Cosmic-ray fluxes relevant for Atmospheric Neutrinos

I. <u><</u>TeV II. TeV ~ PeV

From the local ISM to 1 AU

Solar modulation

See Cholis, Hooper & Linden, PR D 93 (2016) 043016 a full, physically motivated parameterization of charge-signdependent solar modulation

Charge-sign-dependent solar modulation

- A = polarity of the solar magnetic field
- Changes sign around solar max
- Modulation depends on qA
 - Protons, anti-protons are modulated differently
 - Cholis, Hooper, Linden, PR D93 (2016) 043016

*Gives a detailed parameterization of the force-field parameter as a function of date that accounts for the physical effects of drift and diffusion in the heliospheric magnetic field

Next step: getting through the geomagnetic field

Guy Murchie, 1954

Tom Gaisser

Figure 11 Cutoffs at three locations: north-central North America (Soudan, Sudbury); Gran Sasso; Kamioka. The left panel shows the passing rate as a function of rigidity integrated over all directions. The right panel shows the rigidity above which half the particles in the azimuthal band at each zenith angle reach the atmosphere. (Positive $\cos \theta$ refers to downward-moving particles.) TG & Honda, 2002

What primary energies are relevant?

TG, Honda, Ann.Revs. 52 (2002)

Strong East-West effect at Super-K

Figure 10 Contour map of the rigidity cutoff as seen from the Kamioka site. Rigidity cutoffs are shown as a function of arrival direction of the neutrino. (Zenith angle $>90^{\circ}$ is for upward-moving particles.) An outline map of the continents is superimposed on the lower hemisphere.

Tom Gaisser

East-West effect on neutrinos

Data from Super-K* in fixed zenith band compared to calculations. Complemented observation of zenith dependence from oscillations.

*Super-K, (Futagami et al., P.R.L. 82 (1999) 5192

Annu. Rev. Nucl. Part. Sci. 2002.52:153-199. Downloaded from www.annualreviews.org Access provided by University of Delaware on 04/12/18. For personal use only.

Nucleons per GeV/nucleon

Figure 6 Observed flux of cosmic-ray protons and helium. The dashed lines show the fits described in the text. The data are: Webber (48), crosses; LEAP (49), upward solid triangles; MASS1 (50), open circles; CAPRICE (52), vertical solid diamonds; IMAX (53), downward solid triangles; BESS98 (54), solid circles; AMS (55, 56), solid squares; Ryan (57), horizontal solid diamonds; JACEE (58), downward open triangles; Ivanenko (59), upward open triangles; Runjob (60), open diamonds; Kawamura (61), open squares. TG & Honda, 2002

Flux parameterizations

 $\phi(E_k) = K \times \left(E_k + b \exp\left[-c\sqrt{E_k}\right]\right)^{-\alpha}$ TG, Honda, Lipari, Stanev ICRC 27 (Hamburg) 2001

5(1643)

E in GeV, the b and c factors account for modulation at solar min

Parameter/component	α	K	b	С
Hydrogen ($A = 1$)	2.74 ± 0.01	14900 ± 600	2.15	0.21
He $(A = 4, high)$	2.64 ± 0.01	600 ± 30	1.25	0.14
He $(A = 4, low)$	2.74 ± 0.03	750 ± 100	1.50	0.30
CNO ($A = 14$)	2.60 ± 0.07	33.2 ± 5	0.97	0.01
Mg-Si ($A = 25$)	2.79 ± 0.08	34.2 ± 6	2.14	0.01
Fe $(A = 56)$	2.68 ± 0.01	4.45 ± 0.50	3.07	0.41

TABLE 2 Parameters for all five components in the fit of Equation 10

Parameter values from TG, Honda (Ann.Revs.Nucl. Part. Sci. 52, 2002).

In view of more recent data, it is good that we favored the "high" He !

Data, 2005

Low energy measurements with spectrometers, higher energy with calorimeters

Ratio of data to parameterization for protons and helium from uncertainties paper Barr et al., PR D74 (2006) 094009

Updated fits include new data: Evans et al., PR D95 (2017) 023012 (1612.03219)

Main new data sets: PAMELA, AMS02, CREAM Plots show ratio of data to fits to the GHLS form with new parameter values. Uncertainty band is reduced.

