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Introduction

In this series of lectures we will discuss extrinsic geometric flows

with emphasis on geometric and analytical aspects of degenerate

(slow) and singular (fast) diffusion.

Examples degenerate (slow) diffusion:

Porous medium equation

Gauss curvature flow

Examples of singular (fast and ultra-fast) diffusion:

Fast-diffusion equation

(Ricci flow on R2
and Yamabe flow on Rn

, n ≥ 3)

Inverse mean curvature flow.

Emphasis will be given to:

existence of entire graph solutions on Rn
(non-compact case)

a priori estimates of soutions

optimal regularity of solutions
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The Heat Equation

The simplest model of diffusion is the familiar heat equation:

ut = ∆u, (x , t) ∈ Ω× [0,T ], Ω ⊂ Rn

(u is the density of heat, chemical concentration etc.)

Fundamental properties of the Heat equation:

Smoothing Effect: Solutions become instantly smooth, at

time t > 0.

Infinite Speed of Propagation: Solutions with non-negative

compactly supported initial data u(·, 0), become instantly

strictly positive, at time t > 0.

The Fundamental Solution:

Φ(x , t) =
1

(4πt)n/2
e
− |x|2

4t , t > 0.
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A basic model of non-linear diffusion

We consider the simplest model of quasilinear diffusion:

(∗) ut = ∆u
m
= div (mu

m−1∇u), u ≥ 0

for various values exponents m ∈ R.
Porous medium equation (Slow Diffusion) m > 1:

The diffusivity D(u) = mu
m−1 ↓ 0, as u ↓ 0. (∗) becomes

degenerate at u = 0, resulting to finite speed of propagation.

Fast Diffusion 0 ≤ m < 1:

The diffusivity D(u) = mu
m−1 ↑ +∞, as u ↓ 0. (∗) becomes

singular at u = 0, resulting to fast diffusion.

Ultra-Fast Diffusion m < 0:

When m < 0 we have ultra-fast diffusion with new interesting

phenomena for example instant vanishing in some cases.

Equation (∗) appears in many physical applications and in

geometry (2 - dim Ricci flow and n ≥ 3 - dim Yamabe flow).
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Contraction of hyper-surfaces by functions of their
principal curvatures

An extrinsic geometric flow of co-dim one is typically the evolution

of an n-dimensional hyper-surface M
n
t embedded in Rn+1

by:

∂P

∂t
= σ ν

with speed σ = σ(λ1, · · · ,λn) a smooth function of the principal

curvatures λi of the surface Mt .

Mt

Figure: Hypersurface M
n

t
compact in Rn+1

or a graph over Rn
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Examples of Extrinsic Geometric flows

Examples of Extrinsic Geometric flows:

Mean curvature Flow (MCF): σ = H = λ1 + · · ·+ λn

Mean curvature Flow (IMCF): σ = − 1
H
= − 1

λ1+···+λn

Gauss curvature flow (GCF): σ = K = λ1 · · ·λn

GCF
α
: σ = K

α
= (λ1 · · ·λn)

α
, 0 < α < ∞.

Harmonic mean curvature flow (HMCF): σ =
1

λ−1
1 +...+λ−1

n

.
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Evolution Equations for Curvature flows

CSF: Motion of a plane curve y = u(x , t) by its Curvature

ut =
uxx

1 + u2x
.

MCF: Motion of a surface z = u(x , y , t) in R3
by its Mean

Curvature

ut =
(1 + u

2
y )uxx − 2uxuyuxy + (1 + u

2
x )uyy

1 + |Du|2 .

GCF: Motion of a surface y = u(x , y , t) in R3
by its Gaussian

Curvature

ut =
detD

2
u

(1 + |Du|2)3/2
.

It resembles the evolution Monge-Ampére equation.
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Evolution Equations for Curvature flows

IMCF: Motion of a surface y = u(x , y , t) in R3
by its Inverse

Mean Curvature

ut = − (1 + |Du|2)2

(1 + u2y )uxx − 2uxuyuxy + (1 + u2x )uyy
.

