynamics under noisy channels: there are several types...

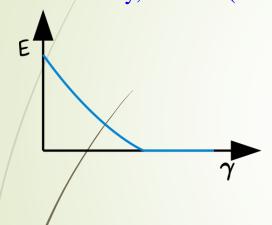
Entanglement usually decays and dies..

Yu & Eberly, Science (2009)

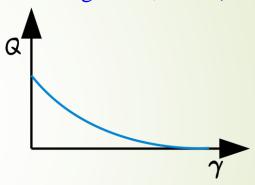


Dynamics under noisy channels: there are several types...

Entanglement usually decays and dies... Yu & Eberly, Science (2009)

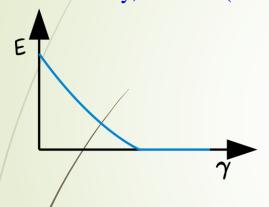


Quantum correlations are robust! Werlang et. al., PRA (2009)



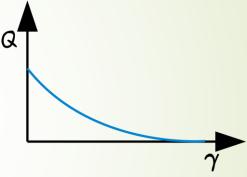
Dynamics under noisy channels: there are several types...

Entanglement usually decays and dies.. Yu & Eberly, Science (2009)



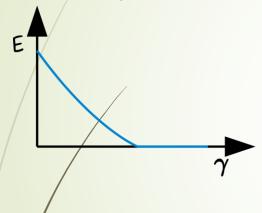
Play with the initial state Maziero et. al., PRA (2009)



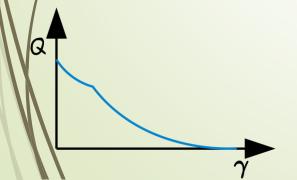


Dynamics under noisy channels: there are several types...

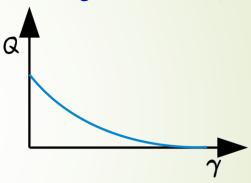
Entanglement usually decays and dies.. Yu & Eberly, Science (2009)



Play with the initial state Maziero et. al., PRA (2009)



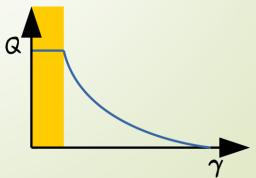
Quantum correlations are robust! Werlang et. al., PRA (2009)



.., and there is **freezing!**Mazzola et. al., PRL (2010),
Agropson et. al., PRA (2013)

Aaronson et. al., PRA (2013),

Cianciaruso et. al., Sci. Rep. (2015)



Initial state → Bell diagonal (BD) state

$$\rho_{AB} = \frac{1}{4} \left[\mathbb{I}_A \otimes \mathbb{I}_B + \sum_{\alpha=1}^3 c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \right]$$

Initial state → Bell diagonal (BD) state

$$\rho_{AB} = \frac{1}{4} \left[\mathbb{I}_A \otimes \mathbb{I}_B + \sum_{\alpha=1}^3 c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \right]$$

Two sets of conditions:

1.
$$c_{22}/c_{33} = -c_{11}$$
, with $|c_{33}| < |c_{11}|$

2.
$$c_{33}/c_{22} = -c_{11}$$
, with $|c_{22}| < |c_{11}|$

Initial state → Bell diagonal (BD) state

$$\rho_{AB} = \frac{1}{4} \left[\mathbb{I}_A \otimes \mathbb{I}_B + \sum_{\alpha=1}^3 c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} \right]$$

Two sets of conditions:

1.
$$c_{22}/c_{33} = -c_{11}$$
, with $|c_{33}| < |c_{11}|$

2.
$$c_{33}/c_{22} = -c_{11}$$
, with $|c_{22}| < |c_{11}|$

Universal for (almost) all the discord-like measures...

