Three flavor effects and Synergy between atmospheric and other experiments

101

IIII

Srubabati Goswami

Physical Research Laboratory Ahmedabad, India

PANE 2018, ICTP

Synergy between atmospheric and LBL experiments

Synergies Between Experiments

Different experiments have different L,E dependence, therefore their functional dependence on a given parameter p is different.

Different experiments have different L,E dependence, therefore their functional dependence on a given parameter p is different.

Synergy between channels

Three neutrino oscillation parameters

•
$$\Delta m_{21}^2$$
, θ_{12} , θ_{13} Solar + KamLND

•
$$\Delta m_{31}^2$$
, $heta_{13}$ Reactor

•
$$\Delta m_{31}^2$$
, θ_{23} , θ_{13} , δ_{CP} Atm + LBL

Interplay among different sectors because of $\,\theta_{\!13}$

Global Analysis (2018)

Best-fit in second octant

Preference for NO

• $\delta_{CP} = +90^{\circ}$ disfavored at more than 3σ irrespective of mass ordering

Talk by E. Lisi

Mass Hierarchy

Matter effects in atmospheric and long-baseline experiments (θ_{13})
Interference effects in reactor experiments ($\Delta m_{21}^2, \theta_{13}$)

Octant of θ_{23}

Matter effects in atmospheric and long baseline experiments (θ_{13})
Matter effects in atmospheric neutrino experiments (Δm_{21}^2)

CP Violation

- Long baseline experiments , needs to disentangle matter CP , atmospheric neutrino experiments (Talk by S. Razzaque)
- Genuine three flavor effect ($\Delta m_{21}^2, \theta_{13}$)

Current and Future Experiments

Srubabati Goswami PANE 2018 , ICTP

Long-baseline Experiments: Salient features

Expt	Baseline	E (GeV)	Details
T2K	295 km, Tokai to Kamioka	0.6	0.76 MW Super Kamiokande
NOVA	810 km, FNAL to ASH River	1.7	0.7 MW 14 kt TASD
DUNE	1300 km FNAL to South Dakota	0.5-8	1.2 MW Liquid Argon 10kt/40 kt
T2HK	295 km JPARC to Kamioka	0.6	1.3 MW , 187 kt X2 Hyper Kamiokande
T2HKK	295km, 1100 km	0.6	HK, Water Cherenkov in Korea
ESSnuSB	540 km , Lund to Gapenberg	2	500 kt Water Cerenkov,

Atmospheric Neutrino Detectors: Salient features

	Prototype	Salient features
Magnetized IRON	ICAL@INO	50 kt, muon energy and direction measurement, charge id, neutrino energy reconstruction
Water Cherenkov	Hyper Kamiokande	Megaton, no charge id, both electron and muon energy and direction
Water Cherenkov (Mediteranian)	ORCA	Multi- Megaton, tracks and showers, no charge id
ICE Cherenkov (Southpole)	PINGU	Multi megaton, tracks and showers , no charge id
Liquid Argon	DUNE	Liquid Argon, both muon and electron events Charge id for both ??

Salient Features of Atmospheric & LBL experiment

Atmospheric Neutrinos

- Path length 10 10,000 km
- Broad range of energy compared to other natural or artificial sources
- Can probe resonant matter effects
- Source of V_{μ} , \overline{V}_{μ} , V_{e} , \overline{V}_{e}
- $\mathbf{N}_{\mu} \sim \mathbf{N}_{\mu}^{0} \mathbf{P}_{\mu\mu} + \mathbf{N}_{e}^{0} \mathbf{P}_{e\mu}$
- $\mathbf{N}_{e} \sim \mathbf{N}_{\mu}^{0} \mathbf{P}_{\mu e} + \mathbf{N}_{e}^{0} \mathbf{P}_{ee}$
- Cannot disentangle disappearance and appearance channels
- Both neutrinos and antineutrinos and only detectors with chargeID can probe these separately

Long-baseline Neutrinos

- Fixed Path Length < 1500 km
- Narrow band and wide band beams, smaller range for latter
- Can't probe resonant matter effect
- Source of V_{μ} or \overline{V}_{μ}
- Disappearance channel $N_{\mu} \sim P_{\mu\mu} N_{\mu}^{0}$
- Appearance Channel $N_e \sim P_{\mu e} N_{\mu}^0$
- Can probe disappearance and appearance channels separately
- The same experiment can also run in antineutrino mode

