# Cosmology

Introduction Geometry and expansion history (Cosmic Background Radiation)

> Growth Secondary anisotropies Large Scale Structure



# Cosmology from Large Scale Structure Sky Surveys

- Supernovae la
- CMB
- Baryon Acoustic Oscillations
- Secondary anisotropies
- Cluster counts and clustering
- Redshift space distortions
- Weak gravitational lensing

# Your name here!

GEOMETRY G R O W T

Η



This is the time since all separations = 0 (i.e. all objects were in same place)





Slope of line gives  $H_0 = 500 (km/s)/Mpc$ .



Hubble's Law:

velocity =  $H_0 x$  distance

### Measuring the expansion



Expansion rate changes with time: Hubble's constant same at all positions in space, but may depend on time

Expect BIG BANG happened about ~14 Gyrs ago (assuming  $H_0$ ~constant)

Expect observable scale of Universe:  $d_H = c/H_0$ = (3x10<sup>5</sup> km/s) / (100h km/s/Mpc) = 3000/h Mpc (set h = 0.71)



 $\label{eq:H0} \begin{array}{l} H_0 = 71 \ (km/s)/Mpc. \end{array}$  Age  $\approx 1/H_0 = 14 \times 10^9$  years. Three possible metrics for homogeneous and isotropic 3-space

$$ds^2 = dr^2 + S_\kappa(r)^2 d\Omega^2 ,$$

 $d\Omega^2 \equiv d\theta^2 + \sin^2\theta d\phi^2$ 

Changing from r to  $x = S_{\kappa}(r)$ makes this:

$$S_{\kappa}(r) = \begin{cases} R \sin(r/R) & (\kappa = +1) \\ r & (\kappa = 0) \\ R \sinh(r/R) & (\kappa = -1) \end{cases}$$

$$ds^{2} = \frac{dx^{2}}{1 - \kappa x^{2}/R^{2}} + x^{2}d\Omega^{2}$$

### **Robertson-Walker metric**

(If homogeneity and isotropy did not exist, it would be necessary to invent them!)

$$ds^2 = -c^2 dt^2 + dr^2 + r^2 d\Omega^2$$
 Minkowski metric

$$ds^{2} = -c^{2}dt^{2} + a(t)^{2} \left[ \frac{dx^{2}}{1 - \kappa x^{2}/R_{0}^{2}} + x^{2}d\Omega^{2} \right]$$
$$ds^{2} = -c^{2}dt^{2} + a(t)^{2} \left[ dr^{2} + S_{\kappa}(r)^{2}d\Omega^{2} \right]$$

Much of Observational Cosmology dedicated to determining  $\kappa$ , a(t), R<sub>0</sub>

Distances in cosmology  $ds^2 = a(t)^2 [dr^2 + S_{\kappa}(r)^2 d\Omega^2]$ Along a spatial geodesic: ds = a(t)dr'Proper' distance is d at  $d_p(t) = a(t) \int_0^r dr = a(t)r$ fixed a:  $d_p(t) = a(t)r(x) = \begin{cases} a(t)R_0 \sin^{-1}(x/R_0) & (\kappa = +1) \\ a(t)x & (\kappa = 0) \\ a(t)R_0 \sinh^{-1}(x/R_0) & (\kappa = -1) \end{cases}$  $\dot{d}_p = \dot{a}r = \frac{\dot{a}}{a}d_p \qquad v_p(t_0) = H_0d_p(t_0)$ 

Note that  $v_p > c$  for sufficiently large  $d_p$ 

### **Redshift and expansion**

Null-geodesic (light) has ds=0 so:  $c^2 dt^2 = a(t)^2 dr^2$ 

Hence 
$$c \frac{dt}{a(t)} = dr$$
 so  $c \int_{t_e}^{t_0} \frac{dt}{a(t)} = \int_0^r dr = r$   
But also  $c \int_{t_e+\lambda_e/c}^{t_0+\lambda_0/c} \frac{dt}{a(t)} = \int_0^r dr = r$ 

