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Future Lectures

We have seen in Lecture 1 some basic properties for
degenerate and fast diffusion.

Also classical results the solvability for the Cauchy problem for
these equations on Rn.

In our future lectures we will see how these properties and
results relate to more recent works on extrinsic geometric
flows on complete non-compact graphs.
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The evolution of complete graphs

Assume that Mt is a complete non-compact graph over a
domain Ω ⊂ Rn.

Σn
0

Σ0

Let Ft : Nn → Rn+1 be a family of immersions of our graph
Mt := Ft(N

n) in Rn+1 evolving by the flow

∂

∂t
F (p, t) = σ(p, t) ν(p, t), p ∈ Nn

where ν(p, t) is a choice of normal vector and σ(λ1 · · ·λn) is
the speed.
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Examples of such flows

Examples of nonlinear extrinsic geometric flows

Mean curvature flow: σ = H = λ1 + · · ·+ λn

Inverse mean curvature flow: σ = − 1
H = − 1

λ1+···+λn

Gauss curvature flow: σ = K = λ1 · · ·λn

α-Gauss curvature flow:: σ = Kα = (λ1 · · ·λn)α,
0 < α <∞.
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Outline

We will discuss:

The Mean curvature flow where on entire graphs.
An example of quasilinear diffusion which resembles
the heat equation.

The Inverse mean curvature flow on entire convex graphs.
An example for fully-nonlinear ultra-fast diffusion.

The α-Gauss curvature flow on complete non-compact graphs.
An example of fully-nonlinear slow diffusion.
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The evolution of complete graphs - Graph Parametrization

Let xn+1 = ū(x , t), ū : Ω× [0,T )→ R, be a graph over
Ω ⊂ Rn which evolves by a non-linear extrinsic flow.

Graph Parametrization: F̄ (x) := (x , ū(x)), x ∈ Rn.

This is not the same as the geometric parametrization
F (·, t) : Nn → Rn+1 under which

∂

∂t
F (p, t) = σ(p, t) ν(p, t), p ∈ Nn

In the graph parametrization the equation is:( ∂
∂t

F̄ (x , t)
)⊥

= σ ν

Then ū satisfies the equation

ūt =
√

1 + |Dū|)2 σ̄(x , ū,Dū,D2ū)

where σ̄ is the speed as a function of x , ū,Dū,D2ū.
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MCF on entire graphs

Let Mt := Ft(N
n) ⊂ Rn+1, where Ft : Nn → Rn+1 immersions

evolving by the Mean curvature flow

(?MCF )
∂

∂t
F (p, t) = H(p, t) ν(p, t), p ∈ Nn.

We assume that Mt is an entire graph over Rn; i.e. there
exists a unit vector ω ∈ Rn+1, such that

〈ω, ν〉 > 0, on Mt .

From now on we take ω := en+1.
Graph parametrization: We may write Mt as xn+1 = ū(x , t),
for ū : Rn × [0,T )→ R. Then the (MCF) is equivalent to:

(?MCF ū) ūt =
√

1 + |Dū|2 div
( Dū√

1 + |Dū|2
)
.

Remark: We will use the geometric parametrization and not
the graph parametrization.
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Geometry on a graph

Consider the graph F = (x , u(x)), x ∈ Rn.

Metric:

gij =
〈∂F
∂xi

,
∂F

∂xj

〉
= δij + Di ūDj ū.

Second fundamental form:

hij = −
〈
ν(x),

∂2F

∂xi∂xj

〉
Mean curvature H:

H = g ijhij =

(
δij −

Di ūDj ū

1 + |Dū|2

)
Dij ū√

1 + |Dū|2
= Di

(
Di ū√

1 + |Dū|2

)
.
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MCF on entire graphs - Long time existence

The following is work by K. Ecker and G. Huisken (1989-1991):

Theorem (Ecker-Huisken) Let M0 be a locally Lipschitz
entire graph over Rn.Then, the (MCF) admits a C∞ solution
Mt with initial data M0, for all t > 0. Moreover, Mt remains
an entire graph over Rn.

Idea of the Proof:

(i) Show a local bound on the gradient function

v := −〈en+1, ν〉−1 =
√

1 + |Du|2;

(ii) Use this bound to obtain a local bound on the second
fundamental form |A|2 which is independent of the initial data.

Remark 1: Note that no growth assumptions or smoothness
need to be imposed on the initial graph.