Matter Effects : Three flavors

The propagation equation in matter

$$\tilde{H} = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} + \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$4 = 2\sqrt{2}G_F n_e E$$

Double Expansion in small parameters $\alpha - s_{13} = \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ Suitable for studying the current and proposed long-baseline experiments

One Mass Scale Dominance (OMSD) Limit ($\Delta m_{21}^2 = 0$), $\Delta m_{21}^2 << \Delta m_{31}^2$ ✓ Also $\Delta m_{21}^2 L/E << 1 \implies L/E \ll 10^4 \text{ km/GeV}$ ✓ Satisfied by atmospheric neutrinos of energy O(GeV)

✓ Valid for $\sin \theta_{13} >> \alpha \implies \sin \theta_{13} >> 0.03$

The survival and oscillation probabilities (α – s_{13})

$$P_{\mu\mu} = 1 - \sin^2 2\theta_{23} \sin^2 \Delta + \text{sub leading terms}$$

In matter of constant density

$$P_{\mu e} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2(\widehat{A} - 1)\Delta}{(\widehat{A} - 1)^2} \qquad \Delta = \Delta m_{31}^2 L / 4E$$
$$+ \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos(\Delta + \delta_{cp}) \frac{\sin(\widehat{A} - 1)\Delta}{(\widehat{A} - 1)} \frac{\sin(\widehat{A}\Delta)}{\widehat{A}}$$
$$+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\widehat{A}\Delta)}{\widehat{A}^2}$$

$$\hat{A} = \pm 2\sqrt{2}G_F n_e E / \Delta m_{31}^2 \longrightarrow$$
 Changes sign with $\text{Sgn}(\Delta m_{31}^2) \implies$ Hierarchy sensitivity + for neutrinos Depends on δ_{CP}

- for antineutrinos

The survival and oscillation probabilities (OMSD)

$$P_{\mu\mu} = 1 - \cos^2 \theta_{13}^{\rm m} \sin^2 2\theta_{23} \sin^2 \left[1.27 (\Delta m_{31}^2 + A + (\Delta m_{31}^2)^{\rm m}) L/2E \right] - \sin^2 \theta_{13}^{\rm m} \sin^2 2\theta_{23} \sin^2 \left[1.27 (\Delta m_{31}^2 + A - (\Delta m_{31}^2)^{\rm m}) L/2E \right] - \sin^4 \theta_{23} \sin^2 2\theta_{13}^{\rm m} \sin^2 \left[1.27 \Delta m_{31}^2 L/E \right] ,$$

$$P_{e\mu} = \sin^2 \theta_{23} \, \sin^2 2\theta_{13}^{\rm m} \, \sin^2 \left[1.27 (\Delta m_{31}^2)^{\rm m} L/E \right]$$

No dependence on $\, \delta_{\rm \scriptscriptstyle CP} \,$

- **Solution** For $\Delta m_{31}^2 > 0$ resonance in neutrinos
- **•** For $\Delta m_{31}^2 < 0$ resonance in antineutrinos

$$(\Delta m_{31}^2)^{\rm m} = \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$$

 $\tan 2\theta_{13}{}^m = \frac{\Delta m_{31}^2 \sin 2\theta_{13}}{\Delta m_{31}^2 \cos 2\theta_{13} \pm 2\sqrt{2}G_F n_e E}$

Hierarchy sensitivity

Detectors with charge Id suitable

Matter Effect at large baselines

$$E_{\rm res} = \frac{\Delta m_{31}^2 \cos 2\theta_{13}}{2\sqrt{2}G_F n_e}$$

L (km)	$ ho_{ m avg}(m g/cc)$	$E_{\rm res}~({\rm GeV})$
1000	3.00	9.9
3000	3.32	9.4
5000	3.59	8.7
7000	4.15	7.5
10000	4.76	6.6

- Atmospheric neutrinos can encounter resonance
- Matter effect opposite for $P_{\mu\mu}$ and $P_{\mu e}$

Degeneracy Menace

The main problem in determination of hierarchy, octant and CP in longbaseline experiments is due to the presence of degeneracies.

