Probing non-unitarity with atmospheric neutrinos

Hisakazu Minakata IFT UAM/CSIC, Madrid

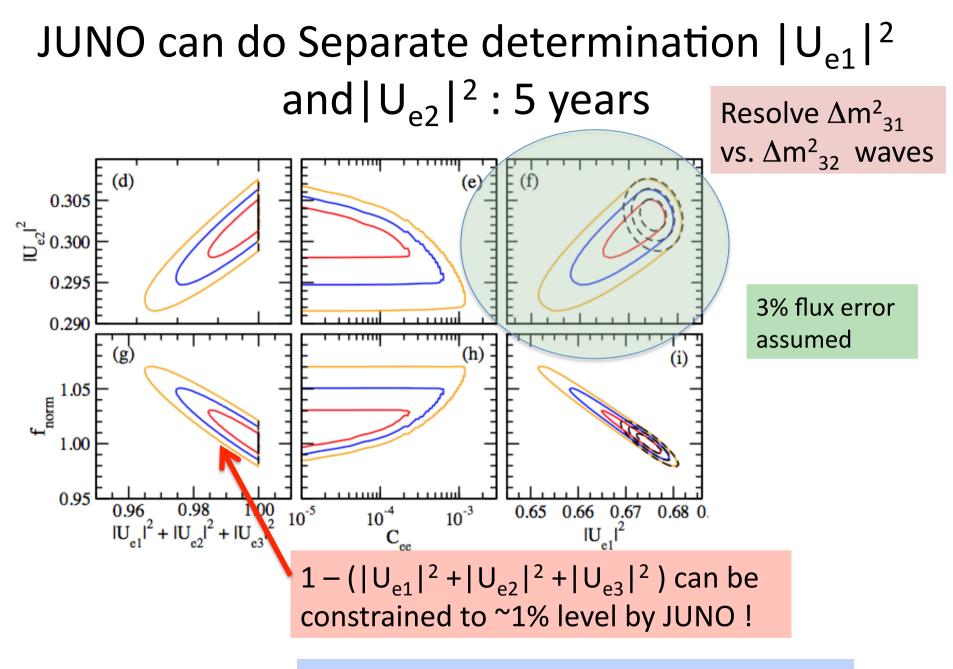
Chee Sheng Fong, HM, Hiroshi Nunokawa, arXiv:1609.08623, 1712.02798

We see things converge

- T2K see more and more preference of $\delta \simeq 3\pi/2$
- T2K II (proposed, run until 2026) they could see CPV at ~3 σ (expected for ~15x10^{21} POT)
- $\delta \sim 3\pi/2$ is the best case for NOvA for mass ordering (see bi-P plot), will see mass hierarchy at ~3 σ
- Already Bari global analysis says "normal at 3 σ "
- Everybody vs NOvA discrepancy about θ_{23} seems resolved best fit near maximal
- We must think about what is next?

$\delta = 3\pi/2$ (or $-\pi/2$) implies that we are at the tip of the ellipse the best case for NOvA

P-\bar{P} bi-probability diagram, proposed by HM-H.Nunokawa, JHEP 2001


 m^2

 m_2^2

JUNO can measure $|U_{e1}|^2 + |U_{e2}|^2$ $|U_{e1}|^2 + |U_{e2}|^2$

May 29, 2018

Chee Sheng Fong HM Hiroshi Nunokawa, JHEP 2017

High vs low scale unitarity violation

New Physics at high energies:

- This is Orthodox way, well studied ..
- high scale UV→pioneering work by Antusch, Biggio, Fernandez-Martinez, Gavela, and Lopez-Pavon, JHEP2006
- But, neutrino experiments will not be the best player for unitarity test
- the reason is: high-energy → SU(2) x U(1)
 prevails → charge lepton gives stronger
 constraints