Remark 2: No uniqueness was shown.
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MCF on entire graphs - Local gradient Estimate

Assume that Mt is an entire graph over Rn ; i.e.

〈en+1, ν〉 > 0, on Mt

for a choice of unit normal ν.

Let Mt be given by xn+1 = u(x , t), for u : Rn × [0,T )→ R.

Then v := 〈en+1, ν〉−1 =
√

1 + |Du|2 satisfies:

∂

∂t
v = ∆v − 2v−1|∇v |2 − |A|2 v .

For any R > 0, let η(F , t) = (R2 − |F |2 − 2nt)+ a cut off
function, where F (·, t) ∈ Mt denotes the position vector.

Local gradient estimate: We have

v(F , t) η(F , t) ≤ sup
M0

(v η).
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MCF on entire graphs - Bound on |A|2

The second fundamental form A = {hij} satisfies:

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4.

The gradient v := 〈en+1, ν〉−1 =
√

1 + |Du|2 satisfies:

∂

∂t
v = ∆v − 2v−1|∇v |2 − |A|2 v .

Combine the evolutions of v and |A|2 to obtain a local bound
on |A|2 which is independent of the initial data.

Crucial bound on |A|2: For ρ > 0, let Bρ(y0) ⊂ Rn. Then, for
any θ ∈ (0, 1) and 0 ≤ t ≤ 1:

sup
Bθρ(y0)

|A|2(·, t) ≤ Cn(1− θ2)−2
(
ρ−2 + t−1

)
sup

Bρ(y0)×[0,t]
v4.
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MCF on entire graphs - Proof of the bound on |A|2

Proof: It uses the Caffarelli, Nirenberg and Spruck trick:

Let ϕ(v2) = v2

1−kv2 . You derive that g := |A|2φ(v2) satisfies:

(∗)
(
∂t−∆

)
g ≤ −2kg2− 2k

(1− kv2)2
|∇v |2g−2ϕv−3∇v∇g .

Let m(t) := supMt
g (if it is finite !). Then, formally if you

could apply the maximum principle, (∗) would give

d

dt
m(t) ≤ −2k m(t)2.

Comparing with the solution of the ODE gives m(t) ≤ 1
2kt , i.e.

sup
Mt

|A|2φ(v2) ≤ 1

2kt
.

However this is not possible if v :=
√

1 + |Du|2 � 1, as
|F | → +∞.
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MCF on entire graphs - Proof of the bound on |A|2

To over come this difficulty we need to localize the equation
of g by multiplying with the cut-off function

η(F , t) = (R2 − r)+, r := |F |2 + 2nt.

Then, using (∗) we obtain that G := gηt satisfies

(
∂t −∆

)
G ≤ A · ∇G − 2kg2ηt + C

(
(1 +

1

kv2
)r + R2

)
gt + gη.

Applying the maximum principle to m(t) := maxr<R2 G , we
conclude for any θ ∈ (0, 1) the bound

sup
Bθρ(y0)

|A|2(·, t) ≤ Cn(1− θ2)−2
(
ρ−2 + t−1

)
sup

Bρ(y0)×[0,t]
v4.
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Conclusion

Theorem. If M0 is a locally Lipschitz entire graph over Rn,
then the (MCF) admits a C∞-smooth solution Mt with initial
data M0, for all t > 0. Mt is an entire graph over Rn.

At a maximal existence time T , if T < +∞ the graph MT is
locally Lipschitz and also |A|2 is locally bounded. Hence, the
flow may be continued to show that T = +∞.

In addition, since the evolution equation is uniformly parabolic
on compact sets, the solution Mt is C∞ smooth by standard
parabolic regularity.

Panagiota Daskalopoulos Part 2 Nonlinear extrinsic flows on entire graphs MCF and IMCF



Inverse Mean curvature flow - Introduction

Let F : Nn × [0,T ]→ Rn+1 be a smooth family of closed
hypersurfaces in Rn+1. F defines a classical solution to the
Inverse mean curvature flow in Rn+1 if it satisfies

∂

∂t
F (p, t) =

1

H(p, t)
ν(p, t), p ∈ Nn

where H(·, t) > 0 and ν(p, t) denote the mean curvature and
exterior unit normal of the surface Mt at the point F (p, t).

