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Motion by curvature of networks in the plane – Joint project with

I Matteo Novaga & Vincenzo Tortorelli, 2003 – 2005
I Annibale Magni & Matteo Novaga, 2010 – 2014
I Matteo Novaga, Alessandra Pluda & Felix Schulze, 2014 –
I Pietro Baldi & Emanuele Haus, 2015 –

This is a (toy) model for the
time evolution of the interfaces
of a multiphase system where
the energy is given only by the
area of such interfaces.

Even if it is still possible to use several ideas from the “parametric” classical
approach to mean curvature flow (differential geometry/maximum principle),
some extra variational methods are needed due to the presence of
multi–points, that makes the network a singular set (possibly, the simplest).
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Some simple observations from simulations

Larger regions “eat” smaller regions. More precisely, the area of a region
bounded by more than 6 edges grows, less than 6 edges it decreases (and
possibly the region collapses).

With the exception of the times when a structural change happens (vanishing
of a curve or of a region), there are only triple junctions and the three
concurring curves form angles of 120 degrees. We call such networks
regular.

If there is no vanishing of a region, there is a collapse of only two triple
junctions along a vanishing curve connecting them, producing a 4–point in
the network. Immediately after such a collapse, the network becomes again
regular: a new pair of triple junctions emerges from the 4–point (standard
transition).

Actually, despite the (apparently) simple problem/behavior/statements, to
show in a mathematically satisfactory way these observations, a lot of
“technology” from analysis and geometry is needed.
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Regular networks

Let Ω be an open, regular and convex subset of R2.

O1

O2

O5

O3

P1

P2

O6

O4

P7P8

P4

P3

P6

P5

Definition

A regular network S =
⋃n

i=1 σ
i ([0, 1]) in Ω is a connected set described by a

finite family of curves σi : [0, 1]→ Ω (sufficiently regular) such that:
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Regular networks

1. the curves cannot intersect each other or self–intersect in their “interior”,
but they can meet only at their end–points;

2. if a curve of the network “touches” the boundary of Ω at a fixed point
P ∈ ∂Ω, no other end–point of a curve can coincide with that point;

3. all the junctions points O1,O2, . . . ,Om ∈ Ω have order three, considering
S as a planar graph, and at each of them the three concurring curves
{σpi}i=1,2,3 meet in such a way that the external unit tangent vectors τ pi

satisfy
∑
τ pi = 0 (the curves form three angles of 120 degrees at Op).
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Examples: The triod and the spoon

A triod T is a network composed
only by three regular, embedded
curves γ i : [0, 1]→ Ω.

P1
γ1

γ3

γ2
O

P3

P2

A
γ2

γ1

Ω

P
O

A spoon Γ = γ1([0, 1])∪γ2([0, 1]) is
the union of two regular, embedded
curves γ1, γ2 : [0, 1]→ Ω.
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Examples: Networks with two triple junctions
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Motion by curvature

Definition
We say that a regular network moves by curvature if each of its
time–dependent curves γ i : [0, 1]× [0,T )→ R2 satisfies

γ i
t (x , t)

⊥ = k i (x , t)

=
〈γ i

xx (x , t) | ν i (x , t)〉
|γ i

x (x , t)|2
ν i (x , t) =

(
γ i

xx (x , t)

|γ i
x (x , t)|2

)⊥

.

To be more precise, a family of regular networks St is a motion by curvature in
a time interval [0,T ) if the functions γ i : [0, 1]× [0,T )→ Ω are at least C2 in
space and C1 in time and satisfy the following system:

γ i
x (x , t) 6= 0∑
τ i (O, t) = 0 at every 3–point

γ i
t = k iν i + λiτ i for some continuous functionsλi

(?)

with fixed end–points on ∂Ω.
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Motion by curvature

With the right choice of the tangential component of the velocity the problem
becomes a non–degenerate system of quasilinear parabolic equations (with
several geometric properties).

γ i
t (x , t) =

γ i
xx (x , t)

|γ i
x (x , t)|2

=⇒ γ i
t (x , t)

⊥ =

(
γ i

xx (x , t)

|γ i
x (x , t)|2

)⊥

= k i (x , t)

Definition

A curvature flow γ i for the initial, regular C2 network S0 =
⋃n

i=1 σ
i ([0, 1])

which satisfies

γ i
t =

γ i
xx

|γ i
x |2

for every t > 0 will be called a special curvature flow of S0.
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Short time existence (Triod)

P1
σ1 σ3

σ2
O

P3

P2

Theorem (Bronsard–Reitich, 1992 & CM–Novaga–Tortorelli, 2004)

For any initial, regular C2+α triod T0 =
⋃3

i=1 σ
i ([0, 1]), with α ∈ (0, 1), which is

2–compatible, there exists a unique special flow in the class
C2+α,1+α/2 ([0, 1]× [0,T )), in a maximal time interval [0,T ).

