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Bloch Theorem

Crystal 1n real space:
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Brillouin zone 1n reciprocal space:
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Bloch Theorem

Crystal 1n real space: _ ik-r
ry p \Ifnk(r) — unk(r)e
g, (9D
VN
—— defined on the whole
unit cell and periodic
Brillouin zone 1n recipfocal space: over the cells

N

/f'

—Tt/a 0

t/a

k

If there 1s only one band (n=1):
U (r) = ug(r)e™"

And we can define the Wannier functions:

R) = / Uy (r)e F Rk
BZ

— One WF per lattice vector R: N 1n total with Born-von Karman PBC

with N total unit cells
- They are all identical, only shifted: if we have|R;1),|R2) they are

shifted by R>-R;



From Bloch Orbitals to Wannier Functions

Valence bands

Periodic Vext = Wok(r) = upk(r) e™”

Multiband case, simplest thing to do:

Rn) = /B ) U,k (r) e R gk ZS

Gauge freedoms

A A

4

e Arbitrary phase factor for every nk (Schrodinger)

Note:

in (k) —ik.R The shape of the
Rn) = / [6 k(1) ] € dk (in real space)
Bz will be different

for every phase!



From Bloch Orbitals to Wannier Functions

Valence bands

4

Periodic Vext = Wok(r) = upk(r) e™”

Multiband case, simplest thing to do:

Rn) = /B ) U,k (r) e R gk ZS

Gauge freedoms

A A

e Arbitrary phase factor for every nk (Schrodinger)

More generally: e Arbitrary unitary rotations U for every k (DFT)

Rn) / ZU(k) U, (1) e R gk
BZ



Orthogonal and unitary transformations

PO =37 ) UR
/ "N

Rotated Bloch function Unitary matrix

L) |@/)2>
n=> A /|?/)2>
1)
nl'\y’//.\ 1) - 191)
—t/a 0 i /a

Courtesy of I. Souza / D. Vanderbilt



Generalized Wannier Functions for Composite Bands

e {|Rn)} span the same space as {|¥, )}

e [Rn)

= w,(r — R) (translational images)

® (Rn|R’m> - 5n,m 5R,R’

Each unitary matrix chooses a different set of WFs. We would like to
choose the “best”, i.e. the “maximally-localized”
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Wannier function




The Localization Functional
(Foster-Boys)

Q2 =3 [(0n]r*0n) — (On|r|on)’]

For a given set of Bloch orbitals, our goal is to minimize ()
with respect all the sets of unitary transformations U,,%{%

Rn) = / ZU(k) U (r) e R dk

N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)



Decomposition of the Localization
Functional

O — Z (On|r?|0n) — (On|r|0n)°]

’ 2

Q=Y [P -Y ‘(Rm[r\()m

Q=3 3 |Rumlrlon)|

n Rm+#0n

()1 and Q) are [posz’tz’ve—deﬁnite}and ()1 is@auge-z’nvam’ant}!




How to compute?
Blount identities

Centers of Wannier functions:

V o
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Blount identities

Therefore:

Position operator = Gradient

(On|x![0m) = (2Z>3/<unk|(z'§k)l|umk>dk

Numerical approach: numerical derivatives on a uniform k grid in the BZ

Vi) = =3 blf(k+b) — f(K)] -

We can then express positions and spreads as a function of
the phase relations between neighboring Bloch orbitals

<umk | un,k—l—b>

1

We can express the F, = — E :wb bIm ln MT(Lk,b)
relevant quantities as N = n

a function of the Mmn

matrices (these will | 2
be one of the main  (r?),, = — E Wy { {1 = |M,,Sjl,,{1’b)’2] =+ [Im In M,r(Ll,f,L’b)} }
inputs to Wannier90) il I h



To compute the maximal localization,
we do not need to know the wavefunctions, but only the
overlaps Mmn matrices at neighbouring k-points

(after minimization, if we want to plot the Wannier functions in real
space, we need instead to know the unk - in the code: files UNK)

Numerical approach: numerical derivatives on a uniform k grid in the BZ
3
Vik) = Z—bgzbj b [f(k + b) — f(k)] -

We can then express positions and spreads as a function of
the phase relations between neighboring Bloch orbitals

Mr(rlz{fr’zb) = <umk ‘ Uvz,k+b>

|
We can express the T, — — Z wy b Im In M?glz,b)

relevant quantities as
a function of the Mmn
matrices (these will

2
be one of the main = Z Wy { {1 — M(k b)’ } [Im In Mr(z,lq({b)} }

inputs to Wannier90)