Mt

Figure: Hypersurface Mn
t compact in Rn+1 or a graph over Rn
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IMCF- An ultra-fast diffusion

Under (IMCF) the Mean curvature satisfies the ultra-fast
diffusion:

∂

∂t
H =

1

H2
∆H − 2

H3
|∇H|2 − |A|

2

H
.

The above equation can also be written as

∂

∂t
H = −∆H−1 − |A|

2

H
.

This resembles the ultra fast diffusion equation on Rn:

ut = −∆um, m < 0.
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Ultra-fast diffusion on Rn

Consider the Cauchy problem for the ultra-fast diffusion eq.
on Rn

(∗) ∂

∂t
u = −∆um, m < 0.

Instant vanishing: There exists no solution of (∗) with initial
data u0 ∈ L1(Rn).

Necessary and sufficient condition for existence: The condition

u0 ≥ c |x |−2/(1−m), |x | � 1

in an average sense is necessary and sufficient for existence.

However, a radial structure near infinity of the initial data u0

for |x | � 1 is necessary for existence.

We will see that in the geometric case of the IMCF this is
replaced by the star shaped condition.

Panagiota Daskalopoulos Part 2 Nonlinear extrinsic flows on entire graphs MCF and IMCF



Ultra-fast diffusion on Rn - An example

Assume n = 2 and for each φ ∈ (0, 2π], let Wφ denote the
wedge

Wφ := {(r , θ) : 0 ≤ r < +∞, 0 < θ < φ}.

Example: For each m < 0 there exists φm ∈ (0, 2π) such that
for u0 = χWφ

: there exists a solution of (∗) iff φ < φm.

The (IMCF) flow

∂

∂t
H = −∆H−1 − |A|

2

H
.

corresponds to m = −1 and in this case φm = π.

Panagiota Daskalopoulos Part 2 Nonlinear extrinsic flows on entire graphs MCF and IMCF



Inverse Mean curvature flow - Introduction

Lets go back to (IMCF)

∂

∂t
F (p, t) =

1

H(p, t)
ν(p, t), p ∈ Nn

where H(·, t) > 0 and ν(p, t) denote the mean curvature and
exterior unit normal of the surface Mt at the point F (p, t).

Mt

Figure: Hypersurface Mn
t compact in Rn+1 or a graph over Rn
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IMCF on compact hypersurfaces - Background

C. Gerhardt, J. Urbas: Existence for all 0 < t < +∞, for
smooth star-shaped initial data with H > 0.
Convergence as t → +∞ to a homothetically expanding
spherical solution.

For non star-shaped initial data, singularities may develop.

K. Smoczyk : Singularities can only occur if the Mean
curvature H becomes zero somewhere during the evolution.

G. Huisken, T. Ilmanen: Developed a level set approach to
weak solutions of the flow, allowing jumps of the surfaces and
solutions of weakly positive mean curvature.

G Huisken, T. Ilmanen used the weak solution formulation of
the flow to derive energy estimates in General Relativity.
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IMCF-Basic evolution equations

Under (IMCF) we have:

∂

∂t
F =

1

H
ν

∂

∂t
gij =

2

H
hij

∂

∂t
dµ = dµ

∂

∂t
ν = −∇H−1 =

1

H2
∇H

∂

∂t
hij =

1

H2
∆hij −

2

H3
∇iH∇jH +

|A|2

H2
hij

∂

∂t
H = ∇i

( 1

H2
∇iH

)
− |A|

2

H
∂

∂t
〈F − x̄0, ν〉 =

1

H2
∆ 〈F − x̄0, ν〉+

|A|2

H2
〈F − x̄0, ν〉.
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IMCF on compact star-shaped hypersurfaces

Let Mt = F (·, t)(Nn) be a solution to the (IMCF).

Mt is called star-shaped if 〈F , ν〉 > 0 on Mt .

Theorem (Huisken-Ilmanen) Let M0 be a closed embedded C 1

hyper-surface satisfying:

0 ≤ H ≤ C and 0 < R1 < 〈F , ν〉 < R2.

Then, the (IMCF) admits a global solution Mt , 0 < t < +∞
with H > 0 for t > 0 and such that Mt → M0 in C 1 as t → 0.

Crucial Estimate: They establish an a priori bound

H ≥ θt := cn R1 R
−1
2 |M0|−1/n min(t1/2, 1) e−t/n

using integral estimates the ultra-fast character of the eq.
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IMCF- Starshaped hyperfurfaces

Assume that at t = 0, 0 < R1 < 〈F , ν〉 < R2.

