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Large N Limits

 An important theoretical tool: some models
simplify in the limit of a large number of
degrees of freedom.

* One class of such large N limits is for theories
where fields transform as vectors under O(N)
symmetry with actions like

S‘Nilaan—Fisher — /dd'r (2(0,“01)2 T 1(0301)2)

e Describes magnets with O(N) symmetry, which
have second-order phase transitions in d<4.



The O(N) vector model is solvable in the limit

where N is sent to infinity while keeping gN
fixed.

Flow from the free d<4 scalar model in the UV
to the Wilson-Fisher interacting one in the IR.

For N=1 it describes the critical Ising model;
for N=2 the superfluid transition; for N=3 the
critical Heisenberg model.

The 1/N expansion is generated using the
Hubbard-Stratonovich auxiliary field.
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* |[n d<4 the quadratic term may be ignored in

the IR: ) )
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* Induced dynamics for the auxiliary field
endows it with the propagator




* The 1/N corrections to operator dimensions

are calculated using this induced propagator.
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Operator Dimensions in d=3

* Sisthe O(N) singlet quadratic operator.
* Tisthe symmetric traceless tensor:
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Conformal Bootstrap Results

* From Kos, Poland, Simmons-Duffin, arxiv:
1307.6856

O(N) Singlet Bounds
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t Hooft Limit and Planar Graphs

Another famous large N limit is for “planar”
theories of N x N matrices with single-trace
Interactions.

This has been explored widely in the context
of large N QCD: SU(N) gauge theory coupled
to matter.

gy N2 must be held fixed.

The ‘t Hooft double line | @
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notation is very helpful: &'/



e Each vertex contributes factor N, each edge
(propagator) ~1/N, each face (index loop)~N.

* The contribution to free energy of the
Feynman graphs which can be drawn on a

two-dimensional surfaces of genus g scales as
N2(1-g)



Glueballs in 3d SU(N) Theory

* For SU(N) the .
corrections are [
. lerss
in powers of o

N e ——

* Direct lattice e
evidence from

Athenodorou,Teper, -
arXiv: 1609.03873 e
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20 years of AdS/CFT Correspondence

 Starting in 1995 -- D-brane/black hole and D-
brane/black brane correspondence. rolchinski

Strominger, Vafa; Callan, Maldacena; ...

* A stack of N Dirichlet 3-branes realizes N=4
supersymmetric SU(N) gauge theory in 4
dimensions. It also creates a curved RR
charged background of type IIB theory of
closed superstrings
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Large N is Important
* Matching the brane tensions gives r*= 42, ,No?

Gubser, IK, Peet; IK; ...

* The ‘t Hooft coupling makes a crucial
appearance. In the large N limit, the effects of
guantum gravity are suppressed by powers of
1/N?

* A serendipitous simplification for 9ymNV > L

the background has a small curvature.

* This permitted calculation of two-point functions
in strongly coupled gauge theory using classical
gravitational absorption. i

* In the r->0 limit, which corresponds to low
energies, approaches AdS; x S°. maldacena




The AdS/CFT Duality

Maldacena; Gubser, IK, Polyakov; Witten

The low-energy limit taken directly in the
geometry. maldacena h N

Relates conformal gauge theory in 4 m
dimensions to string theory on 5-d Anti-de &
Sitter space times a 5-d compact space. For ; @

the N=4 SYM theory this compact space is a ﬁ

5-d sphere. %.-

The geometrical symmetry of the AdS. space
realizes the conformal symmetry of the
gauge theory.

Allows us to “solve” strongly coupled

gauge theories, e.g. find operator dimensions A. =2+ /4 +m2L2



Some Tests of AdS/CFT

String theory can make definite, testable
predictions!

The dimensions of unprotected operators, which
are dual to massive string states, grow at strong

couplingas 5 (ngymvN) /2

Verified for the Konishi operator dual to the
lightest massive string state (n=1) using the exact
integrability of the planar /N=4 SYM theory. Gromoy,

Kazakov, Vieira; ...

Similar successes for the dimensions of high-spin
operators, which are dual to spinning strings in
AdS space.