My suggestion today is low-E UV

New Physics at low energies: relatively new option

- "low scale": heavy leptons/neutrinos do communicate with light v system, i.e., participate to nu oscillation
- Various scenarios are proposed which involve "new physics" at low energies: motivated by LSND-MiniBoone, DAMA, etc.
 - [21] A. E. Nelson and J. Walsh, "Short Baseline Neutrino Oscillations and a New Light Gauge Boson," Phys. Rev. D 77 (2008) 033001 doi:10.1103/PhysRevD.77.033001 [arXiv:0711.1363 [hep-ph]].
 - [22] M. Pospelov and J. Pradler, "Elastic scattering signals of solar neutrinos with enhanced baryonic currents," Phys. Rev. D 85 (2012) 113016 Erratum: [Phys. Rev. D 88 (2013) no.3, 039904] doi:10.1103/PhysRevD.85.113016, 10.1103/PhysRevD.88.039904 [arXiv:1203.0545 [hep-ph]].
 - [23] R. Harnik, J. Kopp and P. A. N. Machado, "Exploring nu Signals in Dark Matter Detectors," JCAP **1207** (2012) 026 doi:10.1088/1475-7516/2012/07/026 [arXiv:1202.6073 [hep-ph]].
 - [24] K. S. Babu, A. Friedland, P. A. N. Machado and I. Mocioiu, "Flavor Gauge Models Below the Fermi Scale," JHEP 1712 (2017) 096 doi:10.1007/JHEP12(2017)096 [arXiv:1705.01822 [hep-ph]].

Plus many more !!

 Orthodoxy seems challenged, e.g., WIMP dark matter, low-E SUSY, day one NP, ..

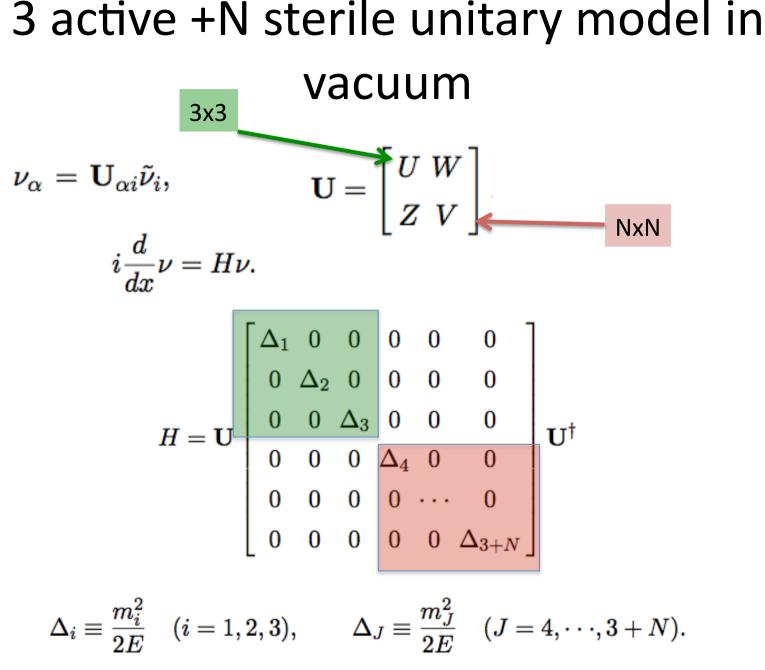
High- vs low-energy unitarity violation

Low-energy UV

lepton flavor universality: YES

- zero distance neutrino flavor transition: NO
- Kinematical effect of sterile nu emission: YES

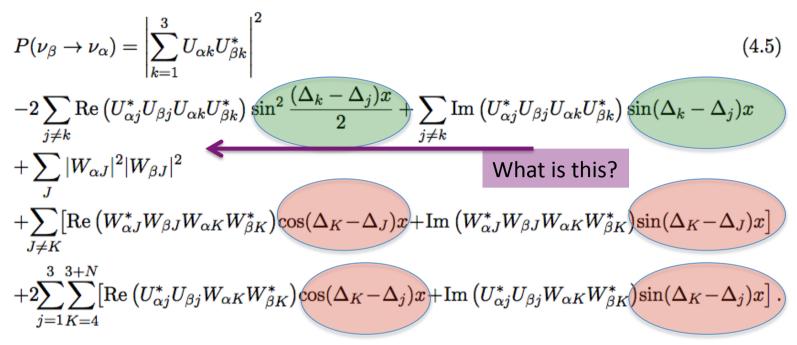
High-energy UV


- lepton flavor universality:
 NO
- zero distance neutrino flavor transition: YES
- Kinematical effect of sterile nu emission: YES (if kinematically allowed)

3 active+Nsterile v model for Low-E unitarity violation

Other models of Low-E UV?

