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Introduction

In this series of lectures we will discuss extrinsic geometric flows
with emphasis on geometric and analytical aspects of
and diffusion.
Examples degenerate (slow) diffusion:
@ Porous medium equation
e Gauss curvature flow
Examples of singular (fast and ultra-fast) diffusion:

o Fast-diffusion equation
(Ricci flow on R? and Yamabe flow on R”, n > 3)

@ Inverse mean curvature flow.
Emphasis will be given to:

@ existence of solutions on R" (non-compact case)
@ a priori estimates of soutions
@ optimal regularity of solutions

Panagiota Daskalopoulos Part 1 Degenerate Fast and Ultra-fast Diffusion



The Heat Equation

The simplest model of diffusion is the familiar heat equation:
ur=Au, (x,t)eQx[0,T], QCR"

(u is the density of heat, chemical concentration etc.)
Fundamental properties of the Heat equation:

@ Smoothing Effect: Solutions become instantly smooth, at
time t > 0.

@ Infinite Speed of Propagation: Solutions with non-negative
compactly supported initial data u(-,0), become instantly
strictly positive, at time t > 0.

@ The Fundamental Solution:

d(x,t) = ————=
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A basic model of non-linear diffusion

We consider the simplest model of quasilinear diffusion:
(%) vy = Au™ = div(mu™ 1 Vu), u>0

for various values exponents m € R.

@ Porous medium equation (Slow Diffusion) m > 1:
The diffusivity D(u) = mu™1 10, as u | 0. (*) becomes
degenerate at u = 0, resulting to

@ Fast Diffusion 0 < m < 1:
The diffusivity D(u) = mu™1 1 400, as u | 0. (*) becomes
singular at u = 0, resulting to .

o Ultra-Fast Diffusion m < O:
When m < 0 we have ultra-fast diffusion with new interesting
phenomena for example in some cases.

e Equation () appears in many physical applications and in
geometry (2 - dim Ricci flow and n > 3 - dim Yamabe flow).
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Contraction of hyper-surfaces by functions of their

principal curvatures

An extrinsic geometric flow of co-dim one is typically the evolution
of an n-dimensional hyper-surface M}’ embedded in R™! by:

oP
. —ov
ot
with speed a smooth function of the
of the surface M;.
M
Figure: Hypersurface M; in R™1 or a over R”
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Examples of Extrinsic Geometric flows

Examples of Extrinsic Geometric flows:

@ Mean curvature Flow (MCF): o=H=XA+---+ A,

o Mean curvature Flow (IMCF): o= —% = —ﬁ

Gauss curvature flow (GCF):  o=K =XA1--- A,

GCF®: o =K¥= (A1 Ap)® 0 < < 00.

_ 1
A A

Harmonic mean curvature flow (HMCF): o
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Evolution Equations for Curvature flows

e CSF: Motion of a plane curve y = u(x, t) by its Curvature

Uxx
up = ——.
N
e MCF: Motion of a surface z = u(x, y, t) in R® by its Mean
Curvature
o (1+ uﬁ)uxX — Uty Usy + (1 + u2)uy,
t — .

1 + |Dul?

e GCF: Motion of a surface y = u(x,y, t) in R3 by its Gaussian
Curvature

b det D2u
“T (1 + Dul2)32

It resembles the evolution Monge-Ampére equation.
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Evolution Equations for Curvature flows

o IMCF: Motion of a surface y = u(x, y,t) in R3 by its Inverse
Mean Curvature

(1+ |Duf?)?
(1 + u2)uxx — 2uxtyty + (1 + u2)uyy

ug = —
Remarks:
@ The CSF and MCF are strictly parabolic and quasi-linear.

@ The GCF and GCF“ are fully-nonlinear. They become
degenerate when the Gauss curvature K = 0.

@ The IMCF becomes singular (fast-diffusion) as the Mean
curvature H — 0.
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Typical Questions

@ Short and long time existence of solutions

Regularity of solutions (classical or weak solutions)

Free-boundaries

Formation of singularities and convergence

Final shape of the hyper-surface
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Outline of lectures

@ Introduction to linear and nonlinear diffusion
o Widder theory for the Heat equation
e The Cauchy problem for the Porous medium equation

o The Cauchy problem for the Fast and Ultra-fast diffusion
equation

@ The Mean curvature flow on entire graphs
© The Inverse mean curvature flow on entire graphs

@ The Gauss Curvature flow
e The Gauss Curvature flow on complete on compact surfaces
e Regularity in Gauss curvature flow

e Firey's conjecture
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The Heat Equation

The simplest model of diffusion is the heat equation:

Uy = Au.
The fundamental properties of the heat equation are:

@ Smoothing Effect: Solutions become instantly smooth, at
time t > 0.