Both equal same r, meaning interval between emission and observation always same

We had: 
$$\int_{t_e}^{t_0} \frac{dt}{a(t)} = \int_{t_e+\lambda_e/c}^{t_0+\lambda_0/c} \frac{dt}{a(t)}$$
  
Subtract 
$$\int_{t_e+\lambda_e/c}^{t_0} \frac{dt}{a(t)}$$
 from both to get:
$$\int_{t_e}^{t_e+\lambda_e/c} \frac{dt}{a(t)} = \int_{t_0}^{t_0+\lambda_0/c} \frac{dt}{a(t)}$$

Integral of dt/a(t) during emission = during observation. But a  $\approx$  constant during this short dt, so:

$$\frac{1}{a(t_e)} \int_{t_e}^{t_e + \lambda_e/c} dt = \frac{1}{a(t_0)} \int_{t_0}^{t_0 + \lambda_0/c} dt \text{ making } \frac{\lambda_e}{a(t_e)} = \frac{\lambda_0}{a(t_0)}$$
  
But  $z = (\lambda_0 - \lambda_e)/\lambda_e$  so  $1 + z = \frac{a(t_0)}{a(t_e)} = \frac{1}{a(t_e)}$ 

### Luminosity distance

$$ds^{2} = -c^{2}dt^{2} + a(t)^{2}[dr^{2} + S_{\kappa}(r)^{2}d\Omega^{2}]$$

How is flux = Luminosity/ $4\pi$  distance<sup>2</sup> modified?

flux = Luminosity/Area where:  $A_p(t_0) = 4\pi S_{\kappa}(r)^2$ 

Luminosity = Energy/time, but $E_0 = E_e/(1+z)$ and $dt_0 = dt_e (1+z)$ 

So flux = Luminosity/ $4\pi S_{\kappa}(r)^2 (1+z)^2$ . Define luminosity distance:  $d_L = S_{\kappa}(r) (1+z)$ .

Even in flat space  $d_L = r (1+z) = d_p(t_0) (1+z)$ .

### Angular diameter distance

Light from  $(r, \theta_1, \phi_1)$  and  $(r, \theta_2, \phi_2)$  travels to origin:

 $ds = a(t_e) S_{\kappa}(r) \ \delta\theta$ But ds = length  $\ell$ , and  $a(t_e) = 1/(1+z)$ , so  $\ell = S_{\kappa}(r) \ \delta\theta/(1+z)$ Hence  $d_A = \ell/\delta\theta = S_{\kappa}(r)/(1+z) = d_L/(1+z)^2$ 



Z

### At small look-back times

$$\begin{aligned} a(t) &= a(t_0) + \frac{da}{dt} \Big|_{t=t_0} (t-t_0) + \frac{1}{2} \left. \frac{d^2 a}{dt^2} \right|_{t=t_0} (t-t_0)^2 + \dots \\ \frac{a(t)}{a(t_0)} &\approx 1 + \frac{\dot{a}}{a} \Big|_{t=t_0} (t-t_0) + \frac{1}{2} \left. \frac{\ddot{a}}{a} \right|_{t=t_0} (t-t_0)^2 \\ a(t) &\approx 1 + H_0 (t-t_0) - \frac{1}{2} q_0 H_0^2 (t-t_0)^2 \\ \\ q_0 &\equiv -\left(\frac{\ddot{a}a}{\dot{a}^2}\right)_{t=t_0} = -\left(\frac{\ddot{a}}{aH^2}\right)_{t=t_0} \\ d_p(t_0) &\approx \frac{c}{H_0} \left[ z - (1+q_0/2) z^2 \right] + \frac{cH_0}{2} \frac{z^2}{H_0^2} = \frac{c}{H_0} z \left[ 1 - \frac{1+q_0}{2} z \right] \end{aligned}$$