May 29, 2018

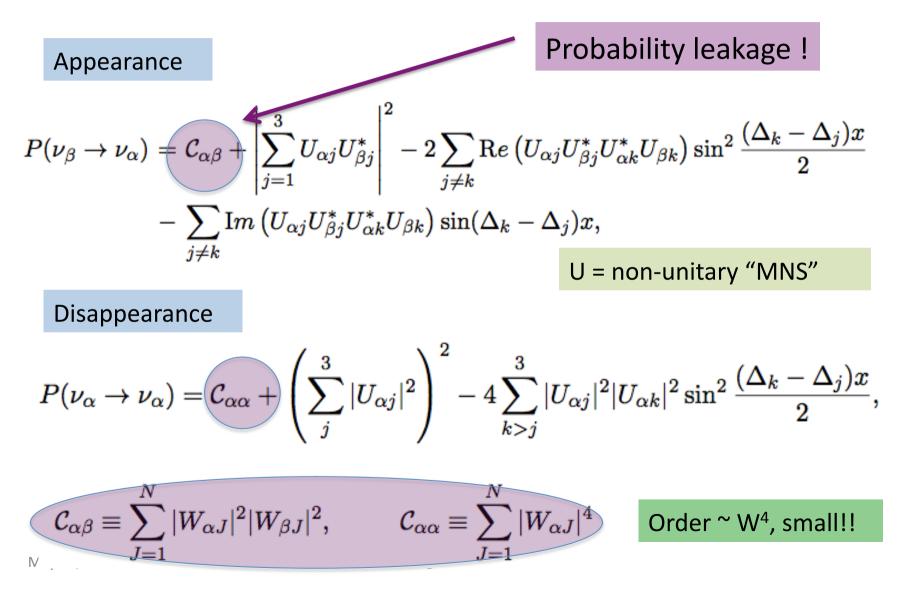

3+N model for low-E UV and modest requests on it

 By 3+N model I mean (3+N) space is unitary, but not in 3 active nu space

Unique? Probably not. General Low-E UV model hard to construct. My strategy is ...

- Requirement: The prediction of the 3+N model must be independent of details of N sterile sector
- After fulfilling this criterion we will show what is the *difference* between High-E vs Low-E UV

Probability in vacuum


- Active-active, active-sterile, sterile-sterile oscillations
- If $\Delta m_{as}^2 (\Delta m_{ss}^2) > 0.1 \text{ eV}^2$, "fast oscillation" due to active-sterile and sterile-sterile Δm^2 are averaged out

$$\left\langle \sin\left(\frac{\Delta m_{Ji}^2 x}{2E}\right) \right
angle pprox \left\langle \sin\left(\frac{\Delta m_{JK}^2 x}{2E}\right) \right
angle pprox 0,$$

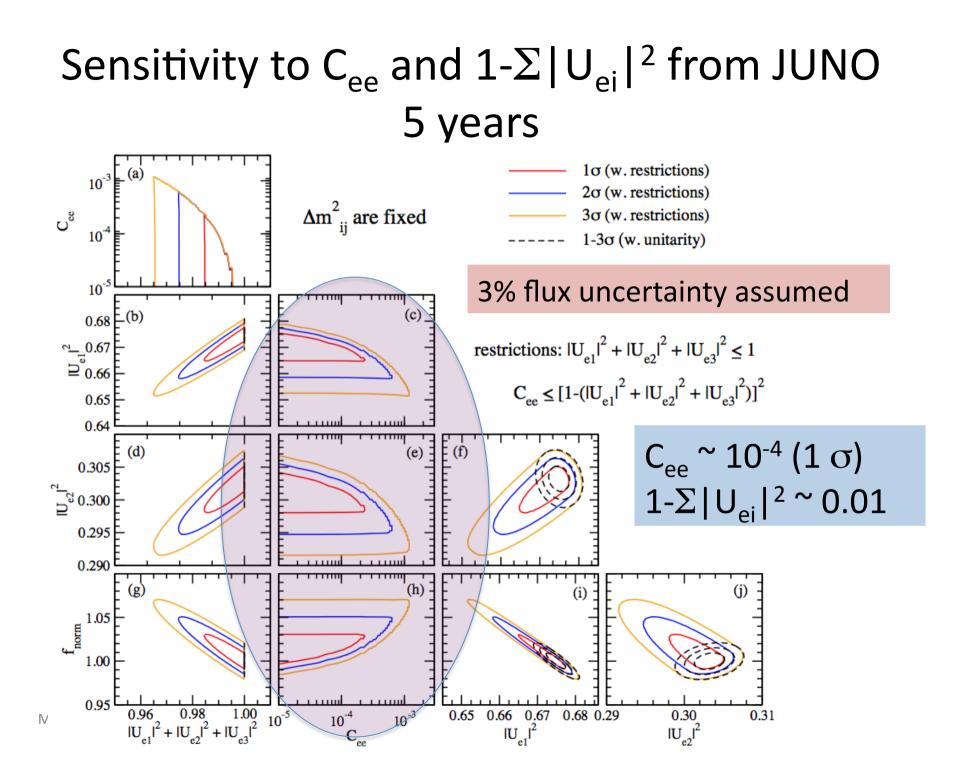
May 29, 2018

P looks almost standard one, but there is a new term

P-leaking term: It must be obvious to exist, right?

