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Ancient and Eternal Solutions

Some of the most important problems in geometric PDE are
related to the understanding of singularities.

This usually happens through a blow up procedure which
allows us to focus near a singularity.

In the case of a time dependent equation, after passing to the
limit, this leads to an ancient or eternal solution of the flow.

These are special solutions which exist for all time

−∞ < t < T where T ∈ (−∞,+∞].

Understanding ancient and eternal solutions often sheds new
insight to the singularity analysis
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Outline

In this talk we will address:

ancient solutions to parabolic partial differential equations
with emphasis to geometric flows:
Mean Curvature flow, Ricci flow and Yamabe flow.

1 uniqueness results for ancient or eternal solutions

2 methods of constructing new ancient solutions from the
gluing of two or more solitons (self-similar solutions).

new techniques and future research directions.
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Ancient and Eternal solutions

Definition: A solution u(·, t) to a parabolic equation is called
ancient if it is defined for all time −∞ < t < T , T < +∞.

Ancient solutions typically arise as blow up limits at a type I
singularity.

Definition: A solution u(·, t) to a parabolic equation is called
eternal if it is defined for all −∞ < t < +∞.

Eternal solutions as blow up limits at a type II singularity.
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Solitons

Solitons (self-similar solutions) are typical examples of ancient
or eternal solutions and often models of singularities.

Some typical examples of solitons to geometric PDE are:

Spheres:

Cylinders:

Translating or shrining solitons with cylindrical ends:
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Other Ancient and eternal solutions

However, there exist other special ancient or eternal solutions
which are not solitons.

These, often may be visualized as obtained from the gluing as
t → −∞ of two or more solitons.

Typical behavior as t → −∞ of an ancient solution

Classifying when possible all such solutions, often leads to the
better understanding of the singularities.
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Geometric conditions of ancient or eternal solutions

Goal: Characterize all ancient or eternal solutions to a geometric
flow under natural geometric conditions:

Being a soliton (self-similar solution)

Satisfying an appropriate curvature bound as t → −∞:

i. Type I: global curvature bound after typical scaling.

ii. Type II: solutions which are not type I.

Satisfying a non-collapsing condition.
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Liouville’s theorem for the heat equation on manifolds

Let Mn be a complete non-compact Riemannian manifold of
dimension n ≥ 2 with Ricci (Mn) ≥ 0.

Yau (1975): Any positive harmonic function u on Mn, (i.e.
satisfying ∆u = 0 on Mn) must be constant.

This is the analogue of Liouville’s Theorem for harmonic
functions on Rn.

Question: Does the analogue of Yau’s theorem hold for
positive solutions of the heat equation

ut = ∆u on Mn?

Answer: No. Example u(x , t) = ex1+t , x = (x1, · · · , xn) on
Mn := Rn.
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A Liouville type theorem for the heat equation

Souplet - Zhang (2006): Let Mn be a complete non-compact
Riemannian manifold of dimension n ≥ 2 with Ricci (Mn) ≥ 0.

1 If u be a positive ancient solution to the heat equation on
Mn × (−∞,T ) such that

u(p, t) = eo(d(p)+
√
|t|) as d(p)→∞

then u is a constant.
2 If u be an ancient solution to the heat equation on

Mn × (−∞,T ) such that

u(p, t) = o(d(p) +
√
|t|) as d(p)→∞

then u is a constant.

Proof: By using a local gradient estimate of Li-Yau type on
large appropriately scaled parabolic cylinders.
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The Semi-linear heat equation

Consider next the semilinear heat equation

(?SL) ut = ∆u + up on Rn × (0,T )

in the subcritical range of exponents 1 < p < n+2
n−2 .

It provides a prototype for the blow up analysis of geometric
flows.

In particular in neckpinches of solutions to the Ricci flow and
Mean Curvature flow.

Also in the characterization of rescaled limits as t → −∞ of
ancient solutions.
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The rescaled semi-linear heat equation

Self-similar scaling at a singularity at (a,T ):

w(y , τ) = (T−t)
1

p−1 u(x , t), y =
x − a√
T − t

, τ = − log(T − t).

Giga - Kohn (1985): ‖w(τ)‖L∞(Rn) ≤ C , τ > − logT .

The rescaled solution satisfies the equation

(?) wτ = ∆w − 1

2
y · ∇w − w

p − 1
+ wp.

Objective: To analyze the blow up behavior of u one needs to
understand the long time behavior of w as τ → +∞.

This is closely related to the classification of bounded eternal
solutions of (?).
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Eternal solutions of the semi-linear heat equation

Problem: Provide the classification of bounded positive
eternal solutions w of equation

(?) wτ = ∆w − 1

2
y · ∇w − w

p − 1
+ wp.