Then, for all t > 0, we have

0 < e
t
nR1 ≤ 〈F , ν〉 ≤ |F | ≤ e

t
n R2.

Proof: it follows from the evolution equation

∂

∂t
〈F , ν〉 =

1

H2
∆ 〈F , ν〉+

|A|2

H2
〈F , ν〉.
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IMCF- An ultra-fast diffusion on H

Main step to long time existence: Show that H > 0.

H satisfies the ultra-fast diffusion:

∂

∂t
H =

1

H2
∆H − 2

H3
|∇H|2 − |A|

2

H

= −∆H−1 − |A|
2

H

Combining it with:

∂

∂t
〈F , ν〉 =

1

H2
∆ 〈F , ν〉+

|A|2

H2
〈F , ν〉

v := H 〈F , ν〉 satisfies the ultra-fast diffusion:

∂

∂t
v = ∇i

(
〈F , ν〉2 v−2∇iv).
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IMCF- Lower bound on H

Theorem (Huisken-Ilmanen) If M0 is star-shaped surface with
0 < R1 < 〈F , ν〉 < R2, then ∃cn > 0 such that

H ≥ cn R1 R
−1
2 |M0|−1/n min(t1/2, 1) e−t/n.

Remark: The above bound does not depend on a lower bound
on H at t = 0. Hence, H may vanish at t = 0.

Sketch of Proof: If u := (H 〈F , ν〉)−1, then

∂

∂t
u = ∇i

(
〈F , ν〉2 u2∇iu)− 2〈F , ν〉2u |∇u|2.

Combined with the Michael-Simon Sobolev inequality( ∫
Nn

|f |
n

n−1 dµ
) n−1

n ≤ C (n)

∫
Nn

|∇f |+ |H||f | dµ.

gives L∞-bound on u via de Giorgi - Stampacchia iteration.
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IMCF- Bound on the second fundamental form

Assume that 0 < θ0 < H < θ1.

The second fundamental form A = {hij}1≤i ,j≤n satisfies:

∂

∂t
hij =

1

H2
∆hij −

2

H3
∇iH∇jH +

|A|2

H2
hij .

Recall Ht =
1

H2
∆H − 2

H3
|∇H|2 − |A|

2

H2
H.

Also (gij)t =
2

H
hij .

Set Mij = H hij and M i
j = g il Mlj .

By combining the evolution equations of hij , H and gij :

∂

∂t
M i

j =
1

H2
∆M i

j−
2

H3
∇kH∇kM

j
i−

2

H3
∇iH∇jH−

2

H2
M ik Mkj .
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IMCF- Bound on the second fundamental form

By the maximum principle on the matrix (M j
i ) one finds that

its its maximum eigenvalue κn = λn H satisfies:

κn ≤
θ2

1

2t
.

Using the bound H > θ0, one concludes the bound

λn ≤
θ2

1

2θ0 t
.

Using also that H ≥ 0, we finally conclude that

|A| ≤ cn
θ2

1

θ0 t
.
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IMCF-Long time existence of smooth solutions

Theorem (Huisken-Ilmanen) Let M0 be a closed embedded C 1

hyper-surface satisfying 0 ≤ H ≤ θ1. Assume in addition that
M0 is strictly star-shaped, namely

0 < R1 < 〈F , ν〉 < R2.

Then, the (IMCF) admits a global solution Mt , 0 < t < +∞
with H > 0 for t > 0 and such that Mt → M0 in C 1 as t → 0.

Sketch of Proof: By combining the bounds:

H ≥ θt := cn R1 R
−1
2 |M0|−1/n min(t1/2, 1) e−t/n

and

|A| ≤ cn
θ2

1

θt t
.

with classical higher regularity estimates.
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Remarks and further work

Recall:

Ht = −∆H−1 − |A|
2

H
.

u := (H 〈F , ν〉)−1 satisfies the porous medium type equation

ut = ∇i

(
〈F , ν〉2u2∇iu)− 2〈F , ν〉2u |∇u|2.

The Huisken-Ilmanen bound is reminiscent of the L∞ bound
for solutions of the Dirichlet problem for the porous medium
equation.

B. Choi (2017) has recently shown the Huisken-Ilmanen
bound by maximum principle argument.
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IMCF on convex entire graphs

The following is joint work with G. Huisken.