- There is a N sterile sector which can communicate with active nu sector
- So the probability leaks to sterile sector
- Yet, not emphasized before...

• ~ W⁴, Too small?


$$\delta_{\alpha\beta} = \sum_{j=1}^{3} U_{\alpha j} U_{\beta j}^{*} + \sum_{J=4}^{N+3} W_{\alpha J} W_{\beta J}^{*}.$$
Then, $\left|\sum_{j=1}^{3} U_{\alpha j} U_{\beta j}^{*}\right|^{2} = \left|\sum_{J=4}^{N+3} W_{\alpha J} W_{\beta J}^{*}\right|^{2}$ in the appearance channel ($\alpha \neq \beta$),
 $\left(\sum_{j=1}^{3} |U_{\alpha j}|^{2}\right)^{2} = \left(1 - \sum_{J=4}^{N+3} |W_{\alpha J}|^{2}\right)^{2} = 1 - \mathcal{O}(W^{2})$ in the disappearance channel

Term kept by S. Parke and M. Ross Lonergan, PRD=201-7 istalso 4th order in W

Can one detect C_{ee} ?

Invitation to non-unitary world..

Parke-Ross-Lonergan PRD2016

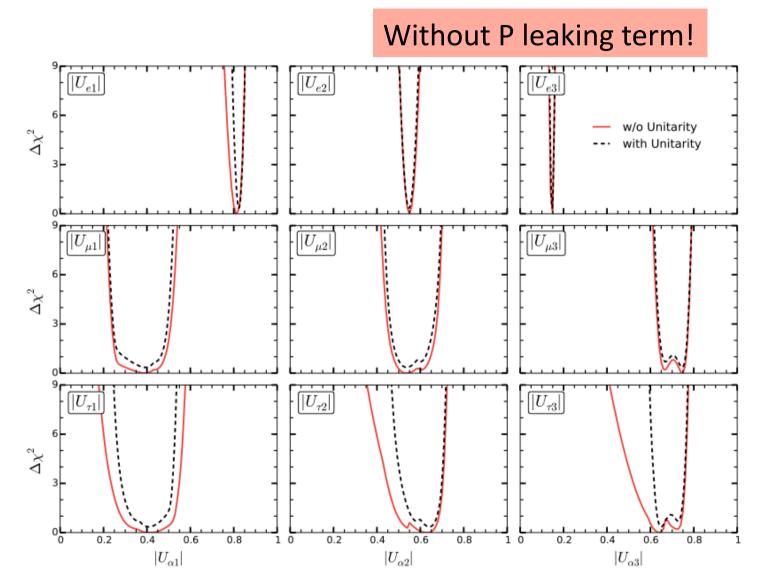


FIG. 1. Marginalized 1-D $\Delta \chi^2$ for each of the magnitudes of the 3 × 3 neutrino mixing matrix elements, without (red solid) and with (black dashed) the assumption of unitarity. The x-axis is the magnitude of each individual matrix element, and the y-axis is the associated $\Delta \chi^2$ after marginalization over all parameters other than the one in question. This analysis was performed for the normal hierarchy, the inverse hierarchy providing the same qualitative result.

Constraints on unitarity violation (Parke-Ross-Lonergan)

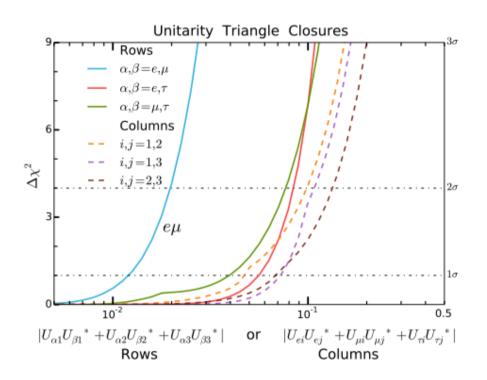


FIG. 2. 1-D $\Delta \chi^2$ for the absolute value of the closure of the three row (solid) and three column (dashed) unitarity triangles when considering new physics that enters above $|\Delta m^2| \ge 10^{-2} \text{ eV}^2$. There is one unique unitarity triangle, the $\nu_e \nu_\mu$ row unitarity triangle, in that it does not contain any ν_τ elements and hence is constrained to be unitary at a level half an order of magnitude better than the others. By comparison to Fig. 3 one can clearly see that the Cauchy-Schwartz constraints are satisfied.