@ Infinite Speed of Propagation: Solutions with non-negative
compactly supported initial data u(-,0), become instantly
strictly positive, at time t > 0.

Both properties are shown in the Fundamental solution:

1 _?

(D(X,t)zwe 4t

t>0

which has initial data the dirac mass dy.
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The Widder theory for the Heat equation

@ In the 1940s studied the characterization of the
class of all nonnegative weak solutions of the heat equation

(HE) ur=Au in St =R" x (0, T]

@ Definition of weak solution: v € L (57-) and the equation
holds in the sense.

@ Regularity: It follows by classical regularity theorems that the
solution u instantly C° smooth i.e. u € C>®(S7).

@ Scaling: u solves (HE) <= v(x,t):= M solves (HE)
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The Widder theory for the Heat equation

Let u be a nonnegative weak solution of the (HE) on St. Then:

@ There exists an absolute constant C > 0 such that:

2
sup /u(x, t)e KM dx < o0
0<t<T/2

@ Existence of initial trace: there exists a nonnegative Borel
measure g on R” such that

I t)=d in DY(R™).
tlf(;U(,) poin DX(R")

and satisfies satisfies the growth condition
_c
(%) e~ T du <oo.

@ The solution is uniquely determined from its initial trace .
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The Widder theory for the Heat equation

@ For each nonnegative Borel measure 1 on R” satisfying

(+) / e

there exists a nonnegative continuous weak solution u of (HE)
in ST with trace pu.

@ The solution u satisfies the pointwise estimate
(B)  u(xt) < Cylu) e

where C is an absolute constant and C;(u) depends on wu.

e Important property: every u > 0 solution of (HE) satisfies the
parabolic Harnack inequality from which (B) follows.

@ Non-uniqueness: for changing sign solutions which do not
satisfy (B).
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The Porous Medium Equation

The simplest model of non-linear degenerate diffusion is the porous
medium equation:

uy = Au™ =div(m = Vu), m > 1.

@ It describes various diffusion processes, for example the flow of
gas through a porous medium, where u is the density of the
gas and v := u™ ! is the pressure of the gas.

e Since, the diffusivity D(u) = mu™1 | 0, as u | O the
equation becomes degenerate at u = 0, resulting to the
phenomenon of finite speed of propagation.
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@ Because it is nonlinear, the equation
(*) up = Au", m#1
has rich scaling properties.

@ If u is a solution of (x), then

_u(ax, Bt)
v(x,t) = —

is also a solution of (PM) if and only if

042 1/(m—-1
o2 y1/(m-1),

72(5
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The Aronson-Bénilan inequality

@ Aronson-Bénilan Inequality: Every solution u to the p.m.e.
satisfies the differential inequality

ku 1
* ug > ——, A= ———,
(+1) =t (m—1)+ %
@ The pressure v := "5 u™ 1 which evolves by the equation

vi=(m—1)vAv +|Vv|?

satisfies the differential inequality

(k) Av > —

A

pu— t M

@ Remark: The Aronson-Bénilan (xx) is sharp and becomes
equality when v is the self-similar Barenblatt solution:

v=th(C— kL)

t2K
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The Li-Yau type Harnack inequality

@ The Aronson-Bénilan inequality Av > —% and the equation
for v imply the Li-Yau type differential inequality:

Ve + (m— 1))\% > Vv,

@ Integrating this inequality on optimal paths gives the following
Harnack Inequality due to Auchmuty-Bao and Hamilton:

t\* §l—x)? _,
t1) < | — t == t
v(xi, t) < <t1> [V(Xm 2) Z tg — tis 2

if 0 <t; <tr, withO0< pu,A<1andé>0.

