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The	problem	of	chromosome	folding	

Human	genome,	46	chromosomes	
Each	chr	~1cm	of	DNA	~1mm	30nm-fiber	

Inside	the	nucleus	(~10µm	of	diameter)	
of	the	typical	mammalian	cell	



Fluorescence	in-situ	Hybridization	(FISH)	

MITOSIS


INTERPHASE


FISH	shows	chromosome	territories	
Cremer	&	Cremer,	Nat.	Rev.	Genet.	(2001)	



Experimental	techniques	reveal	interesting	
features	of	eukaryotic	genomes	

Fluorescence	in-situ	Hybridization	(FISH)	
Cremer	&	Cremer,	Nat.	Rev.	Genet.	(2001)	 3C,	HiC	

Dekker	and	coworkers	(2003,	2009)	

Chromatin	dynamics	by	GFP	
Belmont,	Trends	Cell	Biol.	(2001)	



Differences	between	a	chromosome	melt	and	
an	ordinary	polymer	melt	

vs.	

Q:	May	chromosomes	inspire	new	Physics?	



Relationship	between	chromosome	structure	&	function	

Cell	137	(2009)	
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An	introduction	to	Polymer	Physics	
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An	introduction	to	Polymer	Physics	
Relevant observables to characterise polymers:

1. Average-square gyration radius:

hR2
gi ⌘ 1

N+1

DPN
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E
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2. Average-square end-to-end distance:
hR2

eei ⌘ (~rN � ~r0)2

3. Average end-to-end contact probability:
hpc(N)i
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An	introduction	to	Polymer	Physics	
Relevant observables to characterise polymers:

1. Average-square gyration radius:

hR2
gi ⌘ 1

N+1

DPN
i=0(~ri � ~Rcm)2

E
, ~Rcm ⌘ 1

N+1

PN
i=0 ~ri

2. Average-square end-to-end distance:
hR2

eei ⌘ (~rN � ~r0)2

3. Average end-to-end contact probability:
hpc(N)i

Scaling relationships:

1.
p

hR2
eei ⇠

q
hR2

gi ⇠ N⌫

2. hpc(N)i ⇠ N��

⌫ and � depend on the universality class of the
chosen polymer model!!
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The	zero-model:	The	Gaussian	Chain	

Features:

1. No excluded-volume interactions between monomers;
Random orientations of the bonds;
No sequence correlations for the bonds.

2.
p

hR2
eei ⇠

q
hR2

gi ⇠ bN1/2 ! ⌫ = 1/2

3. End-to-end distribution function is Gaussian:

p(~Ree = ~R) =
�

3
2⇡Nb2

�3/2
e�

3R2

2Nb2

4. hpc(N)i ⇠ p(~Ree = ~R = 0) ⇠ N�3/2 ! � = 3/2
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The	zero-model:	The	Gaussian	Chain	

Two	monomers	can	
share	the	same	
position	in	space!	

Features:

1. No excluded-volume interactions between monomers;
Random orientations of the bonds;
No sequence correlations for the bonds.

2.
p

hR2
eei ⇠

q
hR2

gi ⇠ bN1/2 ! ⌫ = 1/2

3. End-to-end distribution function is Gaussian:

p(~Ree = ~R) =
�

3
2⇡Nb2

�3/2
e�

3R2

2Nb2

4. hpc(N)i ⇠ p(~Ree = ~R = 0) ⇠ N�3/2 ! � = 3/2
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First	refinement:	The	Self-Avoiding	Chain	

Two	monomers	can	
not	share	the	same	
position	in	space!	

Features:

1. Excluded-volume interactions between monomers;
Random orientations of the bonds;
No sequence correlations for the bonds.

2.
p

hR2
eei ⇠

q
hR2

gi ⇠ bN3/5 ! ⌫ = 3/5 > 1/2

3. End-to-end distribution function is not Gaussian
! Redner-Des Cloizeaux function:

p(~Ree = ~R) = C

✓
Rp
hR2

eei

◆3+✓

exp

 
�
✓
K Rp

hR2
eei

◆t
!

