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l.ecture 1

& Notations and brief reminder of General Relativity
& Weak gravitational waves (GW) in vacuum

& Generation of GWs (quadrupole expression).




Gravitational Waves across frequency
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Main features of GWs

O Gravitational waves (GWs) exist in every covariant
theory of gravity

O In GR:
O GWs propagate with the speed of light
O GWs are acting as time varying tidal forces

O GWs have two polarization state (in case of linearly
polarized wave: h_, h,

O GWs weakly interact with the matter
(G = 6.674 x 10~ 1Y - are not scattered or absorbed, but
hard to detect \



Special relativity (reminder)

& Existence of inertial coordinate systems (not accelerated)
& Equivalence of inertial coordinate frames

& Universality of the speed of light

We use G=c=1 (mass, length, time in seconds)

interval: As® = —At* + Ax® + Ay® + Az? =, Azt Ax”

timelike t4

OO

0
0 Minkowski metric,
0
1

@, ) — =)

6 worldline Y



Ditferential geometry (reminder)

Non-flat geometry
Metric defines the distances and angles:

/_\ arbitrary metric

ds? = O @AE @D
Local flatness theorem: the metric can be . .
brought by a coordinate transformation f12at (Minkowski)
at a point to Minkowski form, and all its ds® = nuvdatdz”
first derivatives can be made = zero at that
point. (but not the second derivatives!)

We can introduce Local Inertial Frame: approximately flat in a vicinity of a point
(for the scale mauch less than radius of curvature of spacetime) dx <& R




Ditferential geometry (reminder)

Vector field: vector is defined continuously at each point: requires/involves comparison
between vectors at two points.

AV d(Vve,) dvY_. . dg,

dxH dxH dxH dxH

. basis vector could be different
del/ e at different points
dxt G

\Christoffel symbols (not a tensor)

Covariant derivative: Va; B = Va, B T V’urgﬁ
1

QN
Covariant derivative of metric=0 => 1 uv 59

aﬁ(gﬁu,v + 98v,u — Guv,)
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Ditferential geometry (reminder)

Local flatness: at a given point we can make Christoffel symbols=0:
covariant derivative -> partial

Parallel transport of the vector along the curve: we transport the vector along the curve and
we preserve its length and keep it parallel in nearby points.

Local inertial frame (LIF) covariant extension

A%

e Va Uﬁ == B & L=
A\ / u”V 5; 0
parameter tangent to the curve

along the curve

Geodesic: the curve with the shortest distance connecting two points. Line in flat spacetime:
how to extend? Line as straight as possible: tangent to a curve is parallel at nearby points - >
parallel transport of a tangent vector.

uﬁuo‘;g =




Ditferenual geometry (reminder)

Curvature tensor

The vector parallel transported along the loop does not
return to itself if space is curved

1 + 0x1

Vector propagated
I R s DT

OV x 0x10xo RV

curvature

Raﬁuv e Faﬁv,u e Faﬁu,v Fapurpﬁv = Fapvrpﬁu
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Ditferential geometry (reminder)

o) ey R ple Q o R nle’ o
R puv — I by, It Bu,v - I qu gy — L pl/F Bu
Properties of Riemann (curvature) tensor:

O Depends on the second derivatives of metric: cannot be eliminated by coord.
transformation.

O Flat spacetime <-> Riemann=0

O Second covariant derivatives do not commute (~ Riemann)

O Not all components independent (symmetries + differential Bianchi identity)

O In LIF:
1
Raﬁ/ﬂ/ - 9 [gav,ﬁu — Jau,Bv T 9Bu,av — gﬁv,au]

Ricci tensor, Ricci scalar, Einstein tensor:

(8% (8% (@ (8% 10[
RW:gﬁRang R:gﬁR(w GﬁzRB—ig SR
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Differential geometry (reminder)

Geodesic deviation

Consider two geodesic, due to to local flatness
(dx < 'R ) they remain parallel for some time
if started in the nearby points, but if spacetime
is not flat they diverge /converge.

vuvuga — Ra,ul/ﬂu'uuygﬁ V€™ = uﬁfa;ﬂ

covar. deriv along the curve
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General Relativity

(O No particles neutral to grav. interaction

(O Weak equivalence principle: freely falling particles move on timelike geodesics.

(O Einstein equivalence principle: any local physical experiment not involving gravity
has the same result in LIF and in flat spacetime

Einstein equations: should be covariant, should have Newtonian limit

Raﬁ ! 1 o R+ A gaﬁ Bl KTQB Stress-energy tensor

2

Bianchi identities:

Gaﬁ 3 — O > Taﬁ e O Covaiant conservation law

l

4 identities: choice of coordinate frame

13 “



(auge transformation

Consider weak gravitational field: Juv — Nuv Bl h,uy, ‘hluy| <1
1
In the LIF Ropuy = 9 [hozv,ﬁu — Pap,pr + App,ar — hﬁv,au]

gauge transformation: we keep fixed Minkowski part but modify the field:

hg%’w _ hglg — o8 —Loe xi is arbitrary but preserving \hﬁﬁw\ <1

Raﬁuv (hnew) s Raﬁuv (hOld)

In terms of full metric it corresponds to the coordinate transformation:
CYNes SR oY oV
T o i)
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GW in linearized gravity

We need to seprate the background geometry and GWs

W (""\_/+

curved spacetime - ‘R\\ ,' background WAVCS

2%
< n

i

:*!