Eternal means that w(·, τ) is defined for τ ∈ (−∞,+∞).

The only steady states of (?) are the constants:

w = 0 or w = κ, with κ := (p − 1)
− 1

(p−1) .

Theorem (Giga - Kohn ’87) limτ→±∞ w(·, τ) = steady state.

Space independent eternal solutions : φ(τ) = κ(1 + eτ )
− 1

(p−1) .
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Classification of Eternal solutions

Theorem (Giga - Kohn ’87 and Merle - Zaag ’98)
If w is bounded positive eternal solution of (?) defined on
Rn × (−∞,+∞), then

w = 0 or w = κ or w = φ(τ − τ0).

Main difficulty (Merle - Zaag): Classify the orbits w(·, τ) that
connect the two steady states:

lim
τ→−∞

w(·, τ) = κ and lim
τ→+∞

w(·, τ) = 0.

Recently (2016) C. Collot, F. Merle, P. Raphael revisited the
classification of eternal solutions to critical (?) in dimensions
n ≥ 7 in connection with type II blow up.

Other Liouville type results related to equation (?
SL

) by:

P. Polacik, P. Quittner, T. Bartsch, P. Souplet, E. Yanagida.
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The Curve shortening flow

Let Γt be a family of closed curves which is an embedded
solution to the Curve shortening flow, i.e. the embedding
F : Γt → R2 satisfies

∂F

∂t
= −κ ν

with κ the curvature of the curve and ν the outer normal.

M. Gage (1984); M. Grayson (1987); Gage-Hamilton (1996):

If Γt is closed and embedded, then it becomes strictly convex
and shrinks to a round point.
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Ancient Convex solutions to the CSF

Problem: Classify the ancient closed convex embedded
solutions to the Curve shortening flow.

Evolution of curvature κ:

κt = κss + κ3 or κt = κ2κθθ + κ3

Examples of ancient solutions:

i. Type I solution: the contracting circles

ii. Type II solution: the Angenent ovals (paper clips).
Given by κ2(θ, t) = λ ( 1

1−e2λt − sin2(θ + γ)) and they are
not solitons.
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The Classification of Ancient Convex solutions to the CSF

The Angenent ovals as t → −∞ may be visualized as two
Grim reapers moving away from each other.

Theorem (D., Hamilton, Sesum - 2010)
The only ancient convex solutions to the CSF are the
contracting spheres or the Angenent ovals.

Proof: Various monotonicity formulas + circular extinction
behavior with sharp rates of convergence.
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Non-Convex ancient solutions

Question: Do they exist non convex compact embedded
solutions to the curve shortening flow ?

Angenent (2011): Presents a YouTube video of an ancient
solution to the CSF built out from one Yin-Yang spiral and
one Grim Reaper.
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Ancient solutions to the Mean curvature flow

Let Mt , t ∈ (−∞,T ) be a smooth ancient solution of the
Mean curvature flow

(MCF)
∂F

∂t
= −H ν

H(p, t) is the Mean curvature and ν a choice of unit normal.

Problem: Understand ancient solutions Mt of the Mean
curvature flow.

Examples: Self-similar solutions such as self-shrinkers and
translating solitons.
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Self-similar solutions of MCF

Look for homothetic (self-similar) solutions to the MCF in the
form Mt = λ(t)Mt1 .

Shrinking solutions (self-shrinkers): Mt =
√
−tM−1, for

t ∈ (−∞, 0) and H = 〈x , ν〉.

Examples: spheres, cylinders.

Expanding solutions (self-expanders): Mt =
√
tM1, for

t ∈ (0,∞) and H = −〈x , ν〉.

Translating solutions: move by translations in a direction of
vector v, that is, H = 〈v, ν〉 and F (·, t) = F (·, 0) + vt.

Example: the Bowl soliton.
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Bowl soliton

The Bowl solution is the unique convex rotationally symmetric
translating solution to the MCF.

3/30/2018 bowl soliton for the MCF | Francisco Martin

http://www.ugr.es/~fmartin/gallery/bowl-soliton-for-the-mcf.html 1/2

bowl soliton for the MCF

       

Francisco Martin
WELCOME TO MY WEB SITE 

Home Favorites Gallery Curriculum vitae Contact

Previous NextList

 Research

It opens up like a paraboloid and has the maximum of mean
curvature at the tip.

It is graphical and in terms of the height function U(x) it
satisfies the equation

Uxx

1 + U2
x

+
(n − 1)Ux

x
= 1.
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Non-compact ancient solutions to MCF

Problem: Classify the non-compact ancient solutions to MCF.