Aaronson et. al., PRA (2013), Cianciaruso et. al., Sci. Rep. (2015)

Most general two-qubit state (upto LU):

$$\rho_{AB} = \frac{1}{4} \left[\mathbb{I}_A \otimes \mathbb{I}_B + \sum_{\alpha=1}^3 c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \sum_{\alpha=1}^3 c_{\alpha0} \sigma_A^{\alpha} \otimes \mathbb{I}_B + \sum_{\beta=1}^3 c_{0\beta} \mathbb{I}_A \otimes \sigma_B^{\beta} \right]$$

Most general two-qubit state (upto LU):

$$\rho_{AB} = \frac{1}{4} \left[\mathbb{I}_A \otimes \mathbb{I}_B + \sum_{\alpha=1}^3 c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + \sum_{\alpha=1}^3 c_{\alpha0} \sigma_A^{\alpha} \otimes \mathbb{I}_B + \sum_{\beta=1}^3 c_{0\beta} \mathbb{I}_A \otimes \sigma_B^{\beta} \right]$$

Discord is hard to compute!!!

Discord is hard to compute!!!

No analytical closed form!!!

BD state + magnetization in x direction:

$$\rho_{AB} = \frac{1}{4} \left[\mathbb{I}_A \otimes \mathbb{I}_B + \sum_{\alpha=1}^3 c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + c_{10} \sigma_A^1 \otimes \mathbb{I}_B + c_{01} \mathbb{I}_A \otimes \sigma_B^1 \right]$$

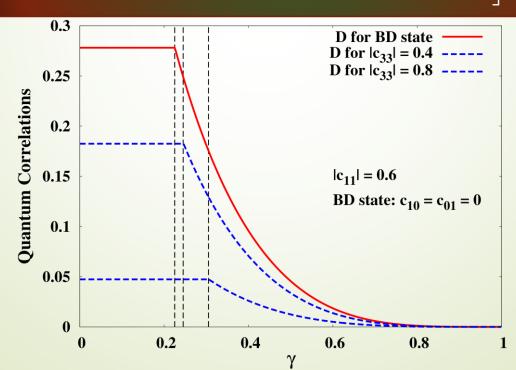
BD state + magnetization in x direction:

$$\rho_{AB} = \frac{1}{4} \left[\mathbb{I}_A \otimes \mathbb{I}_B + \sum_{\alpha=1}^3 c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + c_{10} \sigma_A^1 \otimes \mathbb{I}_B + c_{01} \mathbb{I}_A \otimes \sigma_B^1 \right]$$

closed form can be found for all closed for all closed form closed form can be found for all closed for all closed

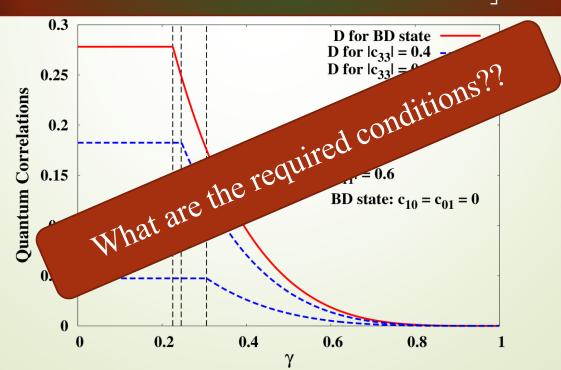
BD state + magnetization in x direction:

$$\rho_{AB} = \frac{1}{4} \left[\mathbb{I}_A \otimes \mathbb{I}_B + \sum_{\alpha=1}^3 c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + c_{10} \sigma_A^1 \otimes \mathbb{I}_B + c_{01} \mathbb{I}_A \otimes \sigma_B^1 \right]$$



BD state + magnetization in x direction:

$$\rho_{AB} = \frac{1}{4} \left[\mathbb{I}_A \otimes \mathbb{I}_B + \sum_{\alpha=1}^3 c_{\alpha\alpha} \sigma_A^{\alpha} \otimes \sigma_B^{\alpha} + c_{10} \sigma_A^1 \otimes \mathbb{I}_B + c_{01} \mathbb{I}_A \otimes \sigma_B^1 \right]$$