A triod is 2–compatible if

σi
xx (0)

|σi
x (0)|2

=
σj

xx (0)

|σj
x (0)|2

for every i ,j ∈ {1, 2, 3}

=⇒
3∑

i=1

k i (O) = 0 at the 3–point

Viceversa, if the sum of the curvatures is zero at the 3–point there is a
reparametrization making the triod 2–compatible (geometric 2–compatibility).
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Short time existence

O1
O2

O5

O3

P1

P2

O6

O4

P7P8

P4

P3

P6

P5

Theorem

For any initial network S0 =
⋃n

i=1 σ
i ([0, 1]) which is regular, C2+α with

α ∈ (0, 1), 2–compatible, there exists a unique special flow in the class
C2+α,1+α/2 ([0, 1]× [0,T )), in a maximal time interval [0,T ).

Theorem
For any initial smooth, regular network S0 there exists a unique smooth
special flow in a maximal time interval [0,T ).
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Short time existence

Theorem [Bronsard–Reitich]:
T0 œ C2+–, 2–compatible
special flow “t = “xx/|“x|2

»
there exists a unique solution
Tt œ C2+–,1+–/2([0, 1] ◊ [0, T )).

well–posedness
of the system

Theorem:
S0 œ C2+–, 2–compatible
special flow “t = “xx/|“x|2

»
there exists a unique solution
St œ C2+–,1+–/2([0, 1] ◊ [0, T )).

Theorem [Bronsard–Reitich]:
T0 œ C2+–, 2–compatible
special flow “t = “xx/|“x|2

»
there exists a unique solution
Tt œ C2+–,1+–/2([0, 1] ◊ [0, T )).

well–posedness
of the system

Theorem:
S0 œ C2+–, 2–compatible
special flow “t = “xx/|“x|2

»
there exists a unique solution
St œ C2+–,1+–/2([0, 1] ◊ [0, T )).

Theorem:
S0 œ C2+–, 2–compatible
‘general’ flow “t = k‹ + ⁄·

»
there exists a solution
St œ C2+–,1+–/2([0, 1] ◊ [0, T )).

Theorem:
S0 œ C2+–, 2–compatible
special flow “t = “xx/|“x|2

»
there exists a unique solution
St œ C2+–,1+–/2([0, 1] ◊ [0, T )).

well–posedness
of the system

Proposition:
S0 œ C2+–, geom. 2–compatible
‘general’ flow “t = k‹ + ⁄·

»
there exists a geom. unique solution
St œ C2+–,1+–/2([0, 1] ◊ [0, T )).

P

1

Theorem

For any initial network S0 =
⋃n

i=1 σ
i ([0, 1]) which is regular, C2+α with

α ∈ (0, 1), 2–compatible, there exists a C2+α,1+α/2([0, 1]× [0,T )) curvature
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Short time existence and uniqueness

How much one could weaken the hypotheses to still obtain existence and
uniqueness of the flow?

Theorem

For any initial C2 regular network S0 =
⋃n

i=1 σ
i ([0, 1]) there exists a curvature

flow γ i , in a maximal time interval [0,T ).
Such flow St =

⋃n
i=1 γ

i ([0, 1], t) is a smooth flow for every time t > 0.

I The relevance of this theorem is that the initial network is not required to
satisfy any additional condition (2–compatibility), but only to have angles
of 120 degrees between the concurring curves at every 3–point, that is,
to be regular. Clearly, the curvature function is no more necessarily
continuous at t = 0 at the triple junctions.

I The geometric uniqueness of the solution found in this theorem is an
open problem.

I General problem with uniqueness: it depends on the class of curves
where we look for solutions. No proof of uniqueness in the “natural”
class of C2 in space, C1 in time curves. Lack of maximum principle.
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Short time existence for non–regular networks
All these results and the method work exclusively for regular networks,
moreover, in order to be able to “restart” the flow after some “collapse”
(change of topological structure of the network) we really need an existence
theorem also for non–regular networks.

t → T t > T

???

St StST

Theorem (Ilmanen–Neves–Schulze, 2014)
For any initial network of non–intersecting curves there exists a (possibly
non–unique) Brakke flow by curvature in a positive maximal time interval
such that for every positive time the evolving network is smooth and regular.

No hope for uniqueness. Conjecturally, the flow is unique for “generic” initial
networks.

———————– ◦ ◦ ◦ ———————–
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