✓ ⇡ 0.27 and t ⇡ 2.45

4. hpc(N)i ⇠ p(~Ree = ~R = 0) ⇠ N�⌫(3+✓) ! � = 3(⌫ + ✓) ⇡ 2.58
i.e. much steeper than the prediction for the Gaussian chain



The	part	is	equal	to	the	whole:	
Polymers	are	fractal	objects	



The	part	is	equal	to	the	whole:	
Polymers	are	fractal	objects	

Ree(N) ⇠ bN⌫



The	part	is	equal	to	the	whole:	
Polymers	are	fractal	objects	

Ree(N) ⇠ bN⌫

Sub-chain of n monomers



The	part	is	equal	to	the	whole:	
Polymers	are	fractal	objects	

Ree(N) ⇠ bN⌫

•  Every	sub-chain	behaves	as	the	whole	chain	
•  Ça	va	sans	dire,	corresponding	end-to-end	distribution	functions	

have	also	the	same	functional	form	(Gaussian,	Redner-Des	
Cloizeaux,	…)	->	The	concept	of	universality!	

Sub-chain of n monomers ! Ree(n) ⇠ bn⌫
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Random	Walk	/	Giant	Loop	Model	
(Sachs	et	al.,	Proc	Natl	Acad	Sci	USA	(1995))	

=3Mbp	

Rosa	&	Zimmer,	Computational	Models	of	Genome	Architecture,	Intl	Rev	Cell	Mol	Biol	(2014)	

A	brief	history	of	polymer	models	for	chromosomes:	
1.	``Quenched-loop”	models	

Micelles	Model	(Ostashevsky,	Mol	Biol	Cell	(1998))	

Multi-Loop	Sub-Compartment	Model	
(Münkel	et	al.,	Phys	Rev	E	(1998))	

Loops	positions	are	pre-established	
(“quenched”	loops),	and	DO	NOT	
change	during	time	evolution	



Rosa	&	Zimmer,	Computational	Models	of	Genome	Architecture,	Intl	Rev	Cell	Mol	Biol	(2014)	

A	brief	history	of	polymer	models	for	chromosomes:	
2.	``Annealed-loop”	models	

Random	Loop	Model	
(Bohn	et	al.,	Proc	Natl	Acad	Sci	USA	(2007))	

Loops	positions	are	dynamically	re-arranged	
(“annealed”	loops)	

Strings-and-Binders	Switch	Model	
(Barbieri	et	al.,	Proc	Natl	Acad	Sci	USA	(2012))	

Loops	may	form	and	stabilize	by	
depletion	effects	
(Marenduzzo	et	al.,	Biophys	J	(2006))	



Rosa	&	Zimmer,	Computational	Models	of	Genome	Architecture,	Intl	Rev	Cell	Mol	Biol	(2014)	

A	brief	history	of	polymer	models	for	chromosomes:	
3.	The	role	of	topological	constraints	

Fractal	(originally,	‘Crumpled’)	Globule	Model	
(Grosberg	et	al.,	J	Phys	France	(1988);	Grosberg	et	al.,	Europhys	Lett	(1993))	



Equilibrium (EG) and fractal globules (FG) scale the same,

! Ree(N) ⇠ bN1/3

but, LOCALLY, they have very distinct fractal properties:

• EG is not very distinct from a Gaussian chain: Ree(n) ⇠ bn1/2

! fractality breaks at the globule scale

• FG is a true fractal with: Ree(n) ⇠ bn1/3

A	brief	history	of	polymer	models	for	chromosomes:	
3.	The	role	of	topological	constraints	

Incomplete	relaxation	of	linear	polymer	chains	after	fast	spherical	
compaction	(Lieberman-Aiden	et	al.,	Science	(2009))	



Rosa	&	Zimmer,	Computational	Models	of	Genome	Architecture,	Intl	Rev	Cell	Mol	Biol	(2014)	

A	brief	history	of	polymer	models	for	chromosomes:	
3.	The	role	of	topological	constraints	

Entropic	segregation	of	bacterial	chromosomes	
(Jun	&	Mulder,	Proc	Natl	Acad	Sci	USA	(2006))	