Higher-Spin Operators and Spinning Strings

* The dual of a high-spin operator of $>>1
Tr Fup DI 2F . "

is a folded string spinning around the center of

AdSS Gubser, IK, Polyakov SS

* The structure of dimensions of high-spin

operators is

L

A7

A—S=Ff(g)lnS +0(SY,



* Weak coupling expansion of the function f(g)

Kotikov, Lipatov, Onishchenko, Velizhanin; Bern, Dixon, Smirnov; ...

o, 8 ., 88 ,. |
flg)=8¢"—3mg" + 79"+ O(g")
) ~r

* At strong coupling, the AdS/CFT correspondence
predicts via the spinning string energy calculation

Gubser, IK, Polyakov; Frolov, Tseytlin

3In2

flg) =49 — - g
 Methods of exact integrability allow to match
them smoothly.

Beisert, Eden, Staudacher;

Benna, Benvenuti, IK, Scardicchio
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Matrix Quantum Mechanics

A well-known solvable model is the QM of a

hermitian NxN matrix with SU(N) symmetry
O(t) — VId(t)V

The partition function is

T/2

A2 0D\ ” 1 Ko
4\ . - AT . . 1 2 3
Z ~ / DN ® () exp [—‘\ / dr Tr (5 (T‘)I) + 50— 5 ® )]

~T/2
Originally solved by Brezin, Itzykson,Parisi, Zuber.
Eigenvalues become free fermions!

Reviewed in my 1991 Trieste Spring School
lectures, hep-th/9108019, the 19t paper to
appear in hep-th.



Discretized Random Surfaces

 The dual graphs are made of
triangles. The limit where
Feynman graphs become large
describes two-dimensional
guantum gravity coupled to a
massless scalar field.

* The conformal factor of 2-d
metric, the quantum Liouville
field, acts as an extra
dimension of non-critical string
theory. Polyakov




Product Groups

* Another class of matrix models: theories of real
matrices ¢p2° with distinguishable indices, i.e. in
the bi-fundamental representation of
O(N)_xO(N), symmetry.

* The interaction is at least quartic: g tr ¢o'¢p¢’

* Propagators are represented by colored double
lines, and the interaction vertex is




* |n the large N limit
where gN is held fixed
we again find planar

Feynman graphs, but "‘~
h index |
now each index loop 5*’%’

may be red or green. BSOS
* The dual graphs shown %‘;\ "Zl‘dx%"‘g
in black may be thought ﬂ A
of as random surfaces 775 (> Yap
tiled with squares whose ‘/ silfé
vertices have alternating .',7‘7‘5 s
colors (red, green, red, 2
green).

NN



From Bi- to Tri-Fundamentals

* For a 3-tensor with distinguishable indices the
propagator has index structure

<¢abc¢a’b’c’> _ 5aa’5bb’500’
* |t may be represented graphically by 3 colored

wires b b

* Tetrahedral interaction with aubrcy
O(N)_xO(N) xO(N). symmetry
Carrozza, Tanasa; IK, Tarnopolsky a C1
X & %
- airbici Laibaco rasbico Lasbocq
Lggm e g g

Cobray



Cables and Wires

 The Feynman graphs of the quartic field
theory may be resolved in terms of the
colored wires (triple lines) )\ = 4 N3/2
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A New Large N Limit

* Leading correction to the propagator has 3

index loops A

2l

* Requiring that this “melon” insertion is of
order 1 means that \ = gN?/? must be held
fixed in the large N limit.



Discretized 3-Geometries

* The study of similar Random Tensor Models was
initiated long ago with the goal of generating a
class of discretized Euclidean 3-dimensional
geometries. Ambjorn, Durhuus, Jonsson; Sasakura; M. Gross

* The original models involved 3-index tensors
transforming under a single U(N) or O(N) group.
Their large N limit seemed hard to analyze.

* Since 2009 major progress was achieved by
Gurau, Rivasseau and others, who found models
with multiple O(N) symmetries which possess a
new “melonic” |arge N limit. Gurau, Rivasseau, Bonzom, Ryan,

Tanasa, Carrozza, ...



 The dual graphs may be represented by
tetrahedra glued along the triangular faces.
The sides of each triangle have different

colors.