(1)
$$(c_{22}/c_{33}) = -(c_{10}/c_{01}) = -c_{11}$$

(2)
$$c_{33}^2 + c_{01}^2 \le 1$$

(3)
$$F(\sqrt{c_{33}^2 + c_{01}^2}) < F(c_{11}) + F(c_{01}) - F(c_{10})$$

(1)
$$(c_{22}/c_{33}) = -(c_{10}/c_{01}) = -c_{11}$$

(2)
$$c_{33}^2 + c_{01}^2 \le 1$$

(3)
$$F(\sqrt{c_{33}^2 + c_{01}^2}) < F(c_{11}) + F(c_{01}) - F(c_{10})$$

(1)
$$(c_{33}/c_{22}) = -(c_{10}/c_{01}) = -c_{11}$$

(2)
$$c_{22}^2 + c_{01}^2 \le 1$$

(3)
$$F(\sqrt{c_{22}^2 + c_{01}^2}) < F(c_{11}) + F(c_{01}) - F(c_{10})$$

(1)
$$(c_{22}/c_{33}) = -(c_{10}/c_{01}) = -c_{11}$$

(2)
$$c_{33}^2 + c_{01}^2 \le 1$$

(3)
$$F(\sqrt{c_{33}^2 + c_{01}^2}) < F(c_{11}) + F(c_{01}) - F(c_{10})$$

(1)
$$(c_{33}/c_{22}) = -(c_{10}/c_{01}) = -c_{11}$$

$$(2) c_{22}^2 + c_{01}^2 \le 1$$

(3)
$$F(\sqrt{c_{22}^2 + c_{01}^2}) < F(c_{11}) + F(c_{01}) - F(c_{10})$$

$$F(y) = 2 (H((1+y)/2) - 1)$$

$$H(\alpha) = -\alpha \log_2 \alpha - (1-\alpha) \log_2 (1-\alpha)$$

Two sets of conditions: Necessary and

Freezing

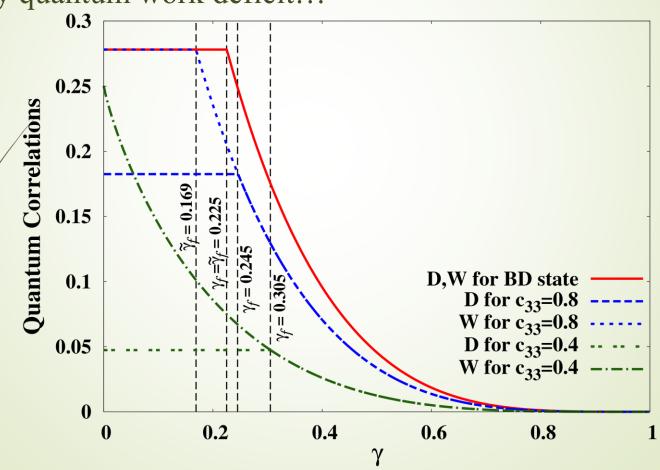


Universality no longer exists...

One-way quantum work deficit...

Universality no longer exists...

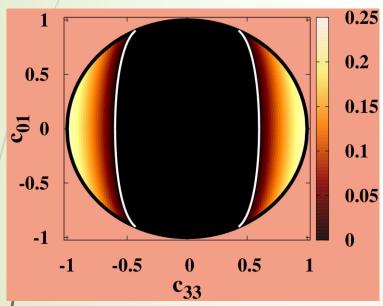
One-way quantum work deficit...



Universality no longer exists...

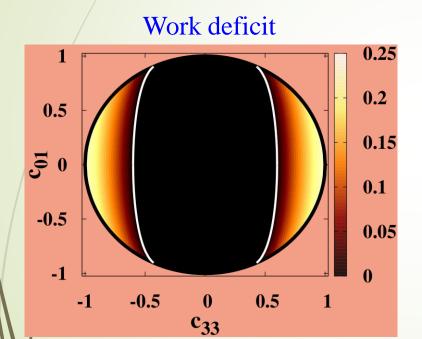
One-way quantum work deficit...