FIG. 3. 1-D $\Delta \chi^2$ for deviation of both U_{PMNS} row (solid) and column (dashed) normalizations, when considering new physics that enters above $|\Delta m^2| \ge 10^{-2} \text{ eV}^2$.

CTP Trieste

Modelindependent P: Prevail to "in matter" ?

Small-UV perturbation theory

Chee Sheng Fong, HM, Hiroshi

 $H = \mathbf{U} \begin{bmatrix} \mathbf{\Delta}_{\mathbf{a}} & 0 \\ 0 & \mathbf{\Delta}_{\mathbf{s}} \end{bmatrix} \mathbf{U}^{\dagger} + \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \equiv H_{\text{vac}} + H_{\text{matt}}$ Nunokawa, arXiv:1712.02798

May

where $\boldsymbol{\Delta}_{\mathbf{a}} = \operatorname{diag}(\Delta_1, \Delta_2, \Delta_3)$ and $\boldsymbol{\Delta}_{\mathbf{s}} = \operatorname{diag}(\Delta_4, \Delta_5, \cdots, \Delta_{N+3})$.

$$\Delta_A \equiv rac{a}{2E}, \qquad \Delta_B \equiv rac{b}{2E},$$

$$a = 2\sqrt{2}G_F N_e E pprox 1.52 imes 10^{-4} \left(rac{Y_e
ho}{\mathrm{g\,cm^{-3}}}
ight) \left(rac{E}{\mathrm{GeV}}
ight) \mathrm{eV^2},$$
 $b = \sqrt{2}G_F N_n E = rac{1}{2} \left(rac{N_n}{N_e}
ight) a.$

Small-UV perturbation theory: change to vacuum mass basis $\tilde{H} = \tilde{H}_{\text{vac}} + \tilde{H}_{\text{matt}} = \begin{vmatrix} \boldsymbol{\Delta}_{\mathbf{a}} & 0 \\ 0 & \boldsymbol{\Delta}_{\mathbf{s}} \end{vmatrix} + \mathbf{U}^{\dagger} \begin{vmatrix} A & 0 \\ 0 & 0 \end{vmatrix} \mathbf{U}.$ $ilde{H}_0 = egin{bmatrix} oldsymbol{\Delta}_{\mathbf{a}} + U^{\dagger}AU & 0 \ 0 & oldsymbol{\Delta}_{\mathbf{s}} \end{bmatrix}, \qquad ilde{H}_1 = egin{bmatrix} 0 & U^{\dagger}AW \ W^{\dagger}AU & W^{\dagger}AW \end{bmatrix}.$ X=unitary matrix, diagonalize $H_0(3x3)$ $\mathbf{X}^{\dagger} \tilde{H}_{0} \mathbf{X} = \begin{bmatrix} X^{\dagger} \left(\mathbf{\Delta}_{\mathbf{a}} + U^{\dagger} A U \right) X & 0 \\ 0 & \mathbf{\Delta}_{\mathbf{s}} \end{bmatrix} = \begin{bmatrix} \mathbf{h} & 0 \\ 0 & \mathbf{\Delta}_{\mathbf{s}} \end{bmatrix} \equiv \hat{H}_{0},$ $\hat{H}_1 = \mathbf{X}^{\dagger} \tilde{H}_1 \mathbf{X} = egin{bmatrix} 0 & (UX)^{\dagger} AW \ W^{\dagger} A(UX) & W^{\dagger} AW \end{bmatrix}.$ Do perturbation theory in hat basis $S_{aa} = (UX)\hat{S}_{aa}(UX)^{\dagger} + (UX)\hat{S}_{aS}W^{\dagger} + W\hat{S}_{Sa}(UX)^{\dagger} + W\hat{S}_{SS}W^{\dagger},$ May 29, 2018