Silicon, GaAs, Amorphous Silicon, Benzene

M. Fornari, N. Marzari, M. Peressi, and A. Baldereschi, Comp. Mater. Science 20, 337 (2001)



The localisation procedure

Long-range decay: Wannier functions corresponding
to isolated valence bands decay to zero
exponentially with the distance from their center

At the global minimum (maximally-localized WFs)

the Wannier functions are real
(the code prints the max. absolute ratio of
imaginary and real part to check this)

We might find a local minimum! Care is needed

If we expect (from physical/chemical considerations)
the shape and position of Wannier functions, we can
give an initial guess in the form of projections on
localised orbitals



Real-Space Projectors

We can choose a real-space target function ®; (e.g. a Gaussian centered
on bond %) to pick up a consistent phase that does not depend on the
arbitrary ¢, (k) in W (r). Let AN = (U, | ®;),

wi) = > [T ) (T | Bi) = Y AL [ T)
k k

Agi) Is not unitary, and so we use its unitary projection Uz.(:):

e AAY 5 U = (AAT) 74 = A(ATA)TT

(the last equality can be proved using the Singular Value Decomposition
for A = Uy (diag) Us:itis U = Uy 2229 1],).

[(diag)]



Band structure interpolation

Wannier functions are defined by:

'Rn) = / ZUU% Je R Rk

Where the Unn are chosen by the minimisation procedure
(one per every k-point in the ab-initio grid, typically relatively coarse, e.g. 6x6x6)

Conversely, we can Fourier-interpolate the

Hamiltonian at any k' vector even outside the
original coarse grid:

H)Y) (k') = e B (on|H|Rm)
R 5
where the Hamiltonian matrix elements are
obtained from Fourier interpolation of the initial

ab-initio Hamiltonian matrix, after rotating the basis
set with the unitary U matrices.

(On|H|Rm) = ) e U (k)H(k)U (k)] s




The maximal localisation tries to make sure that the
matrix elements of Wannier functions
that are far away go quickly to zero.

In this way, the Fourier interpolation is very accurate
(choosing a 6x6x6 k-grid in the ab-initio calculation

corresponds to cutting to zero matrix elements beyond a (6)
6x6x6 supercell in real space)

Conversely, we can Fourier-interpolate the

Hamiltonian at any k' vector even outside the
original coarse grid:

H)Y) (k') = e B (on|H|Rm)
R 5
where the Hamiltonian matrix elements are
obtained from Fourier interpolation of the initial

ab-initio Hamiltonian matrix, after rotating the basis
set with the unitary U matrices.

(On|H|Rm) = ) e U (k)H(k)U (k)] s




Disentanglement of Attached Bands

— Maximally-localized Wannier-like functions for conduction subspace
— Extract differentiable manifold with optimal smoothness

Copper — . : 5
Pl d—bands Wannier function
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d Bands of Copper

Two possible choices of energy window

st () / / X
| | The e, d WFs of panel (b)

Energy (eV)

e,

spread(e,)=1.700 bohr?
spread(e,)=1.718 bohr?

Window
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Energy (eV)




s Band of Copper
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Disentanglement

® Step l: “Disentangle the N bands of interest” from the rest

Cut out an energy window, so that at each k Nx > /N, where Nk is the
number of bands that fall inside the window; this defines an

Nx-dimensional space.
If Ny > N, find the N-dimensional subspace S(k) that minimizes $

-------------- N 7¥/\ A

Energy window

® Step 2 Obtain maximally-localized WFs

Within the subspaces S(k) determined in Step 1 (which have a fixed €p)
minimize €, using the algorithm of Marzari & Vanderbilt




e ()1 measures the change of character across the Brillouin zone of

the states in the spaces S(k): Large | (tnk|tm k+sx) | = small Oy

e ()1 measures the degree of mismatch, or “spillage”, between the

nearby spaces S(k).

—> In the case of copper, when choosing N = 5 the minimization
of (1 will extract a 5-dimensional subspace containing the d-like
states at each k — which have a similar character — while excluding
the s band, which has a very different character.



Exact Constraints on the Inner Energy

Suppose we want WF's to describe the original bands exactly in a

prescribed energy range (“inner window”).

= Minimize {21 w/ constraint that states inside inner window are
included in the optimal subspaces S(k)

" \ Hybrid s-d character:

Energy (eV)
Outer window




Disentanglement with a frozen window
is also useful in an insulator/semiconductor

With two independent
Woannierizations
(valence & conduction)

With a single

Wannierization for
valence+conduction

The case of conduction bands of silicon

Bonding

Antibonding

Window

(bonding)  (antibonding)

Window

7.53 bohr?

24.37 bohr?

(sp*)

Outer window

Inner window

.

spread=10.68 bohr?




Disentanglement: Conduction Bands in (5,5) SWNT
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