Remarks:

The CSF and MCF are strictly parabolic and quasi-linear.

The GCF and GCF
α
are fully-nonlinear. They become

degenerate (slow-diffusion) when the Gauss curvature K = 0.

The IMCF becomes singular (fast-diffusion) as the Mean

curvature H → 0.
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Typical Questions

Short and long time existence of solutions

Regularity of solutions (classical or weak solutions)

Free-boundaries

Formation of singularities and convergence

Final shape of the hyper-surface
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Outline of lectures

1 Introduction to linear and nonlinear diffusion

Widder theory for the Heat equation

The Cauchy problem for the Porous medium equation

The Cauchy problem for the Fast and Ultra-fast diffusion

equation

2 The Mean curvature flow on entire graphs

3 The Inverse mean curvature flow on entire graphs

4 The Gauss Curvature flow

The Gauss Curvature flow on complete on compact surfaces

Regularity in Gauss curvature flow

Firey’s conjecture
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The Heat Equation

The simplest model of diffusion is the heat equation:

ut = ∆u.

The fundamental properties of the heat equation are:

Smoothing Effect: Solutions become instantly smooth, at

time t > 0.

Infinite Speed of Propagation: Solutions with non-negative

compactly supported initial data u(·, 0), become instantly

strictly positive, at time t > 0.

Both properties are shown in the Fundamental solution:

Φ(x , t) =
1

(4πt)n/2
e
− |x|2

4t , t > 0

which has initial data the dirac mass δ0.
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The Widder theory for the Heat equation

In the 1940s D. Widder studied the characterization of the

class of all nonnegative weak solutions of the heat equation

(HE ) ut = ∆u in ST = Rn × (0,T ]

Definition of weak solution: u ∈ L
1
loc

(ST ) and the equation

holds in the distributional sense.

Regularity: It follows by classical regularity theorems that the

solution u instantly C
∞

smooth i.e. u ∈ C
∞
(ST ).

Scaling: u solves (HE) ⇐⇒ v(x , t) := u(αx ,α2
t)

γ solves (HE)
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The Widder theory for the Heat equation

Let u be a nonnegative weak solution of the (HE) on ST . Then:

There exists an absolute constant C > 0 such that:

sup

0<t<T/2

�
u(x , t) e−C |x |2

dx < ∞.

Existence of initial trace: there exists a nonnegative Borel

measure µ on Rn
such that

lim
t↓0

u(·, t) = dµ in D
1
(Rn

).

and satisfies satisfies the growth condition

(∗)
�

e
−C

|x|2
T dµ < ∞.

The solution is uniquely determined from its initial trace µ.
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The Widder theory for the Heat equation

For each nonnegative Borel measure µ on Rn
satisfying

(∗)
�

e
−C

|x|2
T dµ < ∞.

there exists a nonnegative continuous weak solution u of (HE)

in ST with trace µ.

The solution u satisfies the pointwise estimate

(B) u(x , t) ≤ Ct(u) e
C |x |2

where C is an absolute constant and Ct(u) depends on u.

Important property: every u ≥ 0 solution of (HE) satisfies the

parabolic Harnack inequality from which (B) follows.

Non-uniqueness: for changing sign solutions which do not

satisfy (B).
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The Porous Medium Equation

The simplest model of non-linear degenerate diffusion is the porous

medium equation:

ut = ∆u
m
= div (mu

m−1∇u), m > 1.

It describes various diffusion processes, for example the flow of

gas through a porous medium, where u is the density of the

gas and v := u
m−1

is the pressure of the gas.

Since, the diffusivity D(u) = mu
m−1 ↓ 0, as u ↓ 0 the

equation becomes degenerate at u = 0, resulting to the

phenomenon of finite speed of propagation.
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Scaling

Because it is nonlinear, the equation

(∗) ut = ∆u
m, m �= 1

has rich scaling properties.