Let Ft : Nn → Rn+1 a family of immersions of n-dimensional
convex hypersurfaces Mt := Ft(N

n) in Rn+1 which evolve by
Inverse mean curvature flow

∂

∂t
F (p, t) =

1

H(p, t)
ν(p, t), p ∈ Mn.

ν is then the outer normal to the surface.

Take ω = en+1 ∈ Rn+1 and assume that M0 lies above the
cone given by xn+1 = α0 |x |. The 〈en+1, ν〉 < 0.

Goal: Establish the long time existence of the flow.
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IMCF-Important evolution equations

Under (IMCF) we have:

Ft =
1

H
ν

(dµ)t = dµ

νt = −∇H−1 =
1

H2
∇H

Ht =
1

H2
∆H − 2

H3
|∇H|2 − |A|

2

H

(H−1)t =
1

H2
∆H−1 +

|A|2

H2
H−1

(〈en+1, ν〉)t =
1

H2
∆ 〈en+1, ν〉+

|A|2

H2
〈en+1, ν〉

(〈F , en+1〉)t =
1

H2
∆〈F , en+1〉+

2

H
〈en+1, ν〉

Panagiota Daskalopoulos Part 2 Nonlinear extrinsic flows on entire graphs MCF and IMCF



Comparison principle

Comparison Principle:

Assume that f ∈ C 2(Rn × (0, τ)) ∩ C 0(Rn × [0, τ)) satisfies:

ft ≤ aij Dij f + bi Di f + c f , on Rn × (0, τ)

for some τ > 0 with measurable coefficients such that:

λ|ξ|2 ≤ aij(x , t) ξiξj ≤ Λ|ξ|2 (|x |2 + 1)

and
|bi (x , t)| ≤ Λ (|x |2 + 1)1/2, |c(x , t)| ≤ Λ.

Assume in addition that the solution f has:

f (x , t) ≤ C (|x |2 + 1)p, on Rn × [0, τ ], p > 0.

If f (·, 0) ≤ 0 on Rn, then f ≤ 0 on Rn × [0, τ ].
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Bound from above on H

We will use the following a priori local and global bounds from
above on H.

Assume that Mt , t ∈ [0, τ ] is a C 2 graphical solution of (IMCF):

Local bound from above: Let η := (r2 − |F − x̄0|2)2
+. Then

if sup
M0

ηH ≤ C0 then sup
Mt

ηH ≤ max(C0, 2n r
3).

Global bound from above: If Mt , t ∈ [0, τ ] is also convex, then

sup
t∈[0,τ ]

sup
Mt

〈F , en+1〉H ≤ sup
M0

〈F , en+1〉H.

Proofs Simply by the maximum principle !!!
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Long-time Existence of solutions with super-linear growth

Let M0 be an entire graph xn+1 = u0(x) over Rn satisfying:

(i) super-linear growth: |Du0(x)| → ∞, for |x | → ∞.
(ii) δ-starshaped: H〈F − x̄0, ν〉 ≥ δ > 0, for x̄0 ∈ Rn+1.

Lemma: The condition H〈F − x̄0, ν〉 ≥ δ > 0 is preserved
under the flow.

Proof: Simply follows from the comparison principle since
w := 〈F − x̄0, ν〉 satisfies the equation:( ∂

∂t
− 1

H2
∆
)
w = − 2

H3
∇H · ∇w .
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Long-time Existence of solutions with super-linear growth

Theorem (D., Huisken-2017) Let xn+1 = u0(x) be an entire graph
of class C 2 satisfying assumptions (i)-(ii). Then, there exists is a
smooth entire graph solution xn+1 = u(x , t) of the (IMCF) which
is defined for all 0 < t < +∞.

If u0 is convex, then the solution Mt is also convex.

Proof: The proof follows the steps:

We approximate the initial data M0 by smooth and compact
hypersurfaces which satisfy H〈F − x̄0, ν〉 ≥ δ̃ > 0.

H〈F − x̄0, ν〉 ≥ δ̃ > 0 is preserved under (IMCF).

To pass to the limit we use the following local bound on |A|2
which was established by M.E. Heidusch:

sup
M0∩BR(0)

|A|2 ≤ C2 max( max
M0∩BR(0)

|A|2,R−1 max
M0∩BR(0)

H + R−2).
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IMCF on convex entire graphs

From now on we will restrict to convex entire graphs with
conical behavior at infinity.