Do W perturbation to 4th order to keep P leaking term

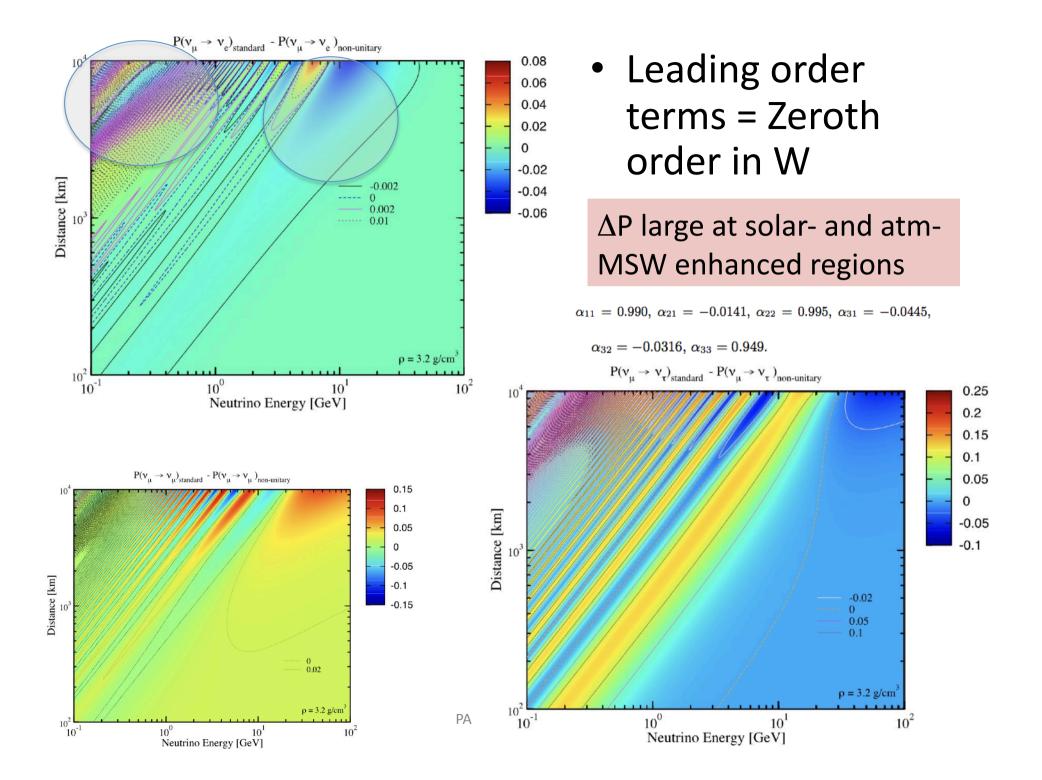
- Did we find ~W⁴ P leaking term?
- Yes!
- How about what is the role of the rest?

$$\begin{split} &P(\nu_{\beta} \to \nu_{\alpha})_{2nd}^{4} \equiv 2\text{Re}\left[\left(S_{\alpha\beta}^{(0)}\right)^{*} S_{\alpha\beta}^{(4)}[4]_{\text{diag}}\right] \\ &= 2\text{Re}\left\{\sum_{n}\sum_{k}\sum_{K}\left[-\frac{x^{2}}{2}\frac{1}{(\Delta_{K}-h_{R})^{2}}e^{-i(h_{k}-h_{n})x} - \frac{2(ix)}{(\Delta_{K}-h_{k})^{3}}e^{-i(h_{k}-h_{n})x} - \frac{(i_{k}-h_{n})x}{(\Delta_{K}-h_{k})^{3}}e^{-i(h_{k}-h_{n})x}\right] \right] \\ &= 2\text{Re}\left\{\sum_{n}\sum_{k}\sum_{K}\left[-\frac{x^{2}}{(\Delta_{K}-h_{n})^{2}} - \frac{3}{(\Delta_{K}-h_{k})^{4}}\left(e^{-i(\Delta_{K}-h_{n})x} - e^{-i(h_{k}-h_{n})x}\right)\right] \\ &\times \left[(UX)_{ab}(UX)_{bb}(UX)_{ba}^{*}(UX)_{an}^{*}(UX)_{an}^{*}(UX)_{ab}\right] \\ &\times \left\{(UX)^{1}AW\right\}_{kK}\left\{W^{1}A(UX)\right\}_{Kk}\left\{(UX)^{1}AW\right\}_{kK}\left\{W^{1}A(UX)\right\}_{Kk} \\ &+ \sum_{n}\sum_{k}\sum_{K}\sum_{m\neq k}\sum_{m\neq k}\left[\frac{(ix)}{((\Delta_{K}-h_{k})^{2}(h_{m}-h_{k})e^{-i(h_{k}-h_{n})x}} + \frac{(h_{k}+2h_{m}-3\Delta_{K})}{(\Delta_{K}-h_{k})^{2}(\Delta_{K}-h_{m})x}}e^{-i(\Delta_{K}-h_{n})x}\right] \\ &+ \frac{(iX)_{ab}(UX)_{bb}^{*}(UX)_{ab}^{*}(UX)_{ab}}{(UX)_{am}(UX)_{\beta n}} \\ &\times \left\{(UX)_{ab}(UX)_{bb}^{*}(UX)_{am}^{*}(UX)_{\beta n}\right] \\ &\times \left\{(UX)_{ab}(UX)_{bb}^{*}(UX)_{am}^{*}(UX)_{\beta n}\right] \\ &\times \left\{(UX)_{ab}(UX)_{bb}^{*}(UX)_{am}^{*}(UX)_{\beta n}\right] \\ &\times \left\{(UX)_{ab}(UX)_{bb}^{*}(UX)_{am}^{*}(UX)_{\beta n}\right] \\ &\times \left\{(UX)_{ab}(UX)_{bb}^{*}(UX)_{am}^{*}(UX)_{bb}^{*}(UX)_{am}^{*}(UX)_{bb}^{*}(UX)_{ab}^{*}(UX)_{ab}^{*}(UX)_{ab}^{*}(UX)_{ab}^{*}(UX)_{ab}^{*}(UX)_{ab}^{*}(UX)_{ab}^{*}(UX)_{ab}^{*}(UX)_{ab}^{*}(UX)_{ab}^{*}(UX)_{bb}^{*}(UX)_{bb}^{*}(UX)_{ab}$$