If u is a solution of (∗), then

v(x , t) :=
u(αx ,βt)

γ

is also a solution of (PM) if and only if

γ =
�α2

β

�1/(m−1)
.
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The Aronson-Bénilan inequality

Aronson-Bénilan Inequality: Every solution u to the p.m.e.

satisfies the differential inequality

(∗1) ut ≥ −k u

t
, λ =

1

(m − 1) +
2
n

.

The pressure v :=
m

m−1 u
m−1

which evolves by the equation

vt = (m − 1) v ∆v + |∇v |2

satisfies the differential inequality

(∗∗) ∆v ≥ −λ

t
.

Remark: The Aronson-Bénilan (∗∗) is sharp and becomes

equality when v is the self-similar Barenblatt solution:

v = t
µ
(C − k

|x |2
t2µ

).

Panagiota Daskalopoulos Part 1 Degenerate Fast and Ultra-fast Diffusion



The Li-Yau type Harnack inequality

The Aronson-Bénilan inequality ∆v ≥ −λ
t
and the equation

for v imply the Li-Yau type differential inequality:

vt + (m − 1)λ
v

t
≥ |∇v |2.

Integrating this inequality on optimal paths gives the following

Harnack Inequality due to Auchmuty-Bao and Hamilton:

v(x1, t1) ≤
�
t2

t1

�µ �
v(x2, t2) +

δ

4

|x2 − x1|2

tδ2 − tδ1

t
−µ
2

�

if 0 < t1 < t2, with 0 < µ,λ < 1 and δ > 0.

Application: If v(0,T ) < ∞, then for all 0 < t < T − � we
have:

v(x , t) ≤ t
−µ

(T
µ
v(0,T ) + C (n,m, �) |x |2)

i.e. the pressure v grows at most quadratically as |x | → ∞.
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”Easy” Aronson-Bénilan inequality

Using simply the scaling of the equation one may show the

easy (weaker) Aronson-Bénilan Inequality:

(∗2) ut ≥ − u

(m − 1)t
.

Proof: If ut = ∆u
m
, then uλ := λu(x ,λm−1

t),λ > 1 also

satisfies the same equation. Moreover

uλ(x , 0) ≥ u(x , 0)
CP
=⇒ uλ(x , t) ≥ u(x , t), t > 0

Thus,

d

dλ
|λ=1uλ ≥ 0.

But
d

dλ
uλ = (m − 1)λm−2

t ut + u

so we conclude for λ = 1 that

(m − 1) t ut + u ≥ 0 QED !!.
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The Barenblatt Solution

The Barenblatt solution: U(x , t) = t
−λ

�
C − k

|x |2
t2µ

� 1
m−1

+
with

λ, µ, k > 0. It plays the role of the fundamental solution.

For 0 < t1 < t2 < t3 we have:

✲

✻ z

t1

t2

t3

x
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Finite Speed of propagation

The Barenblatt solution shows that solutions to the p.m.e have the

following properties:

Finite speed of propagation: If the initial data u0 has compact

support, then the solution u(·, t) will have compact support at

all times t.

Free-boundaries: The interface Γ = ∂(suppu) behaves like a

free-boundary propagating with finite speed.

Solutions are not smooth: Solutions with compact support are

only of class C
α
near the interface.

Weak solutions: We say that u ≥ 0 is a weak solution of the

equation ut = ∆u
m

in QT := Ω× (0,T ), if it is continuous

on QT and satisfies the equations in the distributional sense.
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The Cauchy problem with general initial data

Let u ≥ 0 be a weak solution of ut = ∆u
m

on Rn × (0,T ].

The initial trace µ0 exists; there exists a Borel measure µ such

that

lim
t↓0

u(·, t) = µ0 in D
�
(Rn

)

and satisfies the growth condition

(∗) sup

R>1

1

Rn+2/(m−1)

�

|x |<R

dµ0 < ∞.

The trace µ0 determines the solution uniquely.

For every measure µ0 on Rn
satisfying (∗) there exists a

continuous weak solution u of the p.m.e. with trace µ0.