However: Note systematic difference in shape

New observation: Spectral hardening

AMS02, PRL 119 (2017) 251101

Tom Gaisser

Evans et al. 7 parameter fit addresses the hardening for protons

$$\phi(E_p) = K \times \left(E_p + b \exp\left[-c\sqrt{E_p}\right]\right)^{-\alpha} \times \left[1 + \left(\frac{E_p}{k}\right)^s\right]^{\frac{\alpha - \alpha'}{s}}$$

3 new parameters:

- k ≈ 150 GeV,
- s = sharpness,
- $\alpha' < \alpha$ = high energy spectral index

The steepening factor form is from Ter-Antonyan & Haroyan, hep-ex:0003006 (see also Lipari, Astropart. Phys. 97 (2018) 197

Modified versions of Evans et al.

Since I want to use these parameterizations specifically for AMS02 antiprotons, I adjusted the fits to give better agreement with AMS02 H and He data. I used the seven-parameter form for He as well as for H. (Evans used it only for H.) Work is in ~/atmosnu/Giles2016/bartol/primary/gbthesisdata/tkg2016/ (11-12 Feb 2017) Note: AMS02 data are converted from GV to kinetic energy per nucleon in gnuplot files.

Compare fits to AMS02

Tom Gaisser

Hydrogen fraction and v/\overline{v} ratio

To first order depends on $\delta_0 = \frac{p-n}{p+n} \approx \frac{H}{N}$

Tom Gaisser

Relation to atmospheric muons

Pions only (Frazer et al., PR D 5 (1972) 1653

$$egin{split} & rac{\mu^+}{\mu^-} pprox rac{1+eta\delta_0lpha_\pi}{1-eta\delta_0lpha_\pi} = rac{f_{\pi^+}}{1-f_{\pi^+}}\,, \ & eta = rac{1-Z_{pp}-Z_{pn}}{1-Z_{pp}+Z_{pn}} pprox 0.909; \ & lpha_\pi = rac{Z_{p\pi^+}-Z_{p\pi^-}}{Z_{n\pi^+}+Z_{n\pi^-}} pprox 0.165 \end{split}$$

Include $K \rightarrow \mu + \nu_{\mu}$ TG Astropart. Phys. 35(2012) 801 $\frac{\mu^{+}}{\mu^{-}} = \left[\frac{f_{\pi^{+}}}{1 + B_{\pi\mu}} \cos(\theta)E_{\mu}/\epsilon_{\pi} + \frac{\frac{1}{2}(1 + \alpha_{K}\beta\delta_{0})A_{K\mu}/A_{\pi\mu}}{1 + B_{K\mu}^{+}\cos(\theta)E_{\mu}/\epsilon_{K}} \right]$ $\times \left[\frac{(1 - f_{\pi^{+}})}{1 + B_{\pi\mu}\cos(\theta)E_{\mu}/\epsilon_{\pi}} + \frac{(Z_{NK^{-}}/Z_{NK})A_{K\mu}/A_{\pi\mu}}{1 + B_{K\mu}\cos(\theta)E_{\mu}/\epsilon_{K}} \right]^{-}$ $Z_{\mu}\kappa^{+} = Z_{\mu}\kappa^{-}$

$$lpha_{K}=rac{Z_{pK^{+}}-Z_{pK^{-}}}{Z_{pK^{+}}+Z_{pK^{-}}}$$

Rise in muon charge ratio reflects higher asymmetry in the charged kaon channel, which becomes more important when $E_{\mu} > \epsilon_{K} \approx 850 \text{ GeV}.$ The key parameter is α_{K}

The effect is more important for v_{μ}

E >> 100 TeV

- Flux too low for direct measurements
- Ground-base EAS experiments
 - Large aperture x exposure provides data to >> EeV
 - All-particle spectrum depends on E per nucleus
 - Composition measurements at best resolve groups of nuclei, e.g. (p, He, CNO, Mg-Si, Fe)
- We need the spectrum of nucleons (in E per nucleon) to calculate fluxes of leptons
- Physics-based models give useful guidance