* The 3-geometry interpretation emerges
directly is we associate each 3-index tensor
with a face of a tetrahedron

(palbzcz

N\

* Wick contractions glue a pair of triangles in a
special orientation: red to red, blue to blue,
green to green.



Melonic Graphs

* In some models with multiple O(N) or U(N)
symmetries only melon graphs survive in the
large N limit where A is held fixed.

OO P Lo P

* Remarkably, these graphs may be summed
explicitly, so the “melonic” large N limit is exactly

solvable!
 The dual structure of glued tetrahedra is

dominated by the branched polymers, which is
only a tiny subclass of 3-geometries.



Why Call Them Melons?

The term seems to have been coined
in the 2011 paper by Bonzom, Gurau,
Riello and Rivasseau.

Perhaps because watermelons and
some melons have stripes.

For a tensor with g-1 indices the
interaction is ¢9 so a melon insertion
has g-1 lines.

Much earlier related ideas for ¢*
theory by de Calan and Rivasseau in
1981 (they called them “blobs”) and
by Patashinsky and Pokrovsky in 1964.




Non-Melonic Graphs

* Most Feynman graphs in the quartic field theory
are not melonic are therefore subdominant in the
new large N limit, e.g.

S

e Scales as g3N6 ~ N3\ N —3/2

* None of the graphs with an odd number of
vertices are melonic.



Here is the list of snail-free vacuum graphs up
to 6 vertices Kleinert, Schulte-Frohlinde
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Only 4 out of these 27 graphs are melonic.

The number of melonic graphs with p vertices
grows as CP Bonzom, Gurau, Riello, Rivasseau



Large N Scaling

* “Forgetting ” one color we get a double-line
graph.

DB DD

* The number of loops in a double-line graph is
f=x+e—v where X isthe Euler characteristic,

e is the number of edges, and v is the number of
vertices, e = 2u

* |f we erase the blue lines we get frg = Xrg + v



e Adding up such formulas, we find
fog + Jrg + Jor = 2(fo + fg + Jr) = Xog + Xor + Xrg + 30
 The total number of index loops is
frotal = fo + fy + fr = 5+ 3 = Gbg — Gor — Grg
 The genus of a graph IS g=1-x/2

* Since g=>0, for a “maximal graph” which
dominates at large N all its subgraphs must
have genus zero:  fiota = 3 + 3v/2

* Scalesas N?(gN¥?)

* In the 3-tensor models \ = gN?/? must be
held fixed in the large N limit.



Bosonic Symmetric Traceless Tensors

* Consider a symmetric traceless bosonic tensor

of O(N) with tetrahedron interaction: i,
Tarnopolsky

V = éabc¢ab’ c/ éa,’ bc! éa’ b c
* Similar to the models considered in the early
90’s but the tracelessness condition is crucial.

IK, Tarnopolsky; Azeyanagi, Ferrari, Gregori, Leduc, Valette

* Explicit checks of combinatorial factors up to
8t order show that they do dominate. There
are 177 diagrams without “snails.”
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* The propagator has the more complicated
index structure i, Tarnopolsky

1
(()ab Hre >0 i ((’)"m OGPV §ect 4 gab g geat o gac ghal gebt o gabl gha’ et gac’ s gea” y gaa’ sbel geb!
>

((;)ab(g) (g) + (g) (;) ch’ (5{1’(:” + (Sabd(:’r:'_:" (ja"b" + (Stlitr(gba"(jb*’t;rf 4+ (5{1(:’(5E?b’ (5{1"(_?’

N +2
4 ja 'lf'lb' 5a a'b' 14 R c{j‘ag!a‘b'c! 14 55(.'5&3:3{5.1’(7! i Iﬁﬁcﬁgc’é&'rb'r))

e Similarly, the theory of antisymmetric tensor
of O(N) with propagator
(™ " a'ble )0 = (l(‘)‘m SV §ect 4 gab ghel geat 4 gact gbal gebt L gab’ gbal sect - sact 57 gea” - gaa’ sbe! (5‘:{}!)
is also dominated by the melon diagrames.
Recent combinatorial prOOf. Benedetti, Carrozza, Tanasa,

Kolanowski



The Sachdev-Ye-Kitaev Model

* Quantum mechanics of a large number N, of
anti-commuting variables with action

i d y | .
I:/df (QZLELHE ;XQJMM iqVi ¥ 2'““:@)

)

Random couplings j have a Gaussian
distribution with zero mean.