All solutions satisfy the estimate u(x , t) ≤ Ct(u) |x |2/(m−1)
, as

|x | → ∞.
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Regularity of solutions -Two important estimates from
linear theory

Let u ∈ C
2
(Qρ), Qρ := Bρ(0)× (−ρ2, 0], be a solution of:

ut = aij Diju + bi Diu + c u

where

(∗) λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2, |bi |+ |c | ≤ Λ

Schauder C
2+α

estimate: If aij , bi , c ∈ C
α
(Qρ), then

�u�C2+α(Q ρ
2
) ≤ C �u�L∞(Qρ).

Krylov-Safonov estimate: Under (∗), there exists γ > 0 such

that

�u�Cγ (Q ρ
2
) ≤ C �u�L∞(Qρ).
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Regularity of solutions

Assume that u is a continuous weak solution of equation

ut = ∆u
m, m > 1 on Qρ := Bρ(0)× (−ρ2, 0].

Remark: It follows from parabolic regularity theory that if

0 < λ ≤ u ≤ Λ in a parabolic cylinder Qρ, then

u ∈ C
∞
(Qρ/2).

Proof: If 0 < λ ≤ u ≤ Λ in Q, then ut = div (mu
m−1∇u) is

strictly parabolic with bounded measurable coefficients.

It follows from the Krylov-Safonov estimate that u ∈ C
γ
, for

some γ > 0, hence D(u) := mu
m−1 ∈ C

α
.

We conclude that from the Schauder estimate that u ∈ C
2+α

and by repeating then same estimate we obtain that u ∈ C
∞
.
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Regularity of solutions

Question: What is the optimal regularity of the solution u ?

Caffarelli and Friedman: The solution u is of class C
α
, for

some α > 0.

This result is, in some sense, optimal: The Barenblatt solution

U(x , t) = t
−λ

�
C − k

|x |2
t2µ

� 1
m−1

+
with λ, µ, k > 0 is only of

class C
α
near the interface u = 0.

Question: Is it true that u
m−1 ∈ C

0,1
?
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Fast Diffusion Equations

Consider the non-linear of fast diffusion equation

ut = ∆u
m
= div (mu

m−1∇u), m < 1.

It appears in physical applications such as diffusion in plasma

and thin liquid film dynamics among other.

Nonnegative weak solution: a continuous function u ≥ 0

which satisfies the equation in distributional sense.

Since, the diffusivity D(u) = mu
m−1 ↑ +∞, as u ↓ 0 the eq

becomes singular at u = 0, resulting to fast-diffusion.
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Scaling and the Barenblatt solution

Scaling: If u solves the fast diffusion equation ut = ∆u
m
, then

ũ(x , t) = γ−1
u(α x ,β t), γ =

�
β

α2

� 1
1−m

also solves the same equation.

Self-Similar solution: There exists a self-similar solution

U(x , t) = t
−λ

�
C + k

|x |2

t2µ

�− 1
1−m

with

λ−1
=

2

n
− (1−m), µ =

λ

n
, k =

λ (1−m)

2mn
.

The above is a solution if
2
n
− (1−m) > 0, i.e. m > n−2

n
.

The exponent m =
n−2
n

is critical.
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The Aronson-Bénilan inequality for (n−2)+

n
< m < 1

If u is a solution to the fast-diffusion equation ut = ∆u
m
,

m < 1, then the pressure v :=
m

1−m
u
−(1−m)

evolves by:

vt = (1−m) v ∆v − |∇v |2.

In the range of exponents
(n−2)+

n
< m < 1, the pressure v

satisfies the sharp Aronson-Bénilan inequality

(∗1) ∆v ≤ λ

t
, λ = λ(m, n) > 0.

which implies the following Li-Yau type differential inequality

(∗2) − vt + (1−m)λ
v

t
≥ |∇v |2.

The differential inequality (∗2) becomes an equality when v is

the self-similar solution U(x , t) = t
−λ

�
C + k

|x |2
t2µ

�− 1
1−m

.
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The Harnack Inequality

Integrating the inequality (∗2) on optimal paths gives the

Harnack Inequality due to Auchmuty-Bao and Hamilton:

v(x2, t2) ≤
�
t2

t1

�µ �
v(x1, t1) +

δ

4

|x2 − x1|2

tδ2 − tδ1

t
µ
1

�

for 0 < t1 < t2, with µ = µ(m, n) > 0 and δ = δ(m, n) > 0.

