Part 1 Degenerate Fast and Ultra-fast Diffusion

Panagiota Daskalopoulos

Columbia University

Summer School on Extrinsic flows ICTP - Trieste June 4-8, 2018

伺 ト イ ヨ ト イ ヨ

Introduction

In this series of lectures we will discuss extrinsic geometric flows with emphasis on geometric and analytical aspects of degenerate (slow) and singular (fast) diffusion.

Examples degenerate (slow) diffusion:

- Porous medium equation
- Gauss curvature flow

Examples of singular (fast and ultra-fast) diffusion:

- Fast-diffusion equation (Ricci flow on ℝ² and Yamabe flow on ℝⁿ, n ≥ 3)
- Inverse mean curvature flow.

Emphasis will be given to:

- existence of entire graph solutions on \mathbb{R}^n (non-compact case)
- a priori estimates of soutions
- optimal regularity of solutions

The Heat Equation

The simplest model of diffusion is the familiar heat equation:

$$u_t = \Delta u, \quad (x,t) \in \Omega \times [0,T], \quad \Omega \subset \mathbb{R}^n$$

(*u* is the density of heat, chemical concentration etc.)

Fundamental properties of the Heat equation:

- Smoothing Effect: Solutions become instantly smooth, at time t > 0.
- Infinite Speed of Propagation: Solutions with non-negative compactly supported initial data $u(\cdot, 0)$, become instantly strictly positive, at time t > 0.
- The Fundamental Solution:

$$\Phi(x,t) = \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}}, \qquad t > 0.$$

A basic model of non-linear diffusion

We consider the simplest model of quasilinear diffusion:

(*)
$$u_t = \Delta u^m = \operatorname{div}(m u^{m-1} \nabla u), \quad u \ge 0$$

for various values exponents $m \in \mathbb{R}$.

- Porous medium equation (Slow Diffusion) m > 1: The diffusivity D(u) = m u^{m-1} ↓ 0, as u ↓ 0. (*) becomes degenerate at u = 0, resulting to finite speed of propagation.
- Fast Diffusion 0 ≤ m < 1: The diffusivity D(u) = m u^{m-1} ↑ +∞, as u ↓ 0. (*) becomes singular at u = 0, resulting to fast diffusion.
- Ultra-Fast Diffusion m < 0: When m < 0 we have ultra-fast diffusion with new interesting phenomena for example instant vanishing in some cases.
- Equation (*) appears in many physical applications and in geometry (2 - dim Ricci flow and n ≥ 3 - dim Yamabe flow).

Contraction of hyper-surfaces by functions of their principal curvatures

An extrinsic geometric flow of co-dim one is typically the evolution of an n-dimensional hyper-surface M_t^n embedded in \mathbb{R}^{n+1} by:

$$\frac{\partial P}{\partial t} = \sigma \nu$$

with speed $\sigma = \sigma(\lambda_1, \dots, \lambda_n)$ a smooth function of the principal curvatures λ_i of the surface M_t .

Figure: Hypersurface M_t^n compact in \mathbb{R}^{n+1} or a graph over \mathbb{R}^n

Examples of Extrinsic Geometric flows

Examples of Extrinsic Geometric flows:

- Mean curvature Flow (MCF): $\sigma = H = \lambda_1 + \cdots + \lambda_n$
- Mean curvature Flow (IMCF): $\sigma = -\frac{1}{H} = -\frac{1}{\lambda_1 + \dots + \lambda_n}$
- Gauss curvature flow (GCF): $\sigma = K = \lambda_1 \cdots \lambda_n$
- GCF^{α}: $\sigma = K^{\alpha} = (\lambda_1 \cdots \lambda_n)^{\alpha}$, $0 < \alpha < \infty$.
- Harmonic mean curvature flow (HMCF): $\sigma = \frac{1}{\lambda_1^{-1} + ... + \lambda_n^{-1}}$.