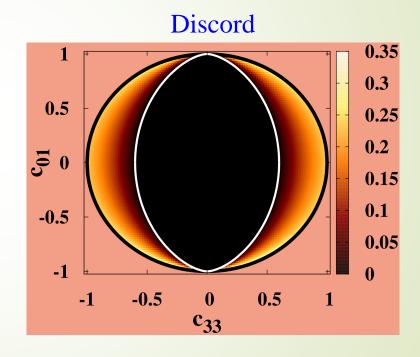
Work deficit



Universality no longer exists...

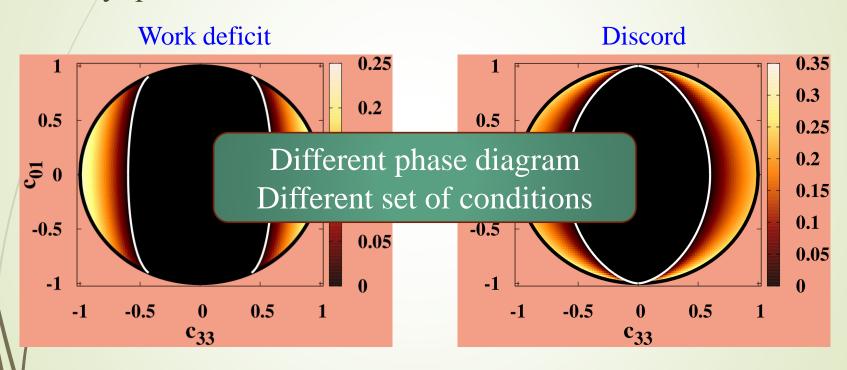
One-way quantum work deficit...





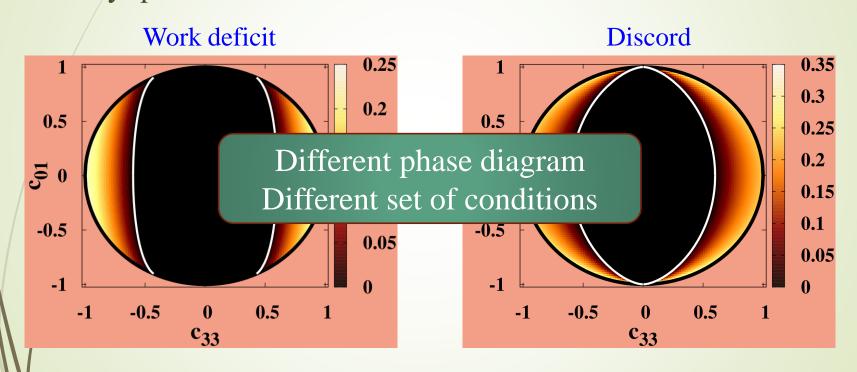
Universality no longer exists...

One-way quantum work deficit...



Universality no longer exists...

One-way quantum work deficit...

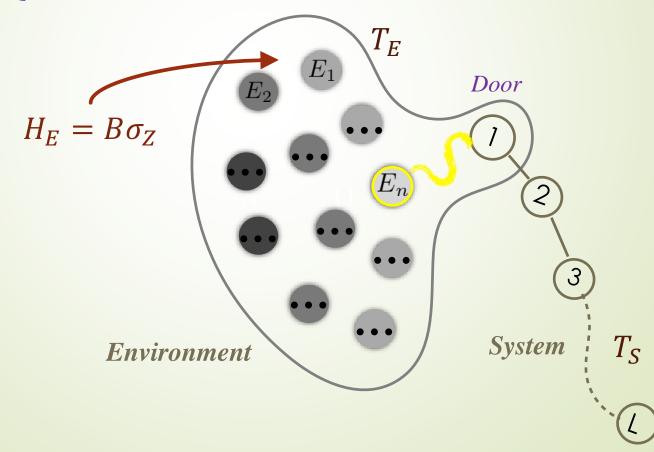


Freezing of entanglement??