There are many solutions if you do not assume any extra
natural geometric assumptions.

Theorem ( Brendle, Choi 2018 ): Let Mt , t ∈ (−∞, 0) be a
noncompact, strictly convex, noncollapsed and uniformly two
convex (λ1 + λ2 ≥ βH, for β > 0) ancient solution to the
MCF in Rn+1. Then it is the Bowl soliton.

Corollary: Let M0 be a closed, 2-convex hypersurface. Evolve
it by the MCF. The only possible blow up limits are: spheres,
cylinders and the bowl soliton.

Proof: They establish the rotational symmetry and then
classify the radial non-compact ancient solutions.
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Ancient non-collapsed solutions to MCF

Weimin Sheng and Xu-Jia Wang: Introduced an
α-noncollapsed condition.

B=B α
H(p)

α-noncollapsed condition is preserved by the mean curvature
flow, and hence singularity models are also noncollapsed.

Haslhofer & Kleiner (2013):
Ancient compact + α-noncollapsed MCF solution ⇒ convex.

convex compact + self-similar MCF solution ⇒ sphere.

Ancient ovals: Any compact and α-noncollapsed ancient
solution to MCF which is not self-similar.
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Ancient MCF ovals

Problem: Provide the classification of all Ancient ovals.

B. White (2003); R. Haslhofer and O. Hershkovits (2013):

Existence of ancient ovals with O(k)× O(l) symmetry. We
call them White ancient ovals.

Angenent (2012): establihes the formal matched asymptotics
of all Ancient ovals as t → −∞.

They are small perturbations of ellipsoids.
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Ancient ovals

Properties of the White’s ancient ovals:

α-noncollapsed.

lim inft→−∞ infMt

λ1+...λn−j+1

H > 0, j < n − 1.

lim sup
t→−∞

diam(Mt)√
|t|

=∞.

lim supt→−∞
√
|t| supMt

|A| =∞.

Characterization of the sphere:

(Huisken-Sinestrari, Haslhofer-Hershkowitz) α-noncollapsed
solution such that at least one of the following holds.

lim inft→−∞ infMt
λ1
H > 0

lim sup
t→−∞

diam(Mt)√
|t|

<∞

lim supt→−∞
√
|t| supMt

|A| <∞.
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Unique asymptotics of Ancient MCF ovals

S. Angenent, D., and N. Sesum (2015): All ancient ovals with
O(1)× O(n) symmetry have unique asymptotics as t → −∞,
and satisfy Angenent’s precise matched asymptotics:

Geometric properties t → −∞: type II ancient solutions

diam(t) ≈
√

8|t| log |t| and Hmax(t) ≈
√

log |t|√
2|t|

.
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Uniqueness of Ancient MCF ovals

Conjecture 1: The Ancient ovals which are O(n) invariant are
uniquely determined by their asymptotics at t → −∞.

Hence: they are unique (up to dilations and translations).

Conjecture 2: All uniformly 2-convex Ancient ovals are
rotationally symmetric.

Theorem (Angenent, D., -Sesum (2018)):
Assume that Mt , t ∈ (−∞, 0), is a uniformly two-convex
Ancient oval. Then, up to ambient isometries, translations
and parabolic rescaling, Mt is either a family of shrinking
spheres or it is the White’s Ancient oval.
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Ancient compact solutions to the 2-dim Ricci flow

Consider an ancient solution of the Ricci flow

(RF)
∂gij
∂t

= −2Rij

on a compact manifold M2 which exists for all time
−∞ < t < T and becomes singular at time T .

In dim 2, we have Rij = 1
2R gij , where R is the scalar

curvature.

Hamilton (1988), Chow (1991): After re-normalization, the
metric becomes spherical at t = T .

Problem: Provide the classification of all ancient compact
solutions.
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Ancient compact solutions to the 2-dim Ricci flow

Choose a parametrization g
S2

= dψ2 + cos2 ψ dθ2 of the
limiting spherical metric.

We parametrize our solution as g(·, t) = u(·, t) g
S2
.

Then the (RF) becomes equivalent to the fast-diffusion
equation:

ut = ∆S2 log u − 2, on S2 × (−∞,T ).

Provide the classification of all ancient solutions.
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Examples of compact solutions on S2

Type I solution: the contracting spheres.

Type II solution: the King-Rosenau solution of the form:

u(ψ, t) = [a(t) + b(t) sin2 ψ ]−1, t < T .