Peters cycles and particle populations

- Rigidity dependence
 R = P_{tot} c / Z e
 - Implies sequence:p, He, C, ... Fe
- Spectral hardening
 - Suggests new particle population
- Galactic and extragalactic populations

B. Peters, Il Nuovo Cimento 22 (1961) 800

2 components is not enough

Trieste, 28/05/2018

Tom Gaisser

3 population model

Pop. 1: Galactic I

- Assume power-law extrapolation of each group from direct measurements
- Assume rigidity-dependent cutoff at the knee
 Pop. 2: Galactic II
 Needed to fill in before extragalactic component
 Assume rigidity-dependent cutoff

Pop. 3: Extragalactic

Hillas' Galactic population B

Figure 2. The cosmic ray spectrum as the sum of galactic H, He, CNO, Ne–S and Fe components with the same rigidity dependence, and extragalactic H + He (total EGT) having a spectrum $\propto E^{-2.3}$ before suffering losses by CMBR and starlight interactions. The galactic components were given a turn-down shape based on KAS CADE knee shape as far as the point marked *x*. The dashed line Q is the total if the extended tail B of the galactic flux is omitted.

A.M. Hillas, J. Phys. G: Nucl. Part. Phys. 31 (2005) R95–R131

Trieste, 28/05/2018

Tom Gaisser

Features in all-particle spectrum

All-particle spectrum to nucleon spectrum

 $\phi_i(E) \equiv E \frac{\mathrm{d}N_i}{\mathrm{d}E} = \Sigma_{j=1}^3 a_{i,j} E^{-\gamma_{i,j}} \times \exp\left[-\frac{E}{Z_i R_{c,j}}\right]$

All-particle spectrum

Spectrum of nucleons

Three-population models

			р	He	CNO	Mg-Si	Fe
	Galactic A	Pop. 1:	7860	3550	2200	1430	2120
		$R_c = 4 \text{ PV}$	$1.66\ 1$	1.58	1.63	1.67	1.63
	Galactic B	Pop. 2:	20	20	13.4	13.4	13.4
Extragalactic -		$R_c = 30 \text{ PV}$	1.4	1.4	1.4	1.4	1.4
	H3a →	Pop. 3:	1.7	1.7	1.14	1.14	1.14
		$R_c = 2 \text{ EV}$	1.4	1.4	1.4	1.4	1.4
	H4a →	Pop. $3(*)$:	200	0.0	0.0	0.0	0.0
		$R_c = 60 \text{ EV}$	1.6				

TG Astropart. Phys. 35 (2012) 801

G	S	Т
\sim	$\mathbf{\overline{\mathbf{v}}}$	•

	р	He	С	Ο	Fe	50 < Z < 56	78 < Z < 82
Pop. 1:	7000	3200	100	130	60		
$R_c = 120 \text{ TV}$	$1.66\ 1$	1.58	1.4	1.4	1.3		
Pop. 2:	150	65	6	7	2.3	0.1	0.4
$R_c = 4 \text{ PV}$	1.4	1.3	1.3	1.3	1.2	1.2	1.2
Pop. 3:	14				0.025		
$R_c = 1.3 \text{ EV}$	1.4				1.2		

TG, Stanev, Tilav, Front. Phys. (Beijing) 8 (2013) 748 (arXiv:1303.3565

GST 3 population model

GSF (Global Spline Fit)

"Data-driven", no input model (H. Dembinski et al., 1711.11432)

TUNKA

V.V. Prosin et al. / Nuclear Instruments and Methods in Physics Research A 756 (2014) 94-101

IceCube/IceTop coincident events

Nucleon spectra: compare H3a, GSF

Tom Gaisser

Compare p and He (incl. data)

Uncertainties in conventional v fluxes:

TG: 1605.03073

Trieste, 28/05/2018

Tom Gaisser

Uncertainties in prompt v