@ Application: If v(0, T) < oo, then forall 0 <t < T — e we
have:

v(x,t) < £ (T (0, T) + C(n, m,€) [x?)
i.e. the pressure v grows at most quadratically as |x| — oco.
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"Easy” Aronson-Bénilan inequality

@ Using simply the scaling of the equation one may show the
easy (weaker) Aronson-Bénilan Inequality:
u

(m—1)t

@ Proof: If u; = Au™, then uy := Au(x, \™1t), A > 1 also
satisfies the same equation. Moreover

(*2) ug > —

un(%,0) > u(x,0) L uy(x,1) > u(x,¢), t>0
Thus,

d
a‘/\:lU)\ 2 0

But J
A= (m—1)A"2tu +u

so we conclude for A = 1 that
(m—1tu+u>0 QED I,
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The Barenblatt Solution

1
The Barenblatt solution: U(x, t) = t— (C —k ﬁ) " with
Jr

20

A, i, k > 0. It plays the role of the fundamental solution.
For 0 < t; < t» < t3 we have:

t

t3
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Finite Speed of propagation

The Barenblatt solution shows that solutions to the p.m.e have the
following properties:

@ Finite speed of propagation: If the initial data up has compact
support, then the solution u(-, t) will have compact support at
all times t.

@ Free-boundaries: The interface ' = J(Suppu) behaves like a
free-boundary propagating with finite speed.

@ Solutions are not smooth: Solutions with compact support are
only of class C* near the interface.

o Weak solutions: We say that u > 0 is a weak solution of the
equation vy = Au™ in Q7 :=Q x (0, T), if it is continuous
on Q7 and satisfies the equations in the distributional sense.
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The Cauchy problem with general initial data

Let u > 0 be a weak solution of u = Au™ on R"” x (0, T].

@ The initial trace pg exists; there exists a Borel measure p such
that
limu(-,t) = in D'(R"
£10 ( ) ) Ko ( )

and satisfies the growth condition

1

_ duy < oo.
(%) ;L;F; Rn+2/(m—1) /X|<R po < 00

@ The trace po determines the solution uniquely.

@ For every measure pp on R” satisfying () there exists a
continuous weak solution u of the p.m.e. with trace py.

o All solutions satisfy the estimate u(x, t) < C¢(u) |x|?/(m=1), as
|x| = oo.
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Regularity of solutions -Two important estimates from

linear theory

Let u € C3(Q,), @, := B,(0) x (—p?,0], be a solution of:
Ut:a,'J'D,'jU—f—b,'D,'U-i-CU

where

@ Schauder C2T estimate: If ajj, bi,c € C*(Q,), then
[ull c2+a(Q2) < Cllul[= (Qp)-
@ Krylov-Safonov estimate: Under (%), there exists v > 0 such

that
luller(Qz) < Cllulle=(Qp)-
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Regularity of solutions

@ Assume that v is a continuous weak solution of equation
up=Aum, m>1 on Q,:= B,(0) x (—p0]

@ Remark: It follows from parabolic regularity theory that if
0 <A< u<A in a parabolic cylinder Qp, then
ue Coo(Qp/z)
Proof: If 0 < A < u < Ain Q, then u; = div(mu™ ! Vu) is
strictly parabolic with bounded measurable coefficients.
It follows from the Krylov-Safonov estimate that u € C7, for
some v > 0, hence D(u) := mu™ 1 € C*.
We conclude that from the Schauder estimate that u € C>+©
and by repeating then same estimate we obtain that u € C*.
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Regularity of solutions

@ Question: What is the optimal regularity of the solution u ?

° The solution u is of class C%, for
some a > 0.

@ This result is, in some sense, optimal: The Barenblatt solution

|)(|2 ml—l o

Ulx, t) = t (c y ,_T#) with A, 11, k > 0 is only of
+

class C% near the interface u = 0.

@ Question: Is it true that ™1 e CO! ?
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Fast Diffusion Equations

o Consider the non-linear of fast diffusion equation
uy = Au™ = div(mu™ 1 Vu), m < 1.

@ It appears in physical applications such as diffusion in plasma
and thin liquid film dynamics among other.

@ Nonnegative weak solution: a continuous function u > 0
which satisfies the equation in distributional sense.

@ Since, the diffusivity D(u) = m u™ 14 400, as u | 0 the eq
becomes singular at v = 0, resulting to fast-diffusion.
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Scaling and the Barenblatt solution

@ Scaling: If u solves the fast diffusion equation u; = Au™, then

i(x,t) =~y tu(ax,Bt), v = <B>lm

P
also solves the same equation.
@ Self-Similar solution: There exists a self-similar solution

.
Uty =t (cok PEY T
) t2l’[’

with
A A(1—m)

2
Al=2_(1- =2 k=
S (=m), = o

The above is a solution if 2 — (1 —m) >0, i.e. m > 2.