 $\begin{array}{ll} \text{Hierarchy} - \delta_{CP} \text{ degeneracy} & \text{Intrinsic octant degeneracy} & \text{Octant} - \delta_{CP} \text{ degeneracy} \\ P_{\mu e}(\Delta, \delta_{CP}) = P_{\mu e}(-\Delta, \delta_{CP}') & P_{\mu \mu}(\theta_{23}) = P_{\mu \mu}(\theta_{23} - \pi/2 - \theta_{23}) & P_{\mu e}(\theta_{23}, \delta_{CP}) = P_{\mu e}(\theta_{23}', \delta_{CP}') \end{array}$

Minakata, NunoKawa, 2001

Fogli and Lisi, 1996 Gandhi, Ghosal, Goswami, Shankar 2005

Comprehensive Approach

 $P_{\mu e}(\theta_{23}, \Delta, \delta_{CP}) = P_{\mu e}(\theta'_{23}, -\Delta', \delta'_{CP}) \Rightarrow \text{generalized (hierarchy} - \theta_{23} - \delta_{CP}) \text{ degeneracy.}$

Coloma, Minakata, Parke, 2014 Ghosh, Ghoshal, Goswami, Nath, Raut, 2015

Hierarchy – δ_{CP} Degeneracy

Combining neutrino and antineutrino does not help in lifting degeneracy

Srubabati Goswami PANE 2018, ICTP

Hierarchy Sensitivity : T2K and NOVA

Solution Solution Set 1 Solution Solution Set 1 Solution Sol

(Praksh, Raut, Sankar, 2012)

- Hierarchy sensitivity less in the degenerate region
- Shaded region currently allowed at 3σ from global analysis

Impact of Matter effect

Degeneracy for NH +90 & IH -90

NH +90 and IH -90 separated ~ 2-4 GeV

Resonant matter effect No $\delta_{\rm CP}$ degeneracy

Can atmospheric Neutrinos help ?

Addition of atmospheric data raises sensitivity in the degenerate region

Next generation LBL experiments : DUNE

DUNE (10kt, 5+5 years) has close to 5σ hierarchy sensitivity over most $\delta_{\rm CP}$

Solution Set 5 Adding other experiments results in slight increase in overall χ^2

Next generation LBL: ESSnuSB and T2HK

ESSnuSB + INO : upto 4σ **ESSnuSB+T2K+NOVA+INO** : upto 5σ

Chakraborty, Goswami, Gupta, Thakore, (2018)

Enhanced sensitivity in T2HK by adding HK atmospheric data

Fukasawa, Ghosh, Yasuda (2017)

Octant sensitivity in long-baseline experiments

Marginalization and synergy

Marginalization over Δm_{31}^2 leads to a χ^2 higher than the appearance value

Octant- $\delta_{\rm CP}$ degeneracy

LO-LHP and HO-UHP degeneracy

LO-UHP and HO-LHP no degeneracy

Combination of neutrino and antineutrino data can help in lifting octant degeneracy

Agarwalla, Prakash, Umasankar 2013 Machado et al. 2013

Srubabati Goswami PANE 2018, ICTP

Octant Sensitivity: Atmospheric Neutrinos

Octant sensitivity: Atmospheric neutrinos

For Liquid Argon detector 50 kton Both Muon and Electron Events Chaterjee, Ghoshal, Goswami, Raut, 2013

Barger et al., 2012

Matter effect breaks octant degeneracy in the muon channel
Resultant octant sensitivity is due to both channels

Muon vs Electron events

$$N_{\mu} \sim (\phi_{\mu} P_{\mu\mu} + \phi_e P_{e\mu})$$
$$N_e \sim (\phi_{\mu} P_{\mu e} + \phi_e P_{ee})$$

Atmospheric muon flux > electron flux
P_{μμ} and P_{eμ} opposite octant sensitivity
P_{ee} has no dependence on θ₂₃
Dependence on θ₂₃ stronger for muons
Away from 45° muon contribution is more

Chatterjee, Ghoshal, Goswami, Raut, 2013

Octant sensitivity : ATM+LBL

Chatterjee, Ghoshal, Goswami, Raut, 2013

Choubey, Ghosh, 2013

Octant sensitivity of T2K+NOVA increased combined with atmospheric data

Synergy due to different data sets preferring different θ_{23}

Octant sensitivity : T2K+NOVA+INO+ DUNE

Octant sensitivity of DUNE enhanced when T2K+NOVA + INO added

\mathcal{S}_{CP} Sensitivity of Atmospheric Muon Neutrinos

 $S_{\mu} + S_{\overline{\mu}} = (\Delta N_{\mu})^2 / N_{\mu} (\operatorname{avg}),$

• ΔN_{μ} is the maximum difference in events by varying δ_{CP} , $N_{\mu}(avg)$ is the average number of events over all values of δ_{CP} .