化口水 化固水 化压水 化压水 一压

Evolution Equations for Curvature flows

• CSF: Motion of a plane curve y = u(x, t) by its Curvature

$$u_t = \frac{u_{xx}}{1+u_x^2}.$$

• MCF: Motion of a surface z = u(x, y, t) in \mathbb{R}^3 by its Mean Curvature

$$u_t = \frac{(1+u_y^2)u_{xx} - 2u_xu_yu_{xy} + (1+u_x^2)u_{yy}}{1+|Du|^2}$$

• GCF: Motion of a surface y = u(x, y, t) in \mathbb{R}^3 by its Gaussian Curvature

$$u_t = rac{\det D^2 u}{(1+|Du|^2)^{3/2}}.$$

It resembles the evolution Monge-Ampére equation.

伺 と く ヨ と く ヨ と

Evolution Equations for Curvature flows

 IMCF: Motion of a surface y = u(x, y, t) in ℝ³ by its Inverse Mean Curvature

$$u_t = -\frac{(1+|Du|^2)^2}{(1+u_y^2)u_{xx} - 2u_xu_yu_{xy} + (1+u_x^2)u_{yy}}$$

Remarks:

- The CSF and MCF are strictly parabolic and quasi-linear.
- The GCF and GCF^{α} are fully-nonlinear. They become degenerate (slow-diffusion) when the Gauss curvature K = 0.
- The IMCF becomes singular (fast-diffusion) as the Mean curvature $H \rightarrow 0$.

Typical Questions

- Short and long time existence of solutions
- Regularity of solutions (classical or weak solutions)
- Free-boundaries
- Formation of singularities and convergence
- Final shape of the hyper-surface

Outline of lectures

Introduction to linear and nonlinear diffusion

- Widder theory for the Heat equation
- The Cauchy problem for the Porous medium equation
- The Cauchy problem for the Fast and Ultra-fast diffusion equation
- The Mean curvature flow on entire graphs
- The Inverse mean curvature flow on entire graphs
- The Gauss Curvature flow
 - The Gauss Curvature flow on complete on compact surfaces
 - Regularity in Gauss curvature flow
 - Firey's conjecture

The simplest model of diffusion is the heat equation:

 $u_t = \Delta u.$

The fundamental properties of the heat equation are:

- Smoothing Effect: Solutions become instantly smooth, at time *t* > 0.
- Infinite Speed of Propagation: Solutions with non-negative compactly supported initial data $u(\cdot, 0)$, become instantly strictly positive, at time t > 0.

Both properties are shown in the Fundamental solution:

$$\Phi(x,t) = rac{1}{(4\pi t)^{n/2}} e^{-rac{|x|^2}{4t}}, \qquad t>0$$

which has initial data the dirac mass δ_0 .

The Widder theory for the Heat equation

• In the 1940s D. Widder studied the characterization of the class of all nonnegative weak solutions of the heat equation

(*HE*) $u_t = \Delta u$ in $S_T = \mathbb{R}^n \times (0, T]$

- Definition of weak solution: $u \in L^1_{loc}(S_T)$ and the equation holds in the distributional sense.
- Regularity: It follows by classical regularity theorems that the solution u instantly C[∞] smooth i.e. u ∈ C[∞](S_T).

• Scaling: *u* solves (HE) $\iff v(x, t) := \frac{u(\alpha x, \alpha^2 t)}{\gamma}$ solves (HE)

The Widder theory for the Heat equation

Let u be a nonnegative weak solution of the (HE) on S_T . Then:

• There exists an absolute constant C > 0 such that:

$$\sup_{0< t< T/2} \int u(x,t) e^{-C|x|^2} dx < \infty.$$

 Existence of initial trace: there exists a nonnegative Borel measure μ on ℝⁿ such that

$$\lim_{t\downarrow 0} u(\cdot, t) = d\mu \quad \text{in } D^1(\mathbb{R}^n).$$

and satisfies satisfies the growth condition

$$(*) \qquad \int e^{-C\,\frac{|\mathbf{x}|^2}{T}}\,d\mu \ <\infty.$$

• The solution is uniquely determined from its initial trace μ .

The Widder theory for the Heat equation

• For each nonnegative Borel measure μ on \mathbb{R}^n satisfying

$$(*) \qquad \int e^{-C\,\frac{|\mathbf{x}|^2}{T}}\,d\mu \ <\infty.$$

there exists a nonnegative continuous weak solution u of (HE) in S_T with trace μ .

• The solution *u* satisfies the pointwise estimate

(B) $u(x,t) \leq C_t(u) e^{C|x|^2}$

where C is an absolute constant and $C_t(u)$ depends on u.