The surface Mt may be expressed as the graph xn+1 = u(x , t)
of a function u : Rn × [0,T )→ R.

Then the (IMCF) is equivalent to the fully nonlinear PDE

(?u) ut = −
√

1 + |Du|2

div
(

Du√
1+|Du|2

) .
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Conical solutions to IMCF

On surfaces of revolution given by xn+1 = u(r , t), r = |x | the
(IMCF) becomes

(?u) ut = − (1 + u2
r )2

urr + (n − 1) (1 + u2
r ) ur/r

.

Separation of variables leads to the conical solutions
C(x , t) = α(t) |x |+ κ where α′(t) = − 1

n−1

(
α(t) + 1

α(t)

)
.

These solutions become flat at some finite time T < +∞
depending on the initial slope.
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Self-similar entire graph solutions to IMCF

In the (IMCF) one cannot scale the time variable t.

Nevertheless, the (IMCF) admits radial self-similar solutions

uλ(x , t) = eλt ūλ(e−λt |x |)

where xn+1 = ūλ(x) are entire convex graphs over Rn.

Proposition: (D., Huisken) ∀λ > 1/(n − 1), ∃! xn+1 = ūλ(|x |)
on Rn with ūλ(0) = −1 with flux at infinity

lim
r→∞

r (ūλ)r (r)

ūλ(r)
=

λ (n − 1)

(n − 1)λ− 1
= q, r = |x |.

It follows that uλ(|x |) ∼ |x |q as |x | → ∞ and λ > 1/(n − 1)
iff q ∈ (1,+∞).

q = 1 corresponds to the conical solution.
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IMCF on asymptotically conical graphs

Short time existence: (D., G. Huisken) Let M0 be a C 2

convex entire graph xn+1 = u0(x), x ∈ Rn satisfying

(∗1) α0 |x | < u0(x) < α0 |x |+ κ, x ∈ Rn, α0 > 0, κ > 0.

and
(∗2) 0 < c0 < H 〈F , en+1〉 < C0.

Then, there exists a unique smooth convex solution Mt of
the (IMCF) with initial data M0, given by the entire graph
xn+1 = u(x , t), x ∈ Rn, t ∈ [0, τ ], τ > 0. Moreover:

(∗∗1) α(t) |x | < u(x , t) < α(t) |x |+ κ.

and
(∗∗2) 0 < cτ < H 〈F , en+1〉 < C .

Remark. ū := H 〈F , en+1〉 is the height function.
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IMCF on asymptotically conical graphs - Long time
Existence

Let Mt , 0 < t < τ be the solution to (IMCF) satisfying

α(t) |x | < u(x , t) < α(t) |x |+ κ.

Let T < +∞ s.t α(T ) = 0 (the cone at infinity becomes flat).

Claim: The solution Mt will exist up to time T .

Main Difficulty: to show that H > 0 on Mt for all t < T .

H satisfies the ultra-fast diffusion:

∂

∂t
H =

1

H2
∆H − 2

H3
|∇H|2 − |A|

2

H
.

Moreover H(·, t) ≈ Ct

|F |
as |F | → +∞.
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IMCF- Evolution of H

Set v := H 〈F̂ , ν〉, 〈F̂ , ν〉 := −〈F , en+1〉 〈en+1, ν〉 > 0.

Remark: Since xn+1 = u(·, t) we have 〈F , en+1〉 = u and

〈en+1, ν〉 = − 1√
1+|Du|2

, hence 〈F̂ , ν〉 ≈ |F |, for |F | � 1.

Thus,

v := −H 〈F , en+1〉 〈en+1, ν〉 ≈ C , for |F | � 1.

Lemma: Let v := H 〈F̂ , ν〉 evolves by the ultra fast diffusion

( ∂
∂t
− 1

H2
∆
)
v = − 2

H3
∇v∇H−2 〈en+1, ν〉2+

hij
H
〈ei, en+1〉 〈ej, en+1〉

Proof: By combining the evolutions equations of H, 〈F , en+1〉
and 〈en+1, ν〉.
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IMCF- Basic step

On a convex surface we have:
hij
H
〈ei, en+1〉 〈ej, en+1〉 ≥ 0.

Hence ( ∂
∂t
− 1

H2
∆
)
v ≥ − 2

H3
∇v∇H−2 〈en+1, ν〉2.