B
Jap — gaﬁ S hozﬁa Raﬁ,ul/ =— Raﬂuu T Raﬁ,uu

B
Averaging over several GW wavelength

We will work with the metric, o B - GWs

We use LIF for the background (!) geometry (LIF is also called sometimes local Lorentz frame)

Valid on the scales: | <& R still assume that AW <« R
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Weak GWs

In LIF (w.r.t.) background: e = Wl AR AyE A7 O(hQ)

Consider Einstein equations in vacuum (far from the source)  Rag =0

- 1
Introduce trace reverse metric htY = h*Y — 577“ “h, n = e,
Choose gauge (coordinate frame): ht ¥ » =0 <—harmonic gauge

Einstein’s field equations (linear): hH*Y —

. . R e MV
Remaining gauge freedom:  phv

5 E#Vﬂ/ 5, Dfﬂ =0, if |:|§“ — ()

R =0, h=0
T(ransverse)T(raceless) gauge: For the GW travelling in z-direction

0 0 0O O

e 0 h_|_ hx 0
h,uu = h,uy = O hx _h_|_ O
(O 00
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Weak GWs

Consider the plane wave solution:
- e .
A= A,uuezkaa: ; | — {w, kz} 4-wave vector

Einstein equations: P o e EE — () propagates with tthe speed of light.

transverse & traceless A/u/ky = (A1 T 0  Moreover: A% — 0

Note that in general the linearized Einstein equations have also static (non-radiative) solution
(Newtonian potential). To get the radiative part we can take the “TT” part of the spatial metric
by applying the projection operator:

Joap Im
hjk — P’I“jklmh ,
IR P = JE sl — 5 ik Bim, ik = 05k — MM,

n' = k'/|k|

117



Weak GW, polarization

k We can choose polarization basis vectors arbitrary in the plane
orthogonal to the direction of GW propagation

= Introduce basis: €—|— R p p et q q

Y =p'¢? +p'q¢"

il meetl b cld by

v,

Two polarization

finally, Riemann tensor for GW: RO A 5 hfkT
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Geodesic deviation in GW

Consider two observers (A, B) moving on geodesic. We use LIF associated with the observer A,
which is at rest. Consider GW propagating in z-direction, then the distance between A & B:

d2¢ . s i E T

7k : e 1) S —— ¥
2 gl = §hTT‘£k Introduce: 0&7 = €& fo o5 = QhTTfk
5:6 — 1x()}L_|_ 5y — _1y0h+ " .: .-"I::. .:-:.'.r'.:. é::_".'.'._.';. ,:. et :.. .- g .‘.

2 2 q
1 1
0r = =Yohx 0y = sxohx

2 2 i PR LN LW




Generation of GW's

Consider isolated source with weak internal gravity.

R i :
,(Z s Observer (field point)

O Assume that the observer is far away (far zone),
we can use LIF of the observer
O As before we use trace-reverse form of the metric

........

T~ O We use harmonic gauge (coordinates)

Einstein equations: h* = —16m7 (T'LW t,uu)

o

Contains all non-linear terms

from the r.h.s
O We start with the linear order (neglecting the red term)

T (2! =t — |7 — 7))

d3 —/
ERE i

Solution in form of RHY _ 4 /
retarded potentials
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Generation of GW's

O Assume slow motion (v<<c)
O Take observer far away (far zone) ’f = f" N AGW
O We are interested in the radiative part of gravitational potentials => take “TT” part

T 4 ! 4! 3/TT
hip = I a8 0 = dE) b 4

O Use the conservation law T V,,/ —()

7T
hﬁT = {— —M ik (t — )} Quadrupole formula (Landau & Lifshitz)

Jlits — / e (:Cjafk == kT) d°z  mass quadrupole moment

21 ‘\



Generation of GW's

O Besides leading order (mass quadrupole) other moments also give contribution. There are
two types of moments: mass-moments and current-moments

l
Iy~ ML mass moments

z
S; ~ MvL®  current moments

1 [d?Iy  d°I W dts l
2802 By 828253 L gl
R | a2 ¥ a a2z < an Rdl ~ R

h;_|_,>< Y

O Einstein equations are non-linear: grav field is its own source (the red term which we have
neglected). Post-Newtonian expansion: ¢ = y/c <« 1

Guv = Nuv + 5h/(}y) + thfV) ST

Solving Einstein equations iteratively updating the equation of motion at each step
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