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Large N Limits 

• An important theoretical tool: some models 
simplify in the limit of a large number of 
degrees of freedom.  

• One class of such large N limits is for theories 
where fields transform as vectors under O(N) 
symmetry with actions like 

 

 

• Describes magnets with O(N) symmetry, which 
have second-order phase transitions in d<4. 

 

 



• The O(N) vector model is solvable in the limit 
where N is sent to infinity while keeping gN 
fixed. 

• Flow from the free d<4 scalar model in the UV 
to the Wilson-Fisher interacting one in the IR.  

• For N=1 it describes the critical Ising model; 
for N=2 the superfluid transition; for N=3 the 
critical Heisenberg model. 

• The 1/N expansion is generated using the 
Hubbard-Stratonovich auxiliary field.  

 



• In d<4 the quadratic term may be ignored in 
the IR: 

 

 

• Induced dynamics for the auxiliary field 
endows it with the propagator 



• The 1/N corrections to operator dimensions 
are calculated using this induced propagator. 
For example, 

 

• For the leading correction need 

 

 

• d is the regulator later sent to 0. 



Operator Dimensions in d=3 

• S is the O(N) singlet quadratic operator. 

• T is the symmetric traceless tensor: 



Conformal Bootstrap Results 

• From Kos, Poland, Simmons-Duffin, arxiv: 
1307.6856 



‘t Hooft Limit and Planar Graphs 

• Another famous large N limit is for “planar” 
theories of N x N matrices with single-trace 
interactions. 

• This has been explored widely in the context 
of large N QCD: SU(N) gauge theory coupled 
to matter.  

• gYM N1/2 must be held fixed. 

• The ‘t Hooft double  line                                          
notation is very helpful: 



• Each vertex contributes factor ~N, each edge 
(propagator) ~1/N, each face (index loop)~N.   

• The contribution to free energy of the 
Feynman graphs which can be drawn on a 
two-dimensional surfaces of genus g scales as 
N2(1-g) 



Glueballs in 3d SU(N) Theory 

• For SU(N) the 
   corrections are 
   in powers of 
    1/N2 

 
• Direct lattice 
   evidence from 
   Athenodorou,Teper,  
   arXiv: 1609.03873 



 



20 years of AdS/CFT Correspondence 

• Starting in 1995 -- D-brane/black hole and D-
brane/black brane correspondence. Polchinski; 

Strominger, Vafa; Callan, Maldacena; … 

• A stack of N Dirichlet 3-branes realizes N=4 

supersymmetric SU(N) gauge theory in 4 
dimensions. It also creates a  curved RR 
charged background of type IIB theory of 
closed superstrings  

 



Large N is Important 
• Matching  the brane tensions gives 
    Gubser, IK, Peet; IK; … 

• The ‘t Hooft coupling  makes a crucial 
appearance. In the large N limit, the effects of 
quantum gravity are suppressed by powers of 
1/N2     

• A serendipitous simplification for 
   the background has a small curvature. 
• This permitted calculation of two-point functions 

in strongly coupled gauge theory using classical 
gravitational absorption. IK 

• In the r->0 limit, which corresponds to low 
energies,  approaches AdS5 x S5. Maldacena            
 



The AdS/CFT Duality 
Maldacena; Gubser, IK, Polyakov; Witten 

• The low-energy limit taken directly in the 
geometry. Maldacena 

• Relates conformal gauge theory in 4 
dimensions to string theory on 5-d Anti-de 
Sitter space times a 5-d compact space. For 
the N=4 SYM theory this compact space is a 
5-d sphere. 

• The geometrical symmetry of the AdS5 space 
realizes the conformal symmetry of the 
gauge theory. 

• Allows us to “solve” strongly coupled 

    gauge theories, e.g. find operator dimensions  

 

 



Some Tests of AdS/CFT 
• String theory can make definite, testable  

predictions!  

• The dimensions of unprotected operators, which 
are dual to massive string states, grow at strong 
coupling as 

• Verified for the Konishi operator dual to the 
lightest massive string state (n=1) using the exact 
integrability of the planar N=4 SYM theory.  Gromov, 

Kazakov, Vieira; … 

• Similar successes for the dimensions of high-spin 
operators, which are dual to spinning strings in 
AdS space. 