- Important property: every $u \ge 0$ solution of (HE) satisfies the parabolic Harnack inequality from which (B) follows.
- Non-uniqueness: for changing sign solutions which do not satisfy (B).

・ 同 ト ・ ヨ ト ・ ヨ ト

The simplest model of non-linear degenerate diffusion is the porous medium equation:

$$u_t = \Delta u^m = \operatorname{div}(m u^{m-1} \nabla u), \qquad m > 1.$$

- It describes various diffusion processes, for example the flow of gas through a porous medium, where u is the density of the gas and v := u^{m-1} is the pressure of the gas.
- Since, the diffusivity $D(u) = m u^{m-1} \downarrow 0$, as $u \downarrow 0$ the equation becomes degenerate at u = 0, resulting to the phenomenon of finite speed of propagation.

• Because it is nonlinear, the equation

$$(*) u_t = \Delta u^m, m \neq 1$$

has rich scaling properties.

• If *u* is a solution of (*), then

$$v(x,t) := \frac{u(\alpha x, \beta t)}{\gamma}$$

is also a solution of (PM) if and only if

$$\gamma = \left(\frac{\alpha^2}{\beta}\right)^{1/(m-1)}$$

· • E • • E •

The Aronson-Bénilan inequality

• Aronson-Bénilan Inequality: Every solution *u* to the p.m.e. satisfies the differential inequality

$$(*_1) \qquad u_t \geq -\frac{k u}{t}, \qquad \lambda = \frac{1}{(m-1) + \frac{2}{n}}.$$

• The pressure $v := \frac{m}{m-1} u^{m-1}$ which evolves by the equation

$$v_t = (m-1) v \Delta v + |\nabla v|^2$$

satisfies the differential inequality

$$(**) \qquad \Delta v \geq -rac{\lambda}{t}.$$

• Remark: The Aronson-Bénilan (**) is sharp and becomes equality when v is the self-similar Barenblatt solution: $v = t^{\mu} \left(C - k \frac{|x|^2}{t^{2\mu}}\right).$

The Li-Yau type Harnack inequality

• The Aronson-Bénilan inequality $\Delta v \ge -\frac{\lambda}{t}$ and the equation for v imply the Li-Yau type differential inequality:

$$|v_t + (m-1)\lambda \frac{v}{t} \ge |
abla v|^2.$$

• Integrating this inequality on optimal paths gives the following Harnack Inequality due to Auchmuty-Bao and Hamilton:

$$v(x_1,t_1) \leq \left(rac{t_2}{t_1}
ight)^{\mu} \left[v(x_2,t_2) + rac{\delta}{4} rac{|x_2-x_1|^2}{t_2^{\delta}-t_1^{\delta}} \, t_2^{-\mu}
ight]$$

if $0 < t_1 < t_2$, with $0 < \mu, \lambda < 1$ and $\delta > 0$.

Application: If v(0, T) < ∞, then for all 0 < t < T − ε we have:

$$v(x,t) \leq t^{-\mu} (T^{\mu} v(0,T) + C(n,m,\epsilon) |x|^2)$$

i.e. the pressure v grows at most quadratically as $|x| \to \infty$.

"Easy" Aronson-Bénilan inequality

• Using simply the scaling of the equation one may show the easy (weaker) Aronson-Bénilan Inequality:

$$(*_2) \qquad u_t \geq -\frac{u}{(m-1)t}.$$

• Proof: If $u_t = \Delta u^m$, then $u_{\lambda} := \lambda u(x, \lambda^{m-1}t), \lambda > 1$ also satisfies the same equation. Moreover

$$u_{\lambda}(x,0) \geq u(x,0) \stackrel{CP}{\Longrightarrow} u_{\lambda}(x,t) \geq u(x,t), \ t > 0$$