Application: Solutions of ut = ∆u
m
, with

(n−2)+
n

< m < 1

satisfy the lower bound u(x , t) ≥ c(t) (1 + |x |2)−
1

1−m .

Conclusion: Solutions become instantly strictly positive and

remain so for all time.

Remark: This is not true in the sub-critical range of exponents

m < (n−2)+
n

, where solutions may vanish in finite time.
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The other Aronson-Bénilan inequality

A simple scaling argument shows that every solution u to the

fast-diffusion equation ut = ∆u
m
, 0 ≤ m < 1 satisfies the

differential inequality

(∗3) ut ≤
u

(1−m) t
.

Integrating (∗3) in time implies: u(x , t2) ≤ u(x , t1)
�
t2
t1

� 1
1−m

,

∀x ∈ Rn
i.e. the L

∞
norm of a solution doesn’t blow up, if it

is initially finite.

Remark: In the range of exponents
(n−2)+

n
< m < 1, solutions

u exhibit a regularizing effect from L
1
loc

to L
∞
loc

:

sup

|x |≤R

u(x , t) ≤ F

�
t,R ,

�

B2R

u0(x) dx

�
.

This is not true when m < (n−2)+
n

.
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The Cauchy problem in the super-critical case

Consider the fast-diffusion equation

(∗) ut = ∆u
m,

(n − 2)+

n
< m < 1.

For any nonnegative continuous weak solution u of (∗), there
exists the initial trace i.e. a unique locally finite Borel measure

µ0 on Rn
such that

lim
t↓0

u(·, t) = µ0 in D
�
(Rn

).

The trace µ0 determines the solution uniquely.

For any locally finite Borel measure µ0 on Rn
there exists a

continuous weak solution u of (∗) in S∞ = Rn × (0,∞) with

initial trace µ0.

Regularity: Solutions are C
∞

smooth !!!

Remark: No growth condition needs to be imposed on the

initial data for existence !!!
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The sub-critical case m < (n − 2)+/n

In the sub-critical case m < (n−2)+
n

the analogues of the above

results do not hold true. In particular, there exists no solution

with initial data the Dirac mass.

This makes the problem of the existence of solutions with

initial data a measure a very delicate one.

The Sobolev critical case of exponents m =
n−2
n+2 is of

particular geometric interest as it corresponds to the Ricci

flow for n = 2 and the Yamabe flow for n ≥ 3.
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Ultra-fast diffusion on Rn

Consider the Cauchy problem for the ultra-fast diffusion eq.

on Rn

(∗) ∂

∂t
u = −∆u

m, m < 0.

Instant vanishing: There exists no solution of (∗) with initial

data u0 ∈ L
1
(Rn

).

Necessary and sufficient condition for existence: The condition

u0 ≥ c |x |−2/(1−m), |x | >> 1

in an average sense is necessary and sufficient for existence.

However, a radial structure near infinity of the initial data u0
for |x | >> 1 is necessary for existence.

We will see that in the geometric case of the IMCF this is

replaced by the star shaped condition.
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Ultra-fast diffusion on Rn - An example

Assume n = 2 and for each φ ∈ (0, 2π], let Wφ denote the

wedge

Wφ := {(r , θ) : 0 ≤ r < +∞, 0 < θ < φ}.

Example: For each m < 0 there exists φm ∈ (0, 2π) such that

for u0 = χWφ
: there exists a solution of (∗) iff φ < φm.

The (IMCF) flow

∂

∂t
H = −∆H

−1 − |A|2

H
.

corresponds to m = −1 and in this case φm = π.
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Future Lectures

We have seen some basic properties for degenerate, fast and

ultra-fast diffusion.

Also classical results the solvability of the Cauchy problem on

solutions to these equations Rn
.

In our future lectures we will see how these properties and

results relate to more recent works on geometric flows.
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