Quadriexcitons, excitonic condensate and excitation energies in a symmetric electron-hole bilayer with valley degeneracy

F. Tramonto¹, S. De Palo^{2,1}, S. Moroni^{2,3}, and <u>Gaetano Senatore¹</u>

¹1Dipartimento di Fisica, Universita' di Trieste, strada Costiera 11, 34151 Trieste, Italy ²CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali

³SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy

The realization of systems of spatially separated electrons and holes, in the search of the equilibrium excitonic condensate foreseen by [1], has gone on for more than two decades, but so far the condensate has eluded experimental detection [2], in the absence of a magnetic field. It has been recently suggested that a substantial enhancement of the electron-hole attraction, to favour the condensate, could be obtained in coupled graphene bilayers [3], systems that have a quadratic energy dispersion on a wide density range and a twofold valley degeneracy in each bilayer.

We have performed extensive QMC simulations of a paramagnetic electron-hole bilayer with mass symmetry and twofold valley degeneracy in each layer, partially mimicking the system proposed in [3], to determine the effects of the valley degeneracy on the T = 0phase diagram, inferred by comparison with the conventional electron-hole bilayer without valley degeneracy [4]. We have studied a system of 168 particles, at in-layer densities corresponding to $1 \le r_s \le 8$ and inter-layer distances $1 \le d/a_B \le 4$.

For the first time we observe the formation of quadriexcitons, predicted by Wang and Kittel [5] 45 years ago. We find an excitonic condensate for $r_s \gtrsim 1$ at intermediate distances, whereas a quadriexciton fluid [5] and a plasma fluid are stable respectively at smaller and larger distances. The region of stability of the excitonic condensate is significantly shrunk with respect to the system without valley degeneracy [4]. We estimate excitation energies and discuss their modelling, to extract a paring gap.

The first experiments on coupled graphene bilayers in zero magnetic field [6] have found no evidence of excitonic condensation, at variance with the very recent mesaurement on the same system in the quantum Hall regime [7]. However, a strong enhanced tunnelling between graphene bilayers at charge neutrality and zero magnetic field has just been reported [8], pointing (in the words of the authors) towards the presence of an emerging many-body state with electron-hole pair condensation. We shall discuss possible relations between such results and our own findings.

- [1] Yu. E. Lozovik and V. I. Yudson, JETP Lett. 22, 274 (1975).
- [2] See, e.g., J. A. Seamons et al., Phys. Rev. Lett. 102, 026804 (2009) and references therein.
- [3] A. Perali, D. Neilson, and A. R. Hamilton, Phys. Rev. Lett. **110**, 146803 (2013).
- [4] S. De Palo, F. Rapisarda, and G. Senatore, Phys. Rev. Lett. 88, 206401 (2002); R. Maezono et al., Phys. Rev. Lett. 110, 216407 (2013).
- [5] J.S. Wang and C. Kittel, Phys. Lett. 42A, 189 (1972).
- [6] J. I. A. Li, T. Taniguchi et al., Phys. Rev. Lett. 117, 046802 (2016); K. Lee et al., Phys. Rev. Lett. 117, 046803 (2016).
- [7] Xiaomeng Liu et al., Nat. Phys. 13, 746 (2017); J. I. A. Li et al., Nat. Phys. 13, 751 (2017).
- [8] G. William Burg et al, Phys. Rev. Lett. **1**20, 177702 (2018).