Rosa	&	Zimmer,	Computational	Models	of	Genome	Architecture,	Intl	Rev	Cell	Mol	Biol	(2014)	

A	brief	history	of	polymer	models	for	chromosomes:	
3.	The	role	of	topological	constraints	

Entangled	polymer	model	of	chromosome	territories	
(Rosa	&	Everaers,	Plos	Comput	Biol	(2008))	
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A	brief	history	of	polymer	models	for	chromosomes:	
4.	Introducing	sequence	heterogeneity	

Wong	et	al.,	Curr	Biol	(2012)	

Rosa	&	Zimmer,	Computational	Models	of	Genome	Architecture,	Intl	Rev	Cell	Mol	Biol	(2014)	



Block copolymer model: the chromatin is modeled as a 
self-avoiding bead-spring chain where each monomer 
represents a portion of DNA (10 kb) and is characterized 
by its epigenetic state: yellow (active), green (HP1-like 
heterochromatin), blue (Polycomb-like 
heterochromatin), black (repressive chromatin) (1).  

Daniel Jost et al. Nucl. Acids Res. 2014;42:9553-9561 

A	brief	history	of	polymer	models	for	chromosomes:	
4.	Introducing	sequence	heterogeneity	



(A) Phase diagram of the copolymer as a 
function of the strength of specific and non-
specific interactions (in kBT unit). 
(B) Contact map 

Daniel Jost et al. Nucl. Acids Res. 2014;42:9553-9561 

A	brief	history	of	polymer	models	for	chromosomes:	
4.	Introducing	sequence	heterogeneity	

Experimental (A) vs. Predicted (B,C) Hi-C contact 
map for the chromatin region located between 
23.05 and 24.36 Mb of chromosome 3R of 
Drosophila.  



Illustration	of	the	adopted	set-up	used	to	model	the	unfolding	of	the	30nm	model	chromatin	fiber	into	the	10nm	
model	chromatin	fiber.	

Florescu	AM,	Therizols	P,	Rosa	A	(2016)	Large	Scale	Chromosome	Folding	Is	Stable	against	Local	Changes	in	Chromatin	Structure.	PLoS	Comput	
Biol	12(6):	e1004987.	doi:10.1371/journal.pcbi.1004987	
http://journals.plos.org/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1004987	

A	brief	history	of	polymer	models	for	chromosomes:	
4.	Introducing	sequence	heterogeneity	



Model	chromosome	conformations	with	a	8%	total	
amount	of	10nm	chromatin	fiber.	

Florescu	AM,	Therizols	P,	Rosa	A	(2016)	Large	Scale	Chromosome	Folding	Is	Stable	against	Local	Changes	in	Chromatin	Structure.	PLoS	Comput	
Biol	12(6):	e1004987.	doi:10.1371/journal.pcbi.1004987	
http://journals.plos.org/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1004987	

A	brief	history	of	polymer	models	for	chromosomes:	
4.	Introducing	sequence	heterogeneity	



Direct  
modeling 

Inverse 
modeling 

Model input Model output 

(Duan et al 2010)  

(Wong et al 2012)  

Predicted contact map 

Assumptions 

•  chromatin rigidity 
•  confining volume 
•  tethering constraints 
•  … 

Assumptions 

•  contact frequency to 
distance transform 

•  confining volume 
•  tethering constraints 
•  … 

distances between loci 

chromosome positions 

distances between loci 

chromosome positions 

… 

… 

Measured contact map 

(Wong et al 2012)  

(Duan et al 2010)  



Reconstruction	of	chromosome	conformations	

Rosa	&	Zimmer,	Computational	Models	of	Genome	Architecture,	Intl	Rev	Cell	Mol	Biol	(2014)	

Analysis of the structure of chromosome III 
during interphase.  

