Resonant electron-molecular cation collisions in the edge plasmas of fusion devices: new state-to-state cross sections and rate coefficients <u>J. Zs. Mezei</u>^{1,2}, A. Abdoulanziz², Y. Moulane^{2,3}, S. Niyonzima⁴, M. D. Epée Epée⁵, F. Iacob⁶, D. A. Little⁷, N. Pop⁸, K. Chakrabarti⁹, O. Motapon⁵, J. Tennyson⁷, and I. F. Schneider^{2,10} ¹(Presenting author underlined) Institute of Nuclear Research, Hungarian Academy of Sciences, Debrecen, Hungary ²Lab. Ondes et Milieux Complexes, CNRS, Université du Havre, France ³High Energy Physics and Astrophysics Lab., Cadi Ayyad University, Marrakech, Morocco ⁴Dépt. de Physique, Université du Burundi, Bujumbura, Burundi ⁵Dept. of Physics, Faculty of Sciences, University of Douala, Cameroon ⁶Physics Faculty, West University of Timişoara, Romania ⁷Dept. of Physics and Astronomy, University College London, United Kingdom ⁸Dept. of Physical Foundation of Engineering, Politehnica University Timişoara, Romania ⁹Dept. of Mathematics, Scottish Church College, Calcutta, India ¹⁰Lab. Aimé Cotton, CNRS, ENS Cachan and Université Paris-Sud, Orsay, France Dissociative recombination, elastic scattering, (ro-)vibrational excitation, vibrational deexcitation and dissociative excitation [1]: $$AB^{+}(N^{+}, v^{+}) + e^{-} \to AB^{*}, AB^{**} \to \begin{cases} A + B \\ AB^{+}(N'^{+}, v'^{+}) + e^{-} \end{cases},$$ (1) are dominant elementary processes in numerous cold ionized gases. Here N^+/v^+ stand for the rotational/vibrational quantum numbers of the cation, AB* for a bound excited (mostly Rydberg) state of the neutral, and AB** for a dissociative (mostly doubly- or multiply-excited) state of the neutral. The quantum interference between the direct mechanism - capture into the doubly-excited states AB^{**} - and the indirect one - temporary capture into a Rydberg state AB^* - induces resonances in the cross section. The Multichannel Quantum Defect Theory (MQDT) [2, 3, 4, 5, 6] is the most suitable approach for these processes, efficiently handling channels - open for the direct process and closed for the indirect one - and the corresponding channel mixing via electronic and vibronic interactions. We will provide new cross sections and rate coefficients for H_2^+ , HD^+ [2], BeH^+ [3, 4], BeD^+ [5], CH^+ , N_2^+ [6]. - [1] I. F. Schneider, O. Dulieu, J. Robert, editors, *Proceedings of DR2013: The 9th International Conference on Dissociative Recombination: Theory, Experiment and Applications*, Paris, July 7-12, 2013, EPJ Web of Conferences **84** (2015). - [2] K. Chakrabarti et al, Phys. Rev. A 87 022702 (2013). - [3] S. Niyonzima et al. At. Data Nucl. Data Tables 115-116 287 (2017). - [4] V. Laporta et al, Plasma Phys. Control. Fusion **59** 045008 (2017). - [5] N. Pop et al, AIP Conf. Proc. **1916** 020013 (2017). - [6] D. A. Little et al, Phys. Rev. A 90 052705 (2014).