* The model flows to strong coupling and
becomes nea r|y conformal. Georges, Parcollet, Sachdev;

Kitaev; Polchinski, Rosenhaus; Maldacena, Stanford; Jevicki, Suzuki, Yoon;



* The simplest interesting case is g=4.

* Exactly solvable in the large N, limit because
only the melon Feynman diagrams contribute

N
+ %

A —
N . _. / \‘. /
| AN

* Solid lines are fermion propagators, while
dashed lines mean disorder average.

e The exact solution shows resemblance with

physics of certain two-dimensional black
holes.



SYK-Like Tensor Models

e E. Witten, “An SYK-Like Model Without
Disorder,” arXiv: 1610.09758

* Appeared on the evening of Halloween:
October 31, 2016.

* |tis tempting to change the term “melon
diagrams” to “pumpkin diagrams.”



The Gurau-Witten Model

* This model is called “colored” in the random
tensor literature because the anti-commuting
3-tensor fields @’ abc carry a color label
A=0,1,2,3.

_ Ib r:Lb 1b .-;n’ Jfbe , fdc
SGurau—ﬁritten — \/df(z ) (()f “+ gy 0 [ta 2 ?.4*3 )

* The model has O(N)° symmetry with each
tensor in a tri-fundamental under a different
subset of the six symmetry groups.



* The 4 different fields may be associated with 4
vertices of a tetrahedron, and the 6 edges

correspond to the different symmetry groups:
wilde

e

a d uh™
o _—T

f
%bc - @ ngc
* As stressed by Witten, gauging the symmetry
gets rid of the non-singlet states in the QM.

* This makes it a gauge/gravity correspondence.




This part mostly based on

* |K, G. Tarnopolsky,
“Uncolored
Random Tensors,
Melon Diagrams,
and the SYK
models,”
arXiv:1611.08915




The O(N)?> Model

Remove the extra flavor label, so that there
are N3 anticommuting components i, ramopolsky

S = dt( abca abc ai1bici ,/,a1bacs . j.aobico azbgcl)
[t (Gurtcanete 4 Jgumtiegregeiey

Has O(N) xO(N)be(N) symmetry under
e M MY Ms< ' My, My, My € O(N)
I\/Iay be gauged by replacing

| { f
."_.i':«’ﬂbt (Dt? )a ()t? abc 4+ _1{:,{1 bef_ 4+ _1[15 {LE}L 4 ‘_1(_"{_



* The 3-tensors may be
associated with a

T : : yreta
indistinguishable vertices b
of a tetrahedron.

aybic

* This is equivalent to
] Colay
* The 3-line Feynman
graphs are produced E} E}

using the propagator



Schwinger-Dyson Equations

* The two-point function obeys the Schwinger-
Dyson equation like in SYK model roichinski, Rosenhaus;

Maldacena, Stanford; Jevicki, Suzuki, Yoon

G(ty — ta) = Go(t1 — t2) + g*°N? / dtdt'Go(t; — t)G(t — )Gt —t,)

o - — - o

* Neglecting the left-hand side in IR we find

1 )1/‘4 sgn(tl — tg)

G(ty —t2) = _(47rg2N3 ) — to|V/2



* Four point function

(™01 (81 )™ (b9) 4222 (t3) 1222 (t4)) = NG (t12)G(tza) + T'(t, - - ., ts)

ty

" —O— s
. v 0 0 T - 00

i —Q—13
* |f we denote by 1, the ladder with n rungs
I'=> T,

Fn+1(t1, c ey t4) — / dtdt,K(tl, tQ, t, t,)Fn(t, t,, t3, t4)

K(th tg; t3, t4) = —3g2N3G(t13)G(t24)G(t34)2



Spectrum of two-particle operators
* S-D equation for the three-point function cross,