Job Dekker et al. Science 2002;295:1306-1311 



ZJ Duan et al. Nature 465 (2010) 

Rosa	&	Zimmer,	Computational	Models	of	Genome	Architecture,	Intl	Rev	Cell	Mol	Biol	(2014)	

Reconstruction	of	chromosome	conformations	

Reconstruction of fission yeast genome 
from HiC data 



Rosa	&	Zimmer,	Computational	Models	of	Genome	Architecture,	Intl	Rev	Cell	Mol	Biol	(2014)	

Reconstruction	of	chromosome	conformations	

Reconstruction of a human chromatin domain 
from 5C data 
(Baù et al., Nat Struct Mol Biol (2011)) 



Rosa	&	Zimmer,	Computational	Models	of	Genome	Architecture,	Intl	Rev	Cell	Mol	Biol	(2014)	

Reconstruction	of	chromosome	conformations	

1)	

2)	

Genome reconstruction by Chromosome 
Conformation Capture + Population-based 
Modeling 
(Kalhor et al., Nat Biotech (2012)) 
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Polymers	&	Dynamics:	The	Rouse	Model	

Ø  Theoretical	foundations:	The	Brownian	motion	
1.  Consider	a	system	of	`large’,	freely	diffusing	particles	(red)	in	a	homogeneous	medium	

composed	of	smaller	particles	(blue);	
2.  The	red	particles	collide	randomly	with	the	blue	particles;	
3.  Due	to	random	collisions,	the	motion	of	red	particles	is	erratic	as	well	
4.  After	time	τ,	red	particles	have	traveled	–	on	average	–	a	distance	Δ=Δ(τ)	

� = �(⌧) = 6D ⌧ , where D = kBT
� is the di↵usion coe�cient.

� = 6⇡ ⌘ b is the friction of the red particles

kB = 1.38⇥ 10�23 J · K�1 is the Boltzmann constant
T is the temperature of the medium (blue particles)
⌘ is the viscosity of the medium (blue particles)
b is the radius of the red particles

Example:
T = 300K ! kBT = 4pN·nm = 4 · 10�15N·µm (easy to remember!!)
b = 1µm
⌘ = ⌘water = 1cP = 10�3Pa·s = 10�3 N

m2 ·s = 10�15 N
µm2 ·s

D ⇡ 0.21µm2

s ! �(⌧ = 1s) ⇡ 1µm2



Polymers	&	Dynamics:	The	Rouse	Model	

Ø  Polymer	chain:	the	red	particles	are	now	linearly	connected	
1.  How	does	this	affect	the	time	behavior	of	the	mean-square-displacement	Δ=Δ(τ)?	



Polymers	&	Dynamics:	The	Rouse	Model	

Ø  Polymer	chain:	the	red	particles	are	now	linearly	connected	
1.  How	does	this	affect	the	time	behavior	of	the	mean-square-displacement	Δ=Δ(τ)?	
2.  Clearly,	at	very	short	times,	each	monomer	moves	does	not	“feel”	the	presence	of	the	

other	monomers	->	Δ(τ) =	6Dτ



Polymers	&	Dynamics:	The	Rouse	Model	

Ø  Polymer	chain:	the	red	particles	are	now	linearly	connected	
1.  How	does	this	affect	the	time	behavior	of	the	mean-square-displacement	Δ=Δ(τ)?	
2.  Clearly,	at	very	short	times,	each	monomer	moves	does	not	“feel”	the	presence	of	the	

other	monomers	->	Δ(τ) =	6Dτ
3.  At	later	times	??	More	and	more	monomers	become	involved	!!	

Two relations:

1. �(⌧) ⇠ n(⌧) b2

2. �(⌧) ⇠ kBT
�(⌧) ⌧ ⇠ kBT

⌘ n(⌧) b ⌧

� = �(⌧), time-dependent friction

HP: monomers motion is not correlated!!

By inserting Eq. (1) into Eq. (2), we get:

�(⌧) ⇠ kBT

⌘ n(⌧) b
⌧ ⇠ kBT

⌘ �(⌧)
b2 b

⌧ =
kBT b

⌘�(⌧)
⌧ ! �(⌧)2 ⇠ kBT b

⌘
⌧

! �(⌧) ⇠ ⌧1/2

The Rouse model implies sub-di↵usive monomer motion at intermediate times!!

The time-scale for the relaxation of the entire chain, ⌧R, is called the Rouse

time. It is defined as:

�(⌧R) ⇠
✓
kBT b

⌘

◆1/2

⌧1/2R ⇠ Nb2 ! ⌧R ⇠ ⌘b3

kBT
N2 ⇠ b2

D
N2



Collection of loci used to monitor chromosome spatio-
temporal dynamics.  