Thus,

$$rac{d}{d\lambda}|_{\lambda=1}u_{\lambda}\geq 0.$$

But

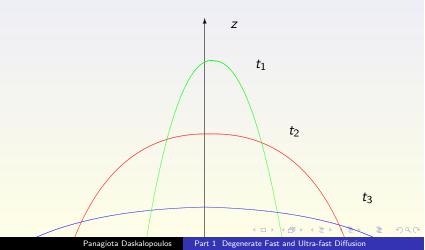
$$\frac{d}{d\lambda}u_{\lambda}=(m-1)\,\lambda^{m-2}t\,u_t+u$$

so we conclude for $\lambda = 1$ that

$$(m-1) t u_t + u \ge 0 \qquad \mathsf{QED} !!.$$

The Barenblatt Solution

The Barenblatt solution: $U(x, t) = t^{-\lambda} \left(C - k \frac{|x|^2}{t^{2\mu}} \right)_+^{\frac{1}{m-1}}$ with $\lambda, \mu, k > 0$. It plays the role of the fundamental solution. For $0 < t_1 < t_2 < t_3$ we have:



The Barenblatt solution shows that solutions to the p.m.e have the following properties:

- Finite speed of propagation: If the initial data u_0 has compact support, then the solution $u(\cdot, t)$ will have compact support at all times t.
- Free-boundaries: The interface $\Gamma = \partial(\overline{\text{supp}u})$ behaves like a free-boundary propagating with finite speed.
- Solutions are not smooth: Solutions with compact support are only of class C^α near the interface.
- Weak solutions: We say that $u \ge 0$ is a weak solution of the equation $u_t = \Delta u^m$ in $Q_T := \Omega \times (0, T)$, if it is continuous on Q_T and satisfies the equations in the distributional sense.

伺 ト イ ヨ ト イ ヨ ト

The Cauchy problem with general initial data

Let $u \ge 0$ be a weak solution of $u_t = \Delta u^m$ on $\mathbb{R}^n \times (0, T]$.

• The initial trace μ_0 exists; there exists a Borel measure μ such that

$$\lim_{t\downarrow 0} u(\cdot, t) = \mu_0 \quad \text{in } D'(\mathbb{R}^n)$$

and satisfies the growth condition

$$(*) \quad \sup_{R>1} \frac{1}{R^{n+2/(m-1)}} \int_{|x|< R} d\mu_0 < \infty.$$

- The trace μ_0 determines the solution uniquely.
- For every measure μ₀ on ℝⁿ satisfying (*) there exists a continuous weak solution u of the p.m.e. with trace μ₀.
- All solutions satisfy the estimate $u(x, t) \le C_t(u) |x|^{2/(m-1)}$, as $|x| \to \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Regularity of solutions -Two important estimates from linear theory

Let
$$u \in C^2(Q_\rho)$$
, $Q_\rho := B_\rho(0) \times (-\rho^2, 0]$, be a solution of:

 $u_t = a_{ij} D_{ij} u + b_i D_i u + c u$

where

(*)
$$\lambda |\xi|^2 \leq a_{ij}\xi_i\xi_j \leq \Lambda |\xi|^2$$
, $|b_i| + |c| \leq \Lambda$

• Schauder $C^{2+\alpha}$ estimate: If $a_{ij}, b_i, c \in C^{\alpha}(Q_{\rho})$, then

 $\|u\|_{C^{2+\alpha}}(Q_{\frac{\rho}{2}}) \leq C \|u\|_{L^{\infty}}(Q_{\rho}).$

• Krylov-Safonov estimate: Under (*), there exists $\gamma > 0$ such that

$$\|u\|_{C^{\gamma}}(Q_{\frac{\rho}{2}}) \leq C \|u\|_{L^{\infty}}(Q_{\rho}).$$

(4月) (4日) (4日)

Regularity of solutions

• Assume that *u* is a continuous weak solution of equation

 $u_t = \Delta u^m, \ m > 1 \ \text{on } Q_{\rho} := B_{\rho}(0) \times (-\rho^2, 0].$

• Remark: It follows from parabolic regularity theory that if $0 < \lambda \le u \le \Lambda$ in a parabolic cylinder Q_{ρ} , then $u \in C^{\infty}(Q_{\rho/2})$.

Proof: If $0 < \lambda \le u \le \Lambda$ in Q, then $u_t = \operatorname{div} (m u^{m-1} \nabla u)$ is strictly parabolic with bounded measurable coefficients.

It follows from the *Krylov-Safonov* estimate that $u \in C^{\gamma}$, for some $\gamma > 0$, hence $D(u) := m u^{m-1} \in C^{\alpha}$.