Higher-Spin Operators and Spinning Strings 

 

• The dual of a high-spin operator of S>>1                

 

   is a folded string spinning around the center of 
AdS5. Gubser, IK, Polyakov 

• The structure of dimensions of high-spin 
operators is  

 



• Weak coupling expansion of the function f(g)  
      Kotikov, Lipatov, Onishchenko, Velizhanin; Bern, Dixon, Smirnov; …  

 

 

 

• At strong coupling, the AdS/CFT correspondence 
predicts via the spinning string energy calculation 

• Gubser, IK, Polyakov; Frolov, Tseytlin 

 

• Methods of exact integrability allow to match 
them smoothly. 

   Beisert, Eden, Staudacher; 

     Benna, Benvenuti, IK, Scardicchio 

 

 
 

 

 

 

 

 
 

 



Matrix Quantum Mechanics 
• A well-known solvable model is the QM of a 

hermitian NxN matrix with SU(N) symmetry 

 

• The partition function is 

 

 

• Originally solved by Brezin, Itzykson,Parisi, Zuber.  

    Eigenvalues become free fermions!  

• Reviewed in my 1991 Trieste Spring School 
lectures, hep-th/9108019, the 19th paper to 
appear in hep-th. 

 

 

 

 



Discretized Random Surfaces 

• The dual graphs are made of 
triangles. The limit where 
Feynman graphs become large 
describes two-dimensional 
quantum gravity coupled to a 
massless scalar field. 

• The conformal factor of 2-d 
metric, the quantum Liouville 
field, acts as an extra 
dimension of non-critical string 
theory. Polyakov 



Product Groups 

• Another class of matrix models: theories of  real 
matrices fab with distinguishable indices, i.e. in 
the bi-fundamental representation of 
O(N)axO(N)b symmetry.  

• The interaction is at least quartic: g tr ffTffT  

• Propagators are represented by colored double 
lines, and the interaction vertex is 

 



• In the large N limit 
where gN is held fixed 
we again find planar 
Feynman graphs, but 
now each index loop 
may be red or green. 

• The dual graphs shown 
in black may be thought 
of as random surfaces 
tiled with squares whose 
vertices have alternating  
colors (red, green, red, 
green). 
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• For a 3-tensor with distinguishable indices the 
propagator has index structure 

 

• It may be represented graphically by 3 colored 
wires  

• Tetrahedral interaction with 
O(N)axO(N)bxO(N)c symmetry                        
Carrozza, Tanasa; IK, Tarnopolsky 

From Bi- to Tri-Fundamentals 



Cables and Wires 
• The Feynman graphs of the quartic field 

theory may be resolved in terms of the 
colored wires (triple lines) 



A New Large N Limit 

• Leading correction to the propagator has 3 
index loops 

 

 

 

• Requiring that this “melon” insertion is of 
order 1 means that                         must be held 
fixed in the large N limit.      



Discretized 3-Geometries 
• The study of similar Random Tensor Models was 

initiated long ago with the goal of generating a 
class of discretized Euclidean 3-dimensional 
geometries. Ambjorn, Durhuus, Jonsson; Sasakura; M. Gross 

• The original models involved 3-index tensors 
transforming under a single U(N) or O(N) group. 
Their large N limit seemed hard to analyze. 

• Since 2009 major progress was achieved by 
Gurau, Rivasseau and others, who found models 
with multiple O(N) symmetries which possess a 
new “melonic” large N limit. Gurau, Rivasseau, Bonzom, Ryan, 

Tanasa, Carrozza, … 



• The dual graphs may be represented by 
tetrahedra glued along the triangular faces. 
The sides of each triangle have different 
colors. 



• The 3-geometry interpretation emerges 
directly is we associate each 3-index tensor 
with a face of a tetrahedron 

 

 

 

 

 

• Wick contractions glue a pair of triangles in a 
special orientation: red to red, blue to blue, 
green to green.   
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Melonic Graphs 
• In some models with multiple O(N) or U(N) 

symmetries only melon graphs survive in the 
large N limit where l is held fixed.  

 

 

 

• Remarkably, these graphs may be summed 
explicitly, so the “melonic” large N limit is exactly 
solvable! 

• The dual structure of glued tetrahedra is 
dominated by the branched polymers, which is 
only a tiny subclass of 3-geometries. 



Why Call Them Melons?  
• The term seems to have been coined 

in the 2011 paper by Bonzom, Gurau, 
Riello and Rivasseau. 

• Perhaps because watermelons and 
some melons have stripes. 

• For a tensor with q-1 indices the 
interaction is fq so a melon insertion 
has q-1 lines. 