Rosenhaus

th tla t2 g dtSdtZIK tla t23 t33 t4 th t35 tﬁl

’U(ig, t1, tg) — <O;(t0)wabc(t1)¢abc(t2)> _ Sgn(tl — t2)

to — t1]"[to — t2|P|t1 — ta]1 /2P

* Scaling dimensions determined by Q(h) =1



* Can use SL(2) invariance to take t, to infinity
and consider eigenfunctions of the form

Sgﬂ(tl — tg)
‘tl _ t2|1/2_h

”U(tl, tg) =

* Two basic integrals
/+°°d sgn(u — ty) sgn(u — t2) + 1
U ==
—0 u — t1]*|u — to/° 0|ty — to|atb=1
/—I—oo o sgn(u — ta) - sgn(t, — to) |
_ |u—t1|“|u—t2|b ’ |t1 _t2|a,—|—b—1
ly=81—a,a+b—1)£(B(1—ba+b—1)—B(1—a,1-0))

* Find the result
3 B 3tan(Z(h — %))
h) = ——I7 .1 1
g( ) 47.(. §—h,§ 1—h,§ 2 h — 1/2

.8




* The first solution is h=2; dual to gravity.

g(h)
3|
i y=g(h)
2t |y N y=1
; h=2 h=3.77 h=5.68
1fpmmmmeate Y —— S 7 9 --
: ﬂ ~ h
i 2 4 6 8
_1}

* The higher scaling dimensions are
h~ 3.77, 5.68, 7.63, 9.60 approaching h, = n+1



Gauge Invariant Operators

* Two-particle operators, which are analogous to
a “single Regge trajectory”  Of = ¢™(Dj))*

 There is a growing number of multi-particle
ope rators. Bulycheva, IK, Milekhin, Tarnopolsky
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Model with a Complex Fermion

e The action

_ 1 _ _
G — /dt(i¢abcatwabc+ Zgwaqbwlwmbgczwazbmzwazbzq)

has enhanced U(N) x O(N) x U(N) symmetry

* Gauge invariant two-particle operators

OF = (D)) n=0,1,...
including )abeyabe



Spectrum of two-particle operators

* The integral equation also admits symmetric

solutions 1
’U(tlth) |t1 . t2|1/2 h

e Calculating the integrals we get

1 n 1’[111( (h+ 5))

/sym h) = _—!_ ,
Gsym(h) = —-ly 4l 0= =5 h—1/2

* The first solution is h=1 corresponding to U(1)
Cha rge ,&abcwabc



g(n). gsym(N)
4+

* The additional scaling dimensions
h =~ 2.65, 4.58, 6.55, 8.54

| 1
approaCh h, =n+ E + + O(?'E_S)
Th




Bosonic Tensor Model in General d

* Action with a potential that is not positive
definite
L d 1 abe abe
S = /d m(zﬁﬂgb O™ +

lgqﬁalblcl ¢al baco ¢ﬂ25162 ¢a25201)
4

* Schwinger-Dyson equation for 2pt function
Patashinsky, Pokrovsky

60) =¥ [ LG @GWG0+ o+ b

e Has solution

Gp) = X2

(4m)4dT(34)\1/4 1
)



Spectrum of two-particle spin zero
operators

* Schwinger-Dyson equation

/ddwsdde(fl,-’1?2;-’1?3;334)%(333;-’1’14) — g(h)vh(l‘laﬂ?z)

K(.’Bl, Lo, X3, .’13'4) = 3)\20(.’1313)0({1}24)0(3334)2




Spectrum in d=1 again includes scaling
dimension h=2, suggesting the existence of a
gravity dual.

However, the leading solution is complex,
which suggests that the large N CFT is
unstable Giombi, IK, Tarnopolsky ]30 — % + 1.525¢

It corresponds to the operator abeyabe
In d=4-¢
1
ho = 2 4+ 1V 6e — Ef—’ + 0(53*’2j

The dual scalar field in AdS violates the
Breitenlohner-Freedman bound.