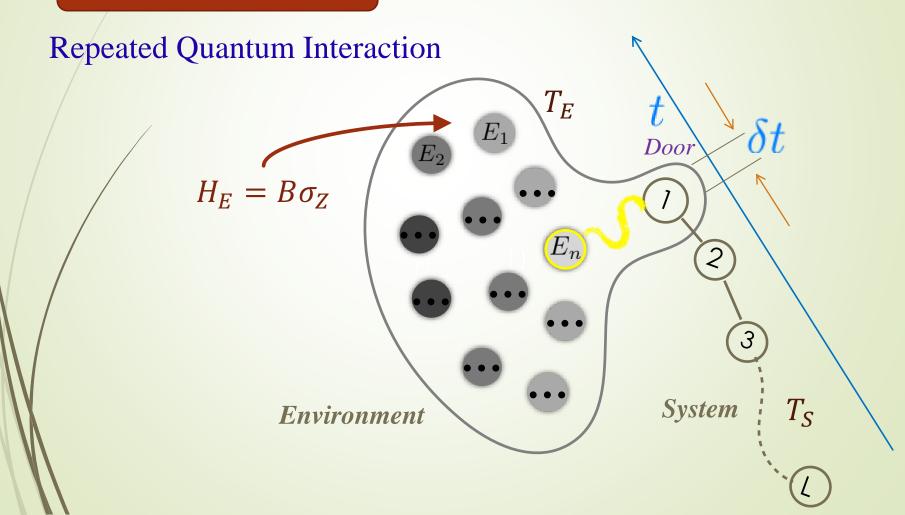
Open evolution:

Open evolution:

Repeated Quantum Interaction

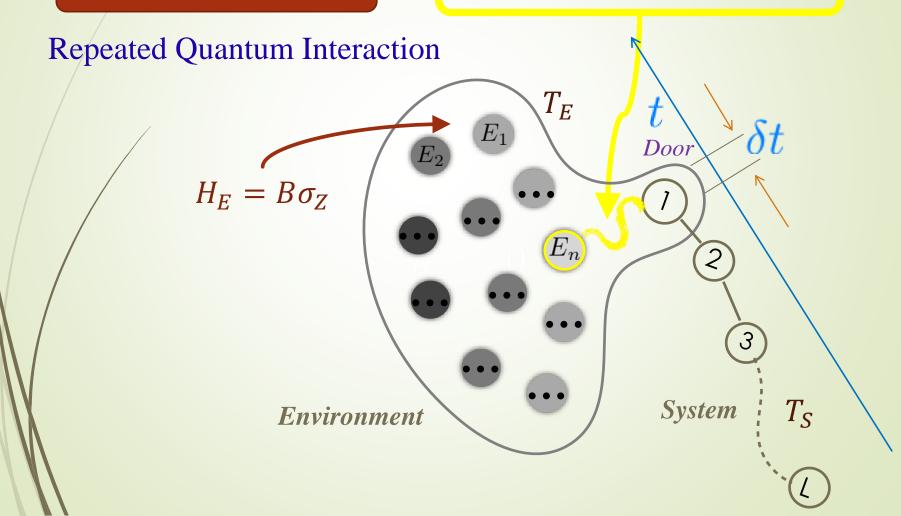


Open evolution:



Open evolution:

$$\hat{H}_{int} = k^{1/2} \delta t^{-1/2} (\hat{\sigma}_d^x \hat{\sigma}_E^x + \hat{\sigma}_d^y \hat{\sigma}_E^y)$$



Open evolution:

$$\hat{H}_{int} = k^{1/2} \delta t^{-1/2} (\hat{\sigma}_d^x \hat{\sigma}_E^x + \hat{\sigma}_d^y \hat{\sigma}_E^y)$$