• Much earlier related ideas for f4 
theory by de Calan and Rivasseau in 
1981 (they called them “blobs”) and 
by Patashinsky and Pokrovsky in 1964.  



• Most Feynman graphs in the quartic field theory 
are not melonic are therefore subdominant in the 
new large N limit, e.g. 

 

 

 

 

 

• Scales as 

• None of the graphs with an odd number of 
vertices are melonic. 

 

 

 

Non-Melonic Graphs 



• Here is the list of snail-free vacuum graphs up 
to 6 vertices Kleinert, Schulte-Frohlinde 

 

 

 

 

 

 

 

• Only 4 out of these 27 graphs are melonic. 

• The number of melonic graphs with p vertices 
grows as Cp Bonzom, Gurau, Riello, Rivasseau 



• ‘’Forgetting ” one  color we get a double-line 
graph. 
 

 
 

• The number of loops in a double-line graph is                      
                        where      is the Euler characteristic, 
    is the number of edges, and     is the number of 
vertices,  

 
• If we erase the blue lines we get  
 
 

 
 
 
 

Large N Scaling 



• Adding up such formulas, we find 

 

• The total number of index loops is 

 

• The genus of a graph is 

• Since           , for a “maximal graph” which 
dominates at large N all its subgraphs must 
have genus zero: 

• Scales as 

• In the 3-tensor models                       must be 
held fixed in the large N limit. 

 

 

 

 

 

 

 



Bosonic Symmetric Traceless Tensors 

• Consider a symmetric traceless bosonic tensor           
of O(N) with tetrahedron interaction:  IK, 

Tarnopolsky 

 

 

• Similar to the models considered in the early 
90’s but the tracelessness condition is crucial. 
IK, Tarnopolsky; Azeyanagi, Ferrari, Gregori, Leduc, Valette 

• Explicit checks of combinatorial factors up to 
8th order show that they do dominate. There 
are 177 diagrams without “snails.” 

 





• The propagator has the more complicated 
index structure IK, Tarnopolsky 

 

 

 

• Similarly, the theory of antisymmetric tensor 
of O(N) with propagator 

  

    is also dominated by the melon diagrams. 

• Recent combinatorial proof.   Benedetti, Carrozza, Tanasa, 

Kolanowski  



The Sachdev-Ye-Kitaev Model 
• Quantum mechanics of a large number NSYK of  

   anti-commuting variables with action 

      

 

• Random couplings j  have a Gaussian 
distribution with zero mean.  

• The model flows to strong coupling and 
becomes nearly conformal.  Georges, Parcollet, Sachdev; 

Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon; 
… 

 

 



• The simplest interesting case is q=4. 

• Exactly solvable in the large NSYK limit because 
only the melon Feynman diagrams contribute 

 

 

• Solid lines are fermion propagators, while 
dashed lines mean disorder average. 

• The exact solution shows resemblance with 
physics of certain two-dimensional black 
holes. 



SYK-Like Tensor Models 

• E. Witten, “An SYK-Like Model Without 
Disorder,” arXiv: 1610.09758 

• Appeared on the evening of Halloween: 
October 31, 2016. 

 

 

 

• It is tempting to change the term “melon 
diagrams” to “pumpkin diagrams.” 



The Gurau-Witten Model 

• This model is called “colored” in the random 
tensor literature because the anti-commuting 
3-tensor fields              carry a color label 
A=0,1,2,3. 

 

 

• The model has                symmetry with each 
tensor in a tri-fundamental under a different 
subset of the six symmetry groups. 
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• The 4 different fields may be associated with 4 
vertices of a tetrahedron, and the 6 edges 
correspond to the different symmetry groups: 

 

 

 

 

 

• As stressed by Witten, gauging the symmetry 
gets rid of the non-singlet states in the QM. 

• This makes it a gauge/gravity correspondence. 

 

 

 

 

 

 



This part mostly based on  

 

• IK, G. Tarnopolsky, 
“Uncolored 
Random Tensors, 
Melon Diagrams, 
and the SYK 
models,” 
arXiv:1611.08915 

 

 

 

 

 

 

 

 



• Remove the extra flavor label, so that there 
are N3 anticommuting components IK, Tarnopolsky 

 

 

• Has O(N)axO(N)bxO(N)c symmetry under 

 

• May be gauged by replacing 

 

 

The O(N)3 Model 



• The 3-tensors may be 
associated with 
indistinguishable vertices 
of a tetrahedron.  