Houssam Hajjoul et al. Genome Res. 2013;23:1829-1838 

High-throughput	chromatin	motion	tracking	in	living	yeast	
reveals	the	flexibility	of	the	fiber	throughout	the	genome	

In	spite	of	its	simplicity	the	Rouse	model	describes	well	loci	
dynamics	in	yeasts,	up	to	4	order	of	magnitude	in	time-scale	

TelVIR,	G1	phase	
Heun	et	al.,	Science	(2001)	
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Computer	simulations:	1.	Monte	Carlo	

Ø  Problem:	Numerical	evaluation	of	π=3.1415926535…	

⇡ = 4⇥ Area sphere

Area square

+	

+	
+	+	 +	

Ntot Result
100 2.96± 0.18
1’000 3.17± 0.05
10’000 3.152± 0.016
100’000 3.1465± 0.0052
1’000’000 3.1427± 0.0016
10’000’000 3.14146± 0.00052

⇡ ⇡ 4⇥ Nin

Ntot
⌘ Nin

Nin + Nout
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Computer	simulations:	1.	Monte	Carlo	

Ø  In	practice,	MC	means	to	sample	the	space	of	configurations	with	the	“correct”	probability.	
In	this	case,	the	uniform	distribution	on	the	2d	circle:	p.d.f(r) = 8 r

Ntot=100	
Ntot=1’000	
Ntot=10’000	
Ntot=100’000	
Ntot=1’000’000	
Ntot=10’000’000	
	
The	black	line	corresponds	to	the	
exact	expression	



Computer	simulations:	2.	Monte	Carlo	for	polymers	

Ø  Example:	Random-walk	vs.	Self-avoiding-walk	in	2	dimensions	

(0,0)	



Computer	simulations:	2.	Monte	Carlo	for	polymers	

Ø  Example:	Random-walk	vs.	Self-avoiding-walk	in	2	dimensions	

(0,0)	
 1

 10

 1  10
<R

2 (N
)>

N

<R2(N)>	=	N	(exact!)	

<R2(N)>	~	N3/2	

Ø  Simple	sampling	not	efficient,	good	only	for	very	
short	polymers	(up	to	~N=30)	

Ø  More	efficient	methods	needed,	look	at:	Alan	D.	
Sokal,	“Monte	Carlo	methods	for	the	self-
avoiding	walk”,	http://arxiv.org/abs/hep-lat/
9509032	



Computer	simulations:	2.	Molecular	Dynamics	

Ø  Numerical	solution	of	Newton’s	equations	for	a	system	of	N	particles	(coupled	to	each	other):		

~Fn(~r1,~r2, ...,~rN ) = m~an = m
d2~rn
dt2

, with n = 1, ..., N

By Taylor expansion, the spatial positions ~rn(t+ �t) and ~rn(t� �t) for “small”
time increments �t are given by:

~rn(t+ �t) ⇡ ~rn(t) +
d~rn(t)

dt
�t+

1

2

d2~rn(t)

dt2
�t2 +

1

6

d3~rn(t)

dt3
�t3 +O(�t4) (1)

~rn(t� �t) ⇡ ~rn(t)�
d~rn(t)

dt
�t+

1

2

d2~rn(t)

dt2
�t2 �

1

6

d3~rn(t)

dt3
�t3 +O(�t4) (2)

Adding these two expressions together and taking into account Newton’s equa-
tion we obtain the following approximate expression for the “time-forward”
particle position ~rn(t+ �t):

~rn(t+ �t) ⇡ 2~rn(t)� ~rn(t� �t) +
1

m
~fn(t)�t

2 +O(�t4) (3)

which is accurate up to O(�t4). Instead, by subtracting the two equations, we

get an approximate expression for the velocity ~vn(t) ⌘
d~rn(t)

dt :

~vn(t) ⇡
~rn(t+ �t)� ~rn(t� �t)

2 �t
+O(�t2) , (4)

which is accurate up to O(�t2).
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