We conclude that from the *Schauder estimate* that $u \in C^{2+\alpha}$ and by repeating then same estimate we obtain that $u \in C^{\infty}$.

- Question: What is the optimal regularity of the solution *u* ?
- Caffarelli and Friedman: The solution *u* is of class C^α, for some α > 0.
- This result is, in some sense, optimal: The Barenblatt solution $U(x, t) = t^{-\lambda} \left(C - k \frac{|x|^2}{t^{2\mu}} \right)_{+}^{\frac{1}{m-1}}$ with $\lambda, \mu, k > 0$ is only of class C^{α} near the interface u = 0.
- Question: Is it true that $u^{m-1} \in C^{0,1}$?

Fast Diffusion Equations

• Consider the non-linear of fast diffusion equation

$$u_t = \Delta u^m = \operatorname{div}(m u^{m-1} \nabla u), \qquad m < 1.$$

- It appears in physical applications such as diffusion in plasma and thin liquid film dynamics among other.
- Nonnegative weak solution: a continuous function $u \ge 0$ which satisfies the equation in distributional sense.
- Since, the diffusivity D(u) = m u^{m-1} ↑ +∞, as u ↓ 0 the eq becomes singular at u = 0, resulting to fast-diffusion.

Scaling and the Barenblatt solution

• Scaling: If *u* solves the fast diffusion equation $u_t = \Delta u^m$, then

$$\widetilde{u}(x,t) = \gamma^{-1} u(\alpha x, \beta t), \qquad \gamma = \left(\frac{\beta}{\alpha^2}\right)^{\frac{1}{1-m}}$$

also solves the same equation.

• Self-Similar solution: There exists a self-similar solution

$$U(x,t) = t^{-\lambda} \left(C + k \frac{|x|^2}{t^{2\mu}} \right)^{-\frac{1}{1-m}}$$

with

$$\lambda^{-1} = \frac{2}{n} - (1 - m), \quad \mu = \frac{\lambda}{n}, \quad k = \frac{\lambda (1 - m)}{2mn}.$$

The above is a solution if $\frac{2}{n} - (1 - m) > 0$, i.e. $m > \frac{n-2}{n}$.

• The exponent $m = \frac{n-2}{n}$ is critical.

The Aronson-Bénilan inequality for $\frac{(n-2)_+}{n} < m < 1$

• If u is a solution to the fast-diffusion equation $u_t = \Delta u^m$, m < 1, then the pressure $v := \frac{m}{1-m} u^{-(1-m)}$ evolves by:

$$v_t = (1-m) v \Delta v - |\nabla v|^2.$$

• In the range of exponents $\frac{(n-2)_+}{n} < m < 1$, the pressure v satisfies the sharp Aronson-Bénilan inequality

$$(*_1) \qquad \Delta v \leq \frac{\lambda}{t}, \qquad \lambda = \lambda(m, n) > 0.$$

which implies the following Li-Yau type differential inequality

$$(*_2) \qquad -v_t + (1-m)\,\lambda\,\frac{v}{t} \geq |\nabla v|^2.$$

• The differential inequality (*₂) becomes an equality when v is the self-similar solution $U(x, t) = t^{-\lambda} \left(C + k \frac{|x|^2}{t^{2\mu}}\right)^{-\frac{1}{1-m}}$.

The Harnack Inequality

• Integrating the inequality (*2) on optimal paths gives the Harnack Inequality due to Auchmuty-Bao and Hamilton:

$$m{v}(x_2,t_2) \leq \left(rac{t_2}{t_1}
ight)^{\mu} \, \left[m{v}(x_1,t_1) + rac{\delta}{4} rac{|x_2-x_1|^2}{t_2^{\delta}-t_1^{\delta}} \, t_1^{\mu}
ight]$$

for $0 < t_1 < t_2$, with $\mu = \mu(m, n) > 0$ and $\delta = \delta(m, n) > 0$.

- Application: Solutions of $u_t = \Delta u^m$, with $\frac{(n-2)_+}{n} < m < 1$ satisfy the lower bound $u(x, t) \ge c(t) (1 + |x|^2)^{-\frac{1}{1-m}}$.
- Conclusion: Solutions become instantly strictly positive and remain so for all time.
- Remark: This is not true in the sub-critical range of exponents $m < \frac{(n-2)_+}{n}$, where solutions may vanish in finite time.