Fixed Point in 4-¢ Dimensions

e The tetrahedron operator

Ot( ) _ Oﬂlblfl Oalbgr_goagblcg oagbgﬁ

mixes with the pillow and double-sum operators
Op(:)f) _ (®a1b161 @a-1b102®¢125202®a25261 4+ ®a15161 @'025101 @ﬂQbQCQ @albacg + @albicl @'aiqu @a-gfnca @'0‘25202) :

.\ _— taibici jaibicy rasboco rasbace

e The renormalizable action is

1 1
_ / 1 (50,0046 + 3 (010u(x) + 2:0y(x) + 550u(x)))



 The large N scaling is

_ (47)20 _ (47)2gs _ (47)%gs
=Nz T TN BTN

* The 2-loop beta functions and fixed points:
By = — gy + 293 .
bp = — €gg + ((}g? =+ EG%) — 29192 .
: 1. . |
Bas = = el + (58 + 4as + 233 ) — 233 (43 + 5s)
7= (e/2)Y2 g5 =+3i(e/2)Y?, g3 = Fi(3+V3)(¢/2)1/?
* The scaling dimension of )¢ is

Aop=d—2+2(g5+7g3) =2+ iV 6e + O(€)



Super Melons

* May consider a supersymmetric model with

“tetrahedron superpotential”
1

r_ a1biel gaibaca fazbica Fa2bocy
W =—gd Q)] Q)] Q)]

* |[n d=3 such a theory is renormalizable, so for
d<3 it may flow to an interacting
superconformal theory.

* Includes the positive sextic scalar potential.



Sachdev-Ye-Kitaev Model

O(N)3 Tensor Model

1

N
H = E Z Ji1z’2i3i4Xi1 Xia Xiz Xiq

) 7:17?:2:1.'33‘2:4:1
« Majorana fermions {Xi, X;} = 0i;

. Ji1i2i3i4 are Gaussian random

2 J?
' — 3!ﬁ (Jirigizis) = 0
* Has O(Ngyx) symmetry after
averaging over disorder

(J

21i2i3’i4>

Sachdev, Ye ‘93,
Georges, Parcollet, Sachdev’01
Kitaev ‘15

N

1 J
H = Z Z WXalblclXa1b2C2Xa2b102Xa2b201

Majorana fermions

{Xabca Xa'b'c! } — 5aa’5bb’ 5cc’
No disorder
Has O(N), x O(N),x O(N). symmetry
Xaibic,
C1

a1
Xahc

Xaibhc, Xazbic,

IK, Tarnopolsky’16



Gross-Rosenhaus Model
q=4, =4

Gurau-Witten Model

N
L Z : 0.1.2.3
H — Ji1’i2’i3¢4Xi1X‘i2X‘i3Xi4

11,12,13,24=1

- Majorana fermions{x?, x5} = 6;;6

. Ji1i2i3i4 are Gaussian random

(Jiigizia) = 45 (Jivigigia) = 0

111213%4

* Has O(Ngyk) X O(Ngyy) X
symmetry

* O(Ngyk) X

Gross, Rosenhaus’ 16

N
J
H = Z WxgchédeX?"bexz}dc

Majorana fermions
{Xﬁbca ng,c,} = 5a,a'5bbf5ccf5AB
No disorder

Has O(N), x O(N),x O(N). x

X O(N), x O(N); symmetry
Xéde
e
a d X?ua
b f
Gurau ‘10
ngc P X ? dc Witten’16



Complex SYK Model

Complex Tensor Model

N
1
H=—1 D Juiisidh XXX

) 11,12,13,4=1
« Complex fermions {Xz'a X;r} — 5%‘3’

. Ji1i2i3i4 are Gaussian random

2 J?
' — 3!ﬁ (Jirigizis) = 0
* Has U(Ngyx) sSymmetry after
averaging over disorder

(J

21i2i3’i4>

Sachdev ’15
Davison, Fu, Gu, Georges, Jensen, Sachdev ‘16

H

N
1 > J t
4 N3/2 Xarbrer Xazbae Xarbzez Xazbier

Q] geeey co=1
Complex fermions

{Xabc; Xl’b/c’} — 6aa’ 6bb’ 5(:(:’

Has SU(N), x SU(N),x O(N).x U(1)
symmetry and no disorder

IK, GT’16