(See talk by S. Razzaque)

Variation washed out by angular smearing

Ghosh, Ghoshal, Goswami, 2014 Ghosh, Ghoshal, Goswami, Raut, 2013

Srubabati Goswami PANE 2018, ICTP

Discovery of $\delta_{\rm CP}$: T2K+N0VA+INO

Adding hierarchy information from INO-ICAL data increases the CP discovery potential in wrong hierarchy region

Inclusion of Hadron information enhances hierarchy and hence CP sensitivity

50% increase in CP coverage

In the favourable zone the sensitivity increases since addition of INO can resolve wrong octant solution

Ghosh, Ghoshal, Goswami, Raut, 2013 Gupta, Chakraborty, Goswami, 2018

Removal of Degeneracy: T2K+NOVA

WO-WCP solution is removed by combining neutrinos and antineutrinos (neutrinos and antineutrinos have degeneracy for opposite octants)

WH solution is removed by adding T2K and NOVA (different dependence on δ_{CP} due to different baselines)

Ghosh, Ghosal, Goswami, Nath, Raut, 2015

Removal of degeneracy : T2K+NOVA+ICAL , DUNE

WH –WCP solution removed by adding atmospheric data from ICAL (matter effects break hierarchy degeneracies) (other atmospheric experiments) Huber, Maltoni, Schwetz, 2005

DUNE can resolve WH and WO solutions at almost 4σ

(large matter effects, pure V_{μ} beam , known direction)

Ghosh, Ghosal, Goswami, Nath, Raut, 2015

Contours in $\theta_{23} - \delta_{CP}$ plane for $\delta_{CP} = -90^{\circ}$

CP sensitivity : HK (atm) + T2HK+DUNE

CP discovery potential of T2HK enhanced substantially in the degenerate region by adding HK atmospheric data

CPV fraction for 5σ CP discovery enhanced by 30-40% Including HK atmospheric data

Fukasawa, Ghosh, Yasuda (2017)

Summary

- Synergies exist due to preference of different data sets or different channels for different values of parameters
- Captured during procedure of marginalization over a parameter
- Synergies between atmospheric and LBL also exist since atmospheric neutrinos do not have degeneracy with $\delta_{\rm CP}$
- Hierarchy sensitivity of LBL can be enhanced in the degenerate region by adding atmospheric data
- CP discovery potential of LBL can be increased by adding atmospheric neutrino data since it can remove wrong hierarchy – wrong CP solutions
- Increased CP coverage
- Octant sensitivity of LBL experiments can be enhanced by adding atmospheric data mainly due to parameter tension

New directions with New Physics ?

- With proposal of high statistics high precision experiments like DUNE, T2HK, T2HKK many studies on probing new physics in these experiments
- Sterile neutrinos, Non-standard Interactions, CPT violation, long range forces, neutrino decay, decoherence, extra dimensions
 - (Salvado, Esmaili, Marfatia, Choubey, Umashankar, Nunokawa, Peres, Khatun, Delgado ...)
- Sub leading effects to dominant oscillation
- New parameters, new degeneracies
- Synergy between atmospheric and long baseline --- largely unexplored, computationally intensive
- Addressing new degeneracies -- whether combining atmospheric and long-baseline data helps ?

Concluding Remarks

At any one time there is a natural tendency among physicists to believe that we already know the essential ingredients of a comprehensive theory.

But each time a new frontier of observation is broached we inevitably discover new phenomena which force us to modify substantially our previous conceptions. I believe this process to be unending, that the delights and challenges of unexpected discovery will continue always.

Val Fitch, Nobel Prize Speech 1980

Thanks to current and former students and PDFs

δ_{CP} Sensitivity of ICAL

CP violation discovery potential of ICAL as a function of the detector energy and angular resolutions

- $\delta_{CP}^{tr} = 90^{\circ}, \, \theta_{23}^{tr} = 39^{\circ}$ and a true NH is assumed.
- CP sensitivity low, improves with angular resolution

Ghosh, Ghoshal, Goswami, Raut, Nucl. Phys. B, 2014

Ghosh, Ghoshal, Goswami, Raut, Phys. ReV D (Rapid), 2013