 

• This is equivalent to 

 

 

• The 3-line Feynman 
graphs are produced 
using the propagator 
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Schwinger-Dyson Equations 

• The two-point function obeys the Schwinger-
Dyson equation like in SYK model Polchinski, Rosenhaus; 

Maldacena, Stanford; Jevicki, Suzuki, Yoon 

 

 

 

 

 

• Neglecting the left-hand side in IR we find 

. . . . . .



• Four point function 

 

 

 

 

 

•  If we denote by       the ladder with n rungs 
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Spectrum of two-particle operators 
• S-D equation for the three-point function Gross, 

Rosenhaus 

 

 

 

 

 

 

 

• Scaling dimensions determined by  

 

 

 



• Can use SL(2) invariance to take t0 to infinity 
and consider eigenfunctions of the form  

 

 

• Two basic integrals 
 

 

 

 

• Find the result 

 

 



• The first solution is h=2; dual to gravity. 

 

 

 

 

 

 

 

• The higher scaling dimensions are 

       approaching              



Gauge Invariant Operators 

• Two-particle operators, which are analogous to 
a “single Regge trajectory”  

• There is a growing number of multi-particle 
operators. Bulycheva, IK, Milekhin, Tarnopolsky 

 

 

 

 

 

 



Model with a Complex Fermion 

• The action 
 

 

    has enhanced                            symmetry 

  

• Gauge invariant two-particle operators 
 

    including  



Spectrum of two-particle operators 

• The integral equation also admits symmetric 
solutions  

 

• Calculating the integrals we get 

 

 

• The first solution is h=1 corresponding to U(1) 
charge  



 

 

 

 

 

 

 

 

• The additional scaling dimensions   

 

    approach  



Bosonic Tensor Model in General d 
• Action with a potential that is not positive 

definite 

 

 

• Schwinger-Dyson equation for 2pt function 
Patashinsky, Pokrovsky 

 

 

• Has solution 



Spectrum of two-particle spin zero 
operators 

• Schwinger-Dyson equation 

 

 

 

 

 

 



• Spectrum in d=1 again includes scaling 
dimension h=2, suggesting the existence of a 
gravity dual. 

• However, the leading solution is complex, 
which suggests that the large N  CFT is 
unstable Giombi, IK, Tarnopolsky  

• It corresponds to the operator 

• In d=4-e 

 

• The dual scalar field in AdS violates the 
Breitenlohner-Freedman bound.    

 



Fixed Point in 4-e Dimensions 

• The tetrahedron operator  

 

mixes with the pillow and double-sum operators 

 

 

 

• The renormalizable action is 



• The large N scaling is 

 

 

• The 2-loop beta functions and fixed points:  

 

 

 

 

• The scaling dimension of                  is 



Super Melons 

• May consider a supersymmetric model with 
“tetrahedron superpotential” 

 

• In d=3 such a theory is renormalizable, so for 
d<3 it may flow to an interacting 
superconformal theory. 

• Includes the positive sextic scalar potential. 
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Sachdev-Ye-Kitaev Model O(N)3 Tensor Model 

• Majorana fermions 

 

 

 

• No disorder  

 

• Has O(N)a x O(N)b x O(N)c symmetry 

• Majorana fermions 

 

•                are Gaussian random 

 

 

 

• Has O(NSYK) symmetry after  

     averaging over disorder 

Sachdev, Ye ‘93,  

Georges, Parcollet, Sachdev’01 

Kitaev ‘15 

 

IK, Tarnopolsky’16 



• Majorana fermions 

 

•                are Gaussian random 

 

 

 

• Has O(NSYK) x O(NSYK) x  

• O(NSYK) x O(NSYK)  symmetry 
χ1
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• Majorana fermions 

 

 

 

• No disorder  

 

• Has O(N)a x O(N)b x O(N)c x O(N)d  

      x O(N)e x O(N)f symmetry 

Gross-Rosenhaus Model 

   q=4, f=4 
Gurau-Witten Model 

Gross, Rosenhaus’ 16 
Gurau ‘10 

Witten’16 



• Complex fermions 

 

 

 

• Has SU(N)a x SU(N)b x O(N)c x U(1)  

      symmetry and no disorder 

Complex SYK Model Complex Tensor Model 

• Complex fermions 

 

•                are Gaussian random 

 

 

 

• Has U(NSYK) symmetry after  

      averaging over disorder  

Sachdev ’15 

Davison, Fu,  Gu,  Georges,  Jensen,  Sachdev ‘16 
IK, GT’16 
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