As t → −∞ the King-Rosenau solution looks like two cigar
solitons glued together.
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The classification result

Theorem: (D., Hamilton, Sesum - 2012)

The only ancient solutions to the Ricci flow on S2 are the
contracting spheres and the King-Rosenau solutions.

Proof: combines geometry and analysis.

i. a monotonicity formula and uniform a priori C 1,α estimates
that allow us to pass to the limit as t → −∞.

ii. geometric arguments that allow us to classify the backward
limit as t → −∞.

iii. maximum principle arguments that allow us to characterize the
King-Rosenau solutions among type II solutions.

iv. an isoperimetric inequality that allows us to characterize the
contracting spheres among type I solutions.
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The 3 dimensional Ricci flow - Open problems

3-dim Ricci flow: The analogue of the 2-dim King-Rosenau
solutions have been shown to exist by G. Perelman. They are
type II and k-noncollapsed.

Other collapsed compact solutions in closed form have been
found by V.A. Fateev in a paper dated back to 1996.

Conjecture: The only k-noncollapsed ancient and compact
solutions to the 3-dim Ricci flow are the contracting spheres
and the Perelman solutions.

Panagiota Daskalopoulos Part 4 Ancient Solutions to Geometric Flows



Ancient solutions to the Yamabe flow

We will conclude by discussing ancient solutions g = gij of the
Yamabe flow on Sn, n ≥ 3.

The Yamabe flow may be viewed as the higher dimensional
analogue of the 2-dim Ricci flow.

It is the evolution of metric g(·, t) conformally equivalent to
the standard metric on Sn by

∂g

∂t
= −R g on −∞ < t < T

where R denotes the scalar curvature of g .

Question: Is it possible to provide the classification of all such
ancient solutions ?
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Ancient solutions to the Yamabe flow on Sn

Let g = v
4

n−2 g
Sn

be an ancient solution to the Yamabe flow,
which is conformal to the standard metric on Sn.

The function v evolves by the fast diffusion equation

(v
n+2
n−2 )t = ∆Snv − cn v .

Problem:
Provide the classification of ancient solutions g = v

4
n−2 g

Sn
to

the Yamabe flow, conformal to the standard metric on Sn.
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Examples of compact Type I solutions on Sn

The contracting spheres: given by vS(p, t) = cn (T − t)
n−2
4 .

King (1993): there exist non-self similar ancient compact
solutions in closed form.

Behavior of King solutions as t → −∞

As t → −∞ the King solutions resemble two Barenblatt
self-similar solutions joined with a cylinder.
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Ancient solutions to the Yamabe flow on Sn

Question 1:
Are the contracting spheres and the King solutions the only
examples of type I ancient solutions ?

Question 2:
Are there any type II ancient solutions ?
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New Type I solutions to the Yamabe flow

D., del Pino, J. King and N. Sesum (2016)
There exist infinite many other type I ancient solutions.

As t → −∞ they look as two self-similar solutions vλ, vµ
connected by a cylinder and moving with speeds λ > 0, µ > 0.

Our solutions are not given in closed form but we show very
sharp asymptotics.

In similar spirit to the work by Hamel and Nadirashvili (1999)
where they construct ancient solutions for the KPP equation

ut = uxx + f (u), x ∈ R.
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Ancient towers of moving bubbles - type II solutions

Question: Are there any type II ancient solutions to (YF) ?

D., del Pino and Sesum (2013):
We construct a class of ancient solutions of the Yamabe flow
on Sn which (after re-normalization) converge as t → −∞ to
a tower of n-spheres. They are rotationally symmetric.

t→−∞ t>−∞

The curvature operator in these solutions changes sign and
they are of type II.

Our construction also holds for any number of bubbles.

t→−∞
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Discussion on parabolic gluing methods

Our construction may be viewed as a parabolic analogue of
the elliptic gluing technique.

Elliptic gluing: pioneering works by Kapouleas ’90 -’95 and by
Mazzeo, Pacard, Pollack, Ulhenbeck among many others.

Brendle & Kapouleas (2014): construct new ancient compact
solutions to the 4-dim Ricci flow by parabolic gluing.

Future research direction: apply parabolic gluing on other
geometric flows.
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Conclusion

We discussed ancient solutions to geometric parabolic PDE.

Typical examples are either solitons or other special solutions
obtained from the gluing as t → −∞ of solitons.

The classification of ancient solutions often contributes to the
better understanding of the formation of singularities.

Most of the existing classification results heavily rely on
knowing the exact form of these ancient solutions.

Future research direction: develop new techniques that allow
us to characterize and construct other types of ancient or
eternal solutions.

Panagiota Daskalopoulos Part 4 Ancient Solutions to Geometric Flows



THANK YOU !!!
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