@ The exponent m = ”—;2 is critical.
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The Aronson-Bénilan inequality for fo=x) )+ <m<l1

@ If u is a solution to the fast-diffusion equation u; = Au",
m < 1, then the pressure v := 7 u=(=m) eyolves by:

=(1-m)vAv—|Vv]
@ In the range of exponents =2+ o < 1, the pressure v
satisfies the sharp Aronson-Bénilan |nequa||ty

(n) Av<?,

A= A(m,n) > 0.
which implies the following Li-Yau type differential inequality
(x2) —wve+(1- )>\ > |Vv]?.

e The differential inequality (*2) becomes an equality when v is

L
the self-similar solution U(x,t) =t (C + k |t)§f) e
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The Harnack Inequality

@ Integrating the inequality (*2) on optimal paths gives the
Harnack Inequality due to Auchmuty-Bao and Hamilton:

to . 0 |x—x1 2
V(X2, tg) < (t1> [V(Xl, tl) 7|67‘ t'f

4 t5—t)
for 0 < t; < to, with = p(m,n) >0 and 6 = &(m, n) > 0.
@ Application: Solutions of uy = Au™, with 7("7,72)* <m<l1
satisfy the lower bound u(x, t) > c(t) (1 + ]xﬂ‘ﬁ.

@ Conclusion: Solutions become instantly strictly positive and
remain so for all time.

@ Remark: This is not true in the sub-critical range of exponents
m < % where solutions may vanish in finite time.
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The other Aronson-Bénilan inequality

@ A simple scaling argument shows that every solution u to the
fast-diffusion equation u; = Au™, 0 < m < 1 satisfies the
differential inequality

(*3) ur < m

1

o Integrating (x3) in time implies: u(x, t2) < u(x, t1) (%) o
Vx € R" i.e. the L* norm of a solution doesn't blow up, if it
is initially finite.

@ Remark: In the range of exponents (n=2)+ = i < m < 1, solutions

u exhibit a regularizing effect from LI1 to Li’gc'

sup u(x,t) < F <t, R,/ up(x) dx) .
IxI<R Bar

@ This is not true when m < %

Panagiota Daskalopoulos Part 1 Degenerate Fast and Ultra-fast Diffusion



The Cauchy problem in the super-critical case

Consider the fast-diffusion equation

-2
(%) ur = Au™, 7(,7 - )+ <m<1.

e For any nonnegative continuous weak solution u of (x), there
exists the initial trace i.e. a unique locally finite Borel measure
o on R” such that

limu(-, t) = in D'(R").
im u(-,£) = o (R")
@ The trace po determines the solution uniquely.

@ For any locally finite Borel measure 1o on R” there exists a
continuous weak solution u of (%) in Soo = R" x (0, c0) with
initial trace ug.

@ Regularity: Solutions are C* smooth !l

@ Remark: needs to be imposed on the
initial data for existence !!!

Panagiota Daskalopoulos Part 1 Degenerate Fast and Ultra-fast Diffusion



The sub-critical case m < (n —2), /n

@ In the sub-critical case m < % the analogues of the above

results do not hold true. In particular, there exists no solution
with initial data the Dirac mass.

@ This makes the problem of the existence of solutions with
initial data a measure a very delicate one.

@ The Sobolev critical case of exponents m = Zf is of

particular geometric interest as it corresponds to the Ricci
flow for n = 2 and the Yamabe flow for n > 3.
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Ultra-fast diffusion on R”

@ Consider the Cauchy problem for the ultra-fast diffusion eq.
on R” 9

(%) i —Au™, m < 0.

@ Instant vanishing: There exists no solution of (*) with initial
data ug € L}(R").

@ Necessary and sufficient condition for existence: The condition

w > clx|7HA=m X >>1
in an is necessary and sufficient for existence.
@ However, a near infinity of the initial data ug

for |[x| >> 1 is necessary for existence.

@ We will see that in the geometric case of the IMCF this is
replaced by the star shaped condition.
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Ultra-fast diffusion on R” - An example

@ Assume n = 2 and for each ¢ € (0,27], let W, denote the

Wy :={(r,0) : 0<r < +o0, 0 <6< ¢}

@ Example: For each there exists ¢, € (0,27) such that
for up = xw,: there exists a solution of (x) iff ¢ < dpm.

o The (IMCF) flow

0 _ |A|?

—H=-AH1- L.

ot H
corresponds to m = —1 and in this case ¢, = 7.
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Future Lectures

@ We have seen some basic properties for degenerate, fast and
ultra-fast diffusion.

@ Also classical results the solvability of the Cauchy problem on
solutions to these equations R”".

@ In our future lectures we will see how these properties and
results relate to more recent works on geometric flows.
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