Basic Step: To show that

v(·, t) > cδ > 0, for 0 < t < T − δ

where T is the time at which the cone at infinity disappears !

No barriers can be constructed. No time scaling.

The exact behavior of v(·, t) as |F | → +∞ needs to be used !!
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IMCF- The evolution of H−1

Recall that v := H 〈F̂ , ν〉, 〈F̂ , ν〉 := −〈F , en+1〉 〈en+1, ν〉 > 0.

By Short time existence on 0 < t < τ :

lim
|F (p,t)|→∞

v(p, t) = γ(t), γ(t) :=
(n − 1)α(t)2

1 + α(t)2
.

If w := (〈F̂ , ν〉H)−1, then lim|F |→∞ w(p, t) = γ(t)−1 and

∂w

∂t
− Di

( 1

H2
Diw

)
≤ − 2

H2w
|∇w |2 + 2〈en+1, ν〉2w2.

One needs to obtain a global L∞ bound on w := (〈F̂ , ν〉H)−1

for all 0 < t < T − δ, δ > 0.
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IMCF- Lp bounds on H−1

Since lim|F |→∞ w(·, t) = γ(t)−1, ŵ(·, t) := (w(·, t)γ̂(t)− 1)+

is compactly supported if γ̂(t) < γ(t).

Lp-Estimate: Assume that Mt is a solution to (IMCF) on
0 < t ≤ τ , τ < T − δ. Then, ∀p ≥ 1, ∃C = C (p,T , δ) s.t.

sup
t∈[0,τ ]

∫
Mt

ŵp(·, t) dµ ≤ C
(
1 +

∫
M0

ŵp(·, 0) dµ
)
.

Proof: By combining energy estimates on ŵ and a suitable
Hardy inequality.

Hardy Inequality: For any function g that is compactly
supported on Mt , we have∫

Mt

g2 dµ ≤ C (n)

(∫
Mt

|∇g |2|F |2 dµ+

∫
Mt

g2|H| |F | dµ
)
.
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IMCF- L∞-bounds on H−1 and H

Let Mt be a solution to (IMCF) on [0, τ ], τ < T − δ.

L∞ bound on H−1: If w := (〈F̂ , ν〉H)−1, then ∃µ > 0, σ > 0
s.t. for any 0 < t0 < τ < T − δ:

sup
t∈(t0,τ ]

‖w‖L∞(Mt) ≤ Cδ t
−µ
0

(
1 + sup

R≥1
R−n

∫
M0∩{|F |≤R}

w dµ

)σ
.

Proof: By the Lp bounds on w , a suitable Hardy inequality
and a Moser iteration argument adopted to our situation.

L∞ bound on H: If 〈F , en+1〉H ≤ C0 at time t = 0, then

(?2) sup
t∈[0,τ ]

sup
Mt

〈F , en+1〉H(·, t) ≤ max (C0, 2n).

Proof: By the maximum principle.
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IMCF- Long time existence for H > 0

Theorem (D., G. Huisken) Assume that M0 is a C 2 convex
entire graph xn+1 = u0(x), x ∈ Rn with H > 0 satisfying:

(i) α0 |x | < u0(x) < α0 |x |+ κ, α0 > 0, κ > 0, and
(ii) c0 < H 〈F , en+1〉 < C0.

Let T be the time at which the cone at infinity becomes flat.

Then, there exists a C∞-smooth entire graph solution Mt of
the (IMCF) on 0 < t < T with initial data M0. The solution
Mt becomes flat at t = T .

Proof: By combining the L∞-bounds on H and H−1 with
C 2,α apriori estimates for fully-nonlinear parabolic PDE shown
by Guji Tian and Xu-Jia Wang.
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Comparison with ultra-fast diffusion on Rn

Let u be a solution of ultra-fast diffusion ut = −∆um on
Rn × (0,T ) with m < 0.

Then u satisfies the Aronson-Bénilan inequality

ut ≤
1

1−m

u

t

which acts as a substitute of the Harnack inequality and plays
an important role in proving existence.

The Aronson-Bénilan inequality is a simple consequence of
the rich scaling of the equation.

In the (IMCF) there is no time-scaling and there is no
analogue of the Aronson-Bénilan inequality.
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Open Problems

Open questions on (IMCF):

IMCF on entire conical graphs without the assumption of
convexity at infinity.

IMCF on any entire graph with linear growth at infinity.

Is there a Harnack inequality on H ?
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