May 29, 2018

$$\begin{split} \left| S_{\alpha\beta}^{(2)} \right|_{1st}^{2} &= \sum_{k,K} \sum_{l,L} \frac{1}{(\Delta_{K} - h_{k})(\Delta_{L} - h_{l})} \\ \times \left[x^{2} e^{-i(h_{k} - h_{l})x} - (ix) \frac{e^{-i(\Delta_{K} - h_{l})x} - e^{-i(h_{k} - h_{l})x}}{(\Delta_{K} - h_{k})} + (ix) \frac{e^{-i(h_{k} - \Delta_{L})x} - e^{-i(h_{k} - h_{l})x}}{(\Delta_{L} - h_{l})} \right] \\ &+ \frac{1}{(\Delta_{K} - h_{k})(\Delta_{L} - h_{l})} \left\{ e^{-i(\Delta_{K} - \Delta_{L})x} + e^{-i(h_{k} - h_{l})x} - e^{-i(\Delta_{K} - h_{l})x} - e^{-i(h_{k} - \Delta_{L})x} \right\} \right] \\ \times (UX)_{\alpha k}(UX)_{\beta k}^{*} \left\{ (UX)^{\dagger}AW \right\}_{kK} \left\{ W^{\dagger}A(UX) \right\}_{Kk} \\ \times (UX)_{\alpha l}^{*}(UX)_{\beta l} \left\{ (UX)^{\dagger}AW \right\}_{kK} \left\{ W^{\dagger}A(UX) \right\}_{Ll} \\ &+ \sum_{k \neq m} \sum_{K} \sum_{l \neq n} \sum_{L} \frac{1}{(h_{m} - h_{k})(\Delta_{K} - h_{k})(\Delta_{K} - h_{m})} \frac{1}{(h_{n} - h_{l})(\Delta_{L} - h_{l})(\Delta_{L} - h_{n})} \\ \times \left[(\Delta_{K} - h_{k}) e^{-ih_{m}x} - (\Delta_{K} - h_{m}) e^{-ih_{k}x} - (h_{m} - h_{k})e^{-i\Delta_{K}x} \right] \\ \times \left[(\Delta_{L} - h_{l}) e^{+ih_{n}x} - (\Delta_{L} - h_{n}) e^{+ih_{l}x} - (h_{n} - h_{l})e^{+i\Delta_{L}x} \right] \\ \times (UX)_{\alpha k}(UX)_{\beta m}^{*} \left\{ (UX)^{\dagger}AW \right\}_{kK} \left\{ W^{\dagger}A(UX) \right\}_{Km} \\ \times (UX)_{\alpha l}(UX)_{\beta m} \left\{ (UX)^{\dagger}AW \right\}_{nL} \left\{ W^{\dagger}A(UX) \right\}_{Ll} \\ + \sum_{k,k} \sum_{l,L} \frac{1}{(\Delta_{K} - h_{k})(\Delta_{L} - h_{l})} \left(e^{-i\Delta_{K}x} - e^{-ih_{k}x} \right) \left(e^{+i\Delta_{L}x} - e^{+ih_{l}x} \right) \\ P \text{ leaking term} \left[(UX)_{\alpha k}W_{\beta K}^{*} \left\{ (UX)^{\dagger}AW \right\}_{kK} + W_{\alpha K}(UX)_{\beta k}^{*} \left\{ W^{\dagger}A(UX) \right\}_{Kk} \right] \\ \sum_{k,k} \left[(UX)_{\alpha k}W_{\beta K}^{*} \left\{ (UX)^{\dagger}AW \right\}_{kK} + W_{\alpha K}(UX)_{\beta k}^{*} \left\{ W^{\dagger}A(UX) \right\}_{Kk} \right] \\ M_{\text{MV}} 29, + \sum_{K} \left| |W_{\alpha K}|^{2} |W_{\beta K}|^{2} + \sum_{K \neq L} e^{-i(\Delta_{K} - \Delta_{L})x}W_{\alpha K}W_{\beta K}^{*}W_{\alpha L}^{*}W_{\beta L}. \end{aligned}$$
(C.1)