Repeated Quantum Interaction

Quantum master equation:

$$\dot{\hat{
ho}}_S = -rac{i}{\hbar}[\hat{H}_S,\hat{
ho}_S] + \mathcal{D}(\hat{
ho}_S)$$

$$\mathcal{D}(\hat{\rho}_S) = \frac{2k}{\hbar^2 Z_E} \sum_{l=1}^{N_d} \sum_{i=0}^{1} e^{(-1)^i \beta_E B} [2\hat{\eta}_{d_l}^{i+1} \hat{\rho}_S \hat{\eta}_{d_l}^i - \{\hat{\eta}_{d_l}^i \hat{\eta}_{d_l}^{i+1}, \hat{\rho}_S \}]$$

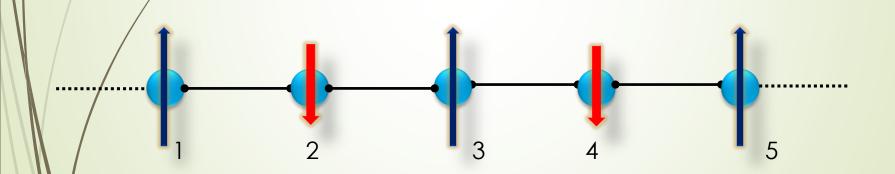
where...

$$Z_E = \mathbf{Tr}[\exp{-\beta_E \hat{H}_E}], \text{ and } \hat{\eta}_{d_l}^{\alpha} = \hat{\sigma}_{d_l}^x + (-1)^{\alpha} \hat{\sigma}_{d_l}^y$$

System:

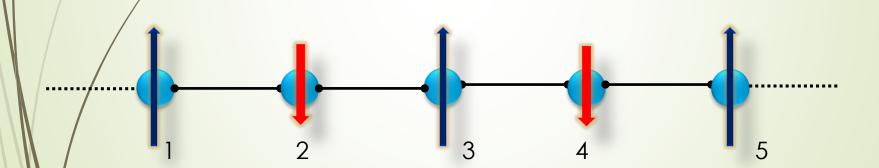
System:

$$\hat{H} = \frac{1}{2} \sum_{i=1}^{N} \left[J \left\{ \frac{1+\gamma}{2} \hat{\sigma}_{i}^{x} \hat{\sigma}_{i+1}^{x} + \frac{1-\gamma}{2} \hat{\sigma}_{i}^{y} \hat{\sigma}_{i+1}^{y} \right\} + \{h_{1} + (-1)^{i} h_{2} \} \hat{\sigma}_{i}^{z} \right]$$



System:

$$\hat{H} = \frac{1}{2} \sum_{i=1}^{N} \left[J \left\{ \frac{1+\gamma}{2} \hat{\sigma}_{i}^{x} \hat{\sigma}_{i+1}^{x} + \frac{1-\gamma}{2} \hat{\sigma}_{i}^{y} \hat{\sigma}_{i+1}^{y} \right\} + \{h_{1} + (-1)^{i} h_{2} \} \hat{\sigma}_{i}^{z} \right]$$

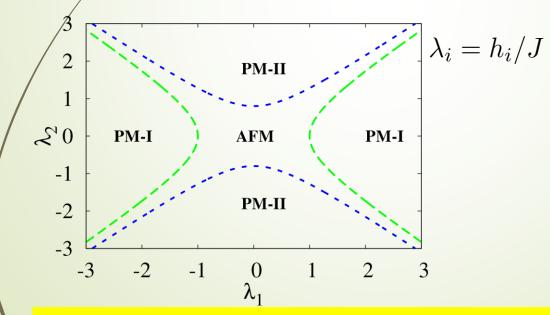


Can be solved "exactly" using successive Jordan-Wigner and Fourier transformation.