### Measuring the expansion



$$d_p(t_0) \approx \frac{c}{H_0} \left[ z - (1 + q_0/2)z^2 \right] + \frac{cH_0}{2} \frac{z^2}{H_0^2} = \frac{c}{H_0} z \left[ 1 - \frac{1 + q_0}{2} z \right]$$

### Standard Candles: SNIa



# Supernova Cosmology:

Evidence for a complex expansion history







Expansion history from Geomety (Luminosity distance)

Geometrical Test of curvature:

Standard Rod = Hubble volume at Last Scattering



a If universe is closed, "hot spots" appear larger than actual size





b If universe is flat, "hot spots" appear actual size





c If universe is open, "hot spots" appear smaller than actual size

### CMB physics = geometry at late times: Baryon 'Acoustic' Oscillations in the Galaxy Distribution



### Can see baryons that are not in stars ...



High redshift structures constrain neutrino mass

### The ISW effect

Cross-correlate CMB and galaxy distributions



Interpretation requires understanding of galaxy population



### **Dilation Effect**

Cosmology from growth rate of gravitational instability (which must overcome expansion):

Signal depends on b(a) D(a) d/dt [D(a)/a]





### Effect mainly at later times, when Dark Energy begins to dominate



Cai et al. 2010



 $r_{e} = 0 - 500 \text{ Mpc/h}$ 

### **Gravitational lensing**



### Lensing of the CMB



PrimordialLensedExperiments have just started measuring this effect

# CMB Temperature (Unlensed)



# CMB Temperature (Lensed)



## Order of magnitude

- GR lensing:  $4\Phi$
- Potentials linear and small:  $\Phi \sim 2 \times 10^{-5}$
- Deflection per lens:  $\beta \sim 10^{-4}$
- Characteristic size from peak of Pk: L = 300 Mpc
- Comoving distance to CMB: D = 14000 Mpc
- Number of lenses:  $N \sim D/L \sim 50$
- Total deflection:  $\beta \sqrt{N} \approx 2 \text{ arcmins} \approx \ell = 3000$
- On these scales CMB smooth, so lensing dominates
- Attractive because single, distant source plane with smooth well-defined features



### The Sunyaev-Zeldovich effect(s)





$$\Delta p/p \approx -p/m_{\rm e}(1-\cos\theta)$$



$$y_e = \int \mathrm{d}t \, c \, \boldsymbol{\sigma}_{\mathrm{T}} n_{\mathrm{e}} \frac{k_{\mathrm{B}} T_{\mathrm{e}}}{m_{\mathrm{e}} c^2}$$

In early Universe  $y_{\gamma} \approx y_e$ 

y: Amplitude of distortion

$$y = \int \mathrm{d}t \, c \, \boldsymbol{\sigma}_{\mathrm{T}} n_{\mathrm{e}} \frac{k_{\mathrm{B}} \left( T_{\mathrm{e}} - T_{\gamma} \right)}{m_{\mathrm{e}} c^2}$$

### CMB is dipole in e- restframe SZ effect is ~ mixing of blackbodies

Electron rest frame



### Resulting spectrum will not be blackbody





$$n_{SZ} = y T^4 \frac{\partial}{\partial T} \frac{1}{T^2} \frac{\partial n_{\text{Pl}}}{\partial T}$$

$$= y \frac{xe^{x}}{(e^{x}-1)^{2}} \left( x \frac{e^{x}+1}{e^{x}-1} - 4 \right)$$

$$\Delta I_{sz} = I_{sz} - I_{planck} = \frac{2hv^3}{c^2}n_{sz}$$

 $y_{\gamma} \ll 1$ ,  $T_{\rm e} \sim 10^4$ 

$$y = (\tau_{\text{reionization}}) \frac{k_{\text{B}} T_{\text{e}}}{m_{\text{e}} c^2} \sim (0.1)(1.6 \times 10^{-6}) \sim 10^{-7}$$





 Unique spectral signature: decrease in the CMB intensity at frequencies below ~218 GHz, increase at higher frequencies.  Unique spectral signature: decrease in the CMB intensity at frequencies below ~218 GHz, increase at higher frequencies.