イロト イポト イラト イラト

The other Aronson-Bénilan inequality

• A simple scaling argument shows that every solution u to the fast-diffusion equation $u_t = \Delta u^m$, $0 \le m < 1$ satisfies the differential inequality

$$u_t \leq \frac{u}{(1-m)t}.$$

- Integrating (*₃) in time implies: u(x, t₂) ≤ u(x, t₁) (t₂/t₁)^{1/(1-m)}, ∀x ∈ ℝⁿ i.e. the L[∞] norm of a solution doesn't blow up, if it is initially finite.
- Remark: In the range of exponents $\frac{(n-2)_+}{n} < m < 1$, solutions u exhibit a regularizing effect from L_{loc}^1 to L_{loc}^∞ :

$$\sup_{|x|\leq R} u(x,t) \leq F\left(t,R,\int_{B_{2R}} u_0(x)\,dx\right).$$

• This is not true when $m < \frac{(n-2)_+}{n}$.

The Cauchy problem in the super-critical case

Consider the fast-diffusion equation

(*)
$$u_t = \Delta u^m$$
, $\frac{(n-2)_+}{n} < m < 1$.

• For any nonnegative continuous weak solution u of (*), there exists the initial trace i.e. a unique locally finite Borel measure μ_0 on \mathbb{R}^n such that

$$\lim_{t\downarrow 0} u(\cdot, t) = \mu_0 \quad \text{in } D'(\mathbb{R}^n).$$

- The trace μ_0 determines the solution uniquely.
- For any locally finite Borel measure μ₀ on ℝⁿ there exists a continuous weak solution u of (*) in S_∞ = ℝⁿ × (0,∞) with initial trace μ₀.
- Regularity: Solutions are C^{∞} smooth !!!
- Remark: No growth condition needs to be imposed on the initial data for existence !!!

The sub-critical case $m < (n-2)_+/n$

- In the sub-critical case $m < \frac{(n-2)_+}{n}$ the analogues of the above results do not hold true. In particular, there exists no solution with initial data the Dirac mass.
- This makes the problem of the existence of solutions with initial data a measure a very delicate one.
- The Sobolev critical case of exponents $m = \frac{n-2}{n+2}$ is of particular geometric interest as it corresponds to the Ricci flow for n = 2 and the Yamabe flow for $n \ge 3$.

Ultra-fast diffusion on \mathbb{R}^n

 Consider the Cauchy problem for the ultra-fast diffusion eq. on ℝⁿ

$$(*) \qquad \frac{\partial}{\partial t}u = -\Delta u^m, \qquad m < 0.$$

- Instant vanishing: There exists no solution of (*) with initial data $u_0 \in L^1(\mathbb{R}^n)$.
- Necessary and sufficient condition for existence: The condition

$$u_0 \ge c |x|^{-2/(1-m)}, \qquad |x| >> 1$$

in an average sense is necessary and sufficient for existence.

- However, a radial structure near infinity of the initial data u₀ for |x| >> 1 is necessary for existence.
- We will see that in the geometric case of the IMCF this is replaced by the star shaped condition.

Ultra-fast diffusion on \mathbb{R}^n - An example

• Assume n = 2 and for each $\phi \in (0, 2\pi]$, let W_{ϕ} denote the wedge

 $W_{\phi} := \{ (r, \theta) : 0 \leq r < +\infty, \ 0 < \theta < \phi \}.$

- Example: For each m < 0 there exists φ_m ∈ (0, 2π) such that for u₀ = χ_{W_φ}: there exists a solution of (*) iff φ < φ_m.
- The (IMCF) flow

$$\frac{\partial}{\partial t}H = -\Delta H^{-1} - \frac{|A|^2}{H}.$$

corresponds to m = -1 and in this case $\phi_m = \pi$.

• We have seen some basic properties for degenerate, fast and ultra-fast diffusion.

• Also classical results the solvability of the Cauchy problem on solutions to these equations \mathbb{R}^n .

• In our future lectures we will see how these properties and results relate to more recent works on geometric flows.