TC, T Das, D Sadhukhan, A K Pal, A Sen(De), U Sen, PRA (2016)

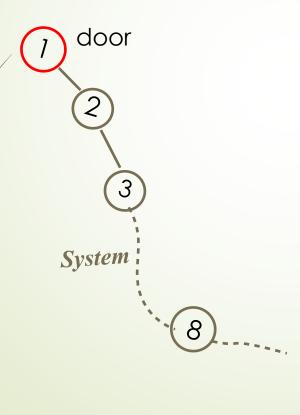
System:

$$\hat{H} = \frac{1}{2} \sum_{i=1}^{N} \left[J \left\{ \frac{1+\gamma}{2} \hat{\sigma}_{i}^{x} \hat{\sigma}_{i+1}^{x} + \frac{1-\gamma}{2} \hat{\sigma}_{i}^{y} \hat{\sigma}_{i+1}^{y} \right\} + \{h_{1} + (-1)^{i} h_{2} \} \hat{\sigma}_{i}^{z} \right]$$

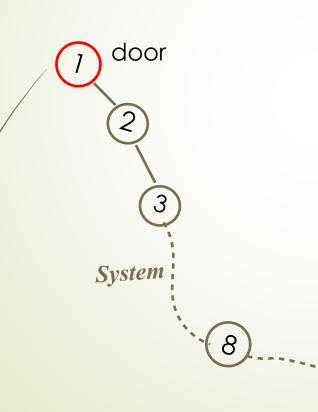


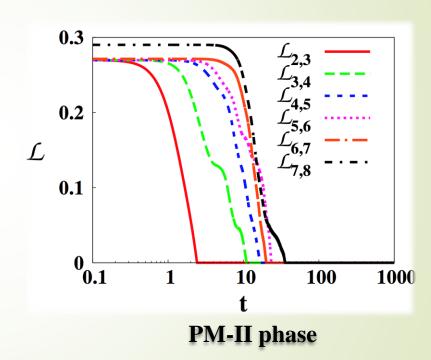
TC, T Das, D Sadhukhan, A K Pal, A Sen(De), and U Sen, PRA (2016)

Freezing:



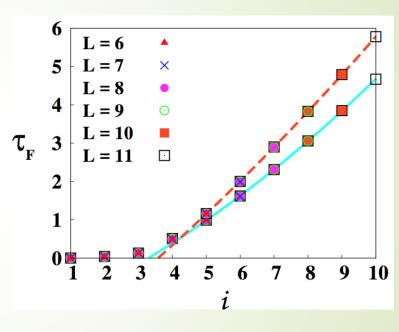
Freezing:





Freezing:

 $\tau_F^{(i,i+1)}$: Freezing terminal for spin pair (i,i+1) τ_F

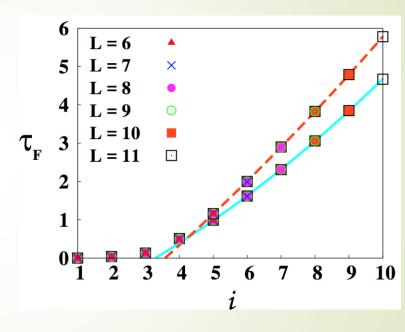


PM-II phase

Freezing:

 $\tau_F^{(i,i+1)}$: Freezing terminal for spin pair (i,i+1) τ_F

Monotonic: $\tau_F^{(i,i+1)} \ge \tau_F^{(j,j+1)}$; i > j



PM-II phase

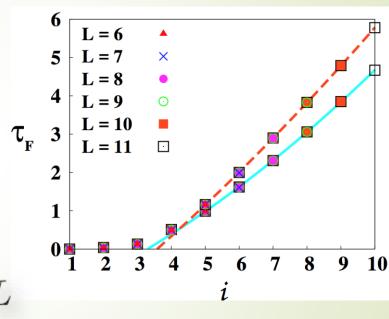
Freezing:

 $\tau_F^{(i,i+1)}$: Freezing terminal for spin pair (i,i+1) τ_F

Monotonic: $\tau_F^{(i,i+1)} \ge \tau_F^{(j,j+1)}$; i > j

$$\tau_F^{i,i+1} = ai^2 + bi + c \quad \forall \ L$$

Scale invariance

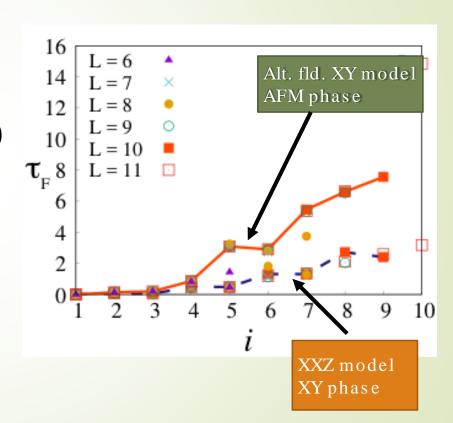


PM-II phase

Both in PM-I and PM-II phase

Freezing:

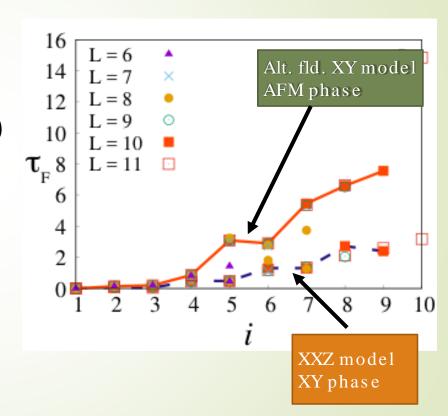
 $\tau_F^{(i,i+1)}$: Freezing terminal for spin pair (i,i+1)



Freezing:

 $\tau_F^{(i,i+1)}$: Freezing terminal for spin pair (i,i+1)

Non-Monotonic

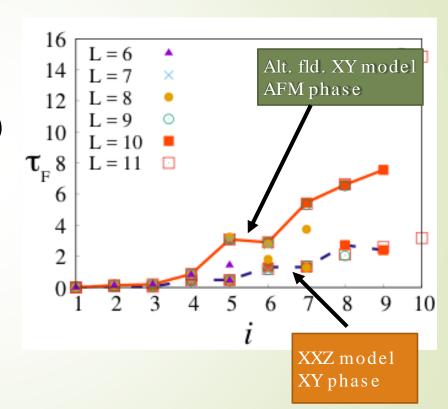


Freezing:

 $\tau_F^{(i,i+1)}$: Freezing terminal for spin pair (i,i+1)

Non-Monotonic

No scale invariance



Freezing:

(i,i+1)

- 1. Frozen discord and its allies To conclude:
- 2. Scale invariant freezing of entanglement Tamoghna Das, Debasis Sadhukhan, Amit Kumar Pal, Anindya Biswas,

In collaboration with:

Aditi Sen(De), Ujjwal Sen

1. TC, AK Pal, A Biswas, A Sen(De), U Sen, PRA (2015) 2. TC, T Das, D Sadhukhan, A K Pal, A Sen(De), U Sen, Ref:

arXiv:1610.00730

odel

QIClib: New general purpose quantum information and computing library written in C++11

https://titaschanda.github.io/QIClib/

QIClib: New general purpose quantum information and computing library written in C++11

https://titaschanda.github.io/QIClib/

80+ features

- 1. Partial trace, partial transpose etc.
 - 2. Matrix functions
 - 3. Entropic functions
 - 4. Different entanglement measures
- 5. Schmidt decomposition, purification etc.
- 6. State of the art random object generators
- 7. Apply arbitrary (control) quantum gates
 - 8. Pseudo quantum measurements
- 9. Easily implement quantum circuits
 - 10. Discord type measures etc.

Quantum Information and Computation library AC++11 library for quantum information and computation based on Armadillo **m**cation etc. mobject generators (control) quantum gates ao quantum measurements asily implement quantum circuits 10. Discord type measures etc.

Quantum Information and Computation library Use, distribute and report bugs etc.

Thanking you...

Our group at HRI, India
Please visit us...