### Approximately independent of redshift





- Unique spectral signature: decrease in the CMB intensity at frequencies below ~218 GHz, increase at higher frequencies.
- Small (10<sup>-3</sup> K) spectral distortion. At a given frequency, signal depends on the pressure of the cluster gas at each point in the cluster, so signal varies in strength over the face of a given cluster. Distortion is strongest in the center.
- Intensity summed over an entire cluster depends on the total mass of the cluster: lower mass clusters produce weaker signal. A single galaxy has insufficient mass to cause distortions in the cosmic background radiation.
- Independent of redshift.

### Kinetic SZ effect

Both tSZ + kSZ give map of electrons = baryons

So they are nice probes of the gastrophysics of galaxy formation



### Can also look for the hot gas in X-rays



Crudely speaking: Lensing→Mass, SZ→pressure, Xray→Temperature

### 'Bullet'-like clusters: Dark matter ~collisionless



### Lensing mass

### Xray photons

### Why study clusters?

- Cluster counts contain information about volume and about how gravity won/lost compared to expansion
- Probe geometry and expansion history of Universe, and nature of gravity

### Massive halo = Galaxy cluster (Simpler than studying galaxies? Less gastrophysics?)



### $d^2N/dzd\Omega = dV/dzd\Omega \times \int dm dn/dm$ where V is comoving volume and

dn/dm is comoving number density.

In practice, don't measure m, but an observable O (e.g. speeds of galaxies, Xray flux, SZ decrement) which is expected to correlate with m:

 $d^2N(O)/dzd\Omega = dV/dzd\Omega \times \int dm dn/dm p(O|m,z)$ 

 Structure at a given time, and, more importantly, growth of structure, provides sharp constraints on models









# Structures in galaxy maps look very similar to the ones found in models in which dark matter is WIMPs





### **Complication:** Light is a biased tracer



Not all galaxies are fair tracers of dark matter; To use galaxies as probes of underlying dark matter distribution, must understand 'bias' How to describe different point processes which are all built from the same underlying density field?

### THE HALO MODEL

Review in Physics Reports (Cooray & Sheth 2002)

## Cosmology from Gravitational Lensing Volume as function of redshift Growth of fluctuations with time



| Weak<br>lensing | Flexion            | Strong<br>lensing |
|-----------------|--------------------|-------------------|
| ۲               | ٤                  |                   |
| Large-scale     | Substructure,      | Cluster and       |
| structure       | outskirts of halos | galaxy cores      |





 Focal length strong function of cluster-centric distance; highly distorted images possible Strong lensing if source lies close to lens-observer axis; weaker effects if impact parameter large • Strong lensing: Cosmology from distribution of image separations, magnification ratios, time delays; but these are rare events, so require large dataset •Weak lensing: Cosmology from correlations (shapes or magnifications); small signal requires large dataset



Lensing provides a measure of dark matter along line of sight

Weak lensing: Image distortions correlated with dark matter distribution

E.g., lensed image ellipticities aligned parallel to filaments, tangential to knots (clusters)



### The shear power of lensing



stronger weaker Cosmology from measurements of correlated shapes; better constraints if finer bins in source or lens positions possible



# Redshift space distortions



### **Redshift space distortions**



compute (Fisher 1995)

## Alcock-Paczynski

- If the Universe is isotropic, clustering is same radial & tangential
- Stretching at a single redshift slice (for galaxies expanding with Universe) depends on
  - H-1(z) (radial)
  - $D_A(z)$  (angular)
- Analyze with wrong model -> see anisotropy
- AP effect measures D<sub>A</sub>(z)H(z)
- RSD limits test to scales where can be modeled