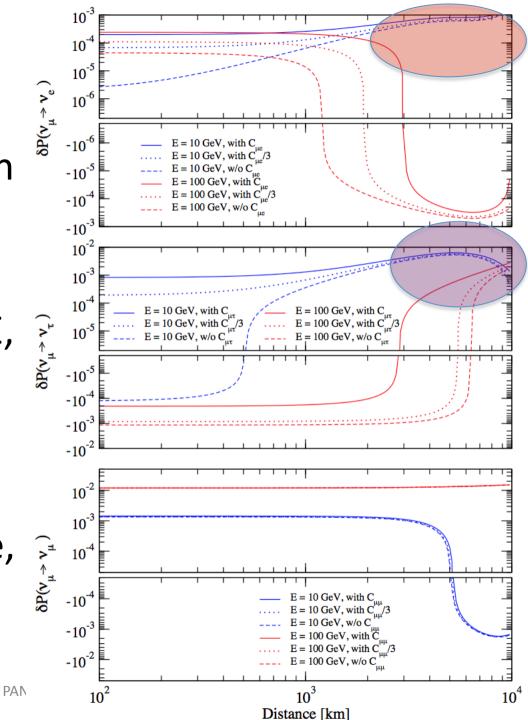
After averaging out fast oscillations..


A simple formula for oscillation probability in matter w/o unitarity: leading order in W apart from $C_{\alpha\beta}$

$$P(\nu_{\beta} \to \nu_{\alpha}) = \mathcal{C}_{\alpha\beta} + \left| \sum_{j=1}^{3} U_{\alpha j} U_{\beta j}^{*} \right|^{2} \qquad \mathbf{X}=\dots \qquad \mathbf{U} = \begin{bmatrix} U & W \\ Z & V \end{bmatrix}$$
$$- 2 \sum_{j \neq k} \operatorname{Re} \left[(UX)_{\alpha j} (UX)_{\beta j}^{*} (UX)_{\alpha k}^{*} (UX)_{\beta k} \right] \sin^{2} \frac{(h_{k} - h_{j})x}{2}$$
$$- \sum_{j \neq k} \operatorname{Im} \left[(UX)_{\alpha j} (UX)_{\beta j}^{*} (UX)_{\alpha k}^{*} (UX)_{\beta k} \right] \sin(h_{k} - h_{j})x,$$

- All W² & W⁴ terms avaraged out or suppressed if ∆m² > 0.1 eV² except for P leaking term!!
- UV effect is in: (1) explicit W correction term, (2) non-unitary U matrix

Where is the region of large UV?



Large ~W² corrections?

- Order W2 correction terms
 - small in most of the regions of L-E, but sizeable in limited places
- High energy, long baseline → IceCube, PINGU, Hyper-K

Conclusion (non-unitarity)

- General structure of nu oscillation in active nu sector of (3+N) unitary system is analyzed in vacuum and in matter in the context of low-E unitarity violation
- A new term, the "probability leaking term" found (leaking to sterile sector)

Distinguishes between Low-E vs High-E unitarity violation

- Conditions for sterile sector model-independent P in vacuum and in matter are elucidated $m_J^2 > 0.1 \text{ eV}^2$
- Likely to be insensitive to sterile interactions

May 29, 2018

Conclusion (non-unitarity2)

- JUNO analysis shows one can constrain UV in $\nu_{\rm e}$ row at a high level
 - $\rm C_{ee} \simeq 10^{-4},\, 1\text{-}\Sigma \,|\, U_{ei} \,|^{\,2} \simeq 0.01$ (both 1 σ)
- Non-unitarity effect in the leading order (W⁰) seems sizeable in solar- and atm MSW regions (Probability level)
- generally requires L ~ 3000-10⁴ km

L ~ 3000-10⁴ km

Atmospheric nu important

• W² correction sizeable in limited L-E regions

distinguishes between low-E from high-E UV

Atmospheric nu important