
Cosmological 
Structure Formation

Linear theory
The transfer function



Structure formation:
The shape of P(k)



Three possible metrics for 
homogeneous and isotropic 3-space

Changing from r to x = Sκ(r) 
makes this:



Robertson-Walker metric

Minkowski metric

Much of Observational Cosmology dedicated to 
determining   κ, a(t), R0

(If homogeneity and isotropy did not exist, it would be necessary to invent them!)



Connection to GR
Gµν = Rµν – gµν R/2 = 8πG Tµν

Homogeneity/isotropy:  
Tµν = diagonal = (ρ,-p,-p,-p)

Conservation of stress-energy:
∇ν (Tµν) = 0 

Using FRW metric:
d(ρa3) = -p d(a3)

Since a3∝V this is like 1st Law of thermodynamics.
So, if p(ρ) then can solve for ρ(t):  

Evolution depends on ‘equation of state’



Equation of state
Consider:  p(t) = w ρ(t)         w independent of t
Then d(ρV)/dt = V (dρ/dt) + ρ (dV/dt) = -p (dV/dt)
So     V (dρ/dt) = - (ρ+p) (dV/dt)

(dlnρ/dt) = - (1+p/ρ) (dlnV/dt)
So          ρ(t)     ∝ a-3(1+w)

Special cases: 
Non-relativistic matter: p = 0  so  w = 0  so  ρ ∝ a-3

Radiation: w = 1/3      so  ρ ∝ a-4

Vacuum energy: w = -1  so  ρ constant



Special cases: 
Non-relativistic matter: 
w = 0  so  ρ ∝ a-3

Radiation:
w = 1/3      so  ρ ∝ a-4

Vacuum energy:
w = -1  so  ρ constant



If Universe 
contains all 
three, then 

different ones 
dominate at 
different t

Conventional 
to define:

Ωm = ρm/ρc
Ωr = ρr/ρc
ΩΛ = ρΛ/ρc
ρc =3H2/8πG 



Matter-radiation equality

1 + zeq = Ωm0/ Ωr0 = 0.3/(8.5e-5) = 3570

Length scale:   c teq = c t0 (teq/t0) 
= c 13.7 Gyrs/35701.5

Stretched by factor of (1 + zeq), so today is 
3 x 105 (km/s) x 13.7 Gyrs/35700.5 = 70 Mpc



Friedmann
equations

From 00 element of 
Einstein equations with 
RW metric (relates 
expansion rate to density 
and curvature);

And from time derivative 
of it (relates acceleration 
to density and pressure).  



Friedmann equation
(dlna/dt) 2 + (κc2/R0

2a(t)2) = (8πG/3) ρ

H2 = (8πG/3) ρ - (κc2/R0
2a(t)2) 

1 - Ω(t)= - κ [c/H(t)]2/R0
2a(t)2

Knowing Ω = knowing sign of curvature 
Flat Universe (κ =0) has Ω(t) = 1; 
it has energy density 3H2/(8πG).
Note that Ω is sum of all components 
(matter + radiation + dark energy) .



Empty Universe:  Ω=0

1 = - κ [c/H(t)]2/R0
2a(t)2

(aH)2 = - κ (c/R0)2

κ=0   requires a = constant
κ=1    not allowed
κ=-1  requires da/dt = constant; a = ct/R0



Flat Universe: Ω = 1 
Suppose a ∝ tq

Then    H = q/t  so ρ ∝ a-3(1+w) ∝ H2 ∝ t-2

means q = 2/3(1+w) 

Matter (w=0):                a ∝ t2/3

Radiation (w=⅓):           a ∝ t1/2

Dark Energy (w=-1)??   a ∝ eHt

(because ρ ∝ a-3(1+w) ∝ H2 ∝ constant) 



Λ (w=-1):             
a ∝ eHt

Empty:  
a ∝ t
Matter (w=0):                
a ∝ t2/3

Radiation(w=⅓):           
a ∝ t1/2

From these, can work out dL(z|Ω,Λ) 



Matter + curvature + Λ

Flat
ΩΛ0 = 0.7
T0 = 2.725K
H0 = 70 km/s/Mpc

radiation matter

Λ



Horizon 
grows ~ t

In the 
future, a will 
increase 
rapidly   



Longer wavelengths ‘enter’             
(are smaller than) horizon later



Sub-horizon:  Linear theory
• Newtonian analysis:

d2R/dt2 = - GM/R2(t) = - (4π/3) Gρ(t)R(t) [1+δ(t)]
• M constant means   R3 ∝ ρ-1 [1+δ]-1 ∝ a3 [1+δ]-1

• I.e.,  R ∝ a [1+δ]-1/3 so  dR/dt ∝ HR - dδ/dt (R/3) [1+δ]-1

and when |δ| << 1 then
(d2R/dt2)/R = (d2a/dt2)/a - (d2δ/dt2)/3 – (2/3)H (dδ/dt)

= - (4π/3) Gρ(t) [1+δ(t)]
• Friedmann equation: (d2a/dt2)/a = - (4π/3) Gρ(t) so

(d2δ/dt2) + 2H (dδ/dt)  = 4π Gρ(t) δ(t) = (3/2) ΩmH2 δ(t)



Linear theory (contd.)
• When radiation dominated (H = 1/2t):  

(d2δ/dt2) + 2H (dδ/dt)  = (d2δ/dt2) + (dδ/dt)/t = 0
δ(t) = C1 + C2 ln(t)  (weak growth)

• In distant future (H = constant):  
(d2δ/dt2) + 2HΛ(dδ/dt) = 0

δ(t) = C1 + C2 exp(-2HΛt)
• If flat matter dominated (H = 2/3t):

δ(t) = D+ t2/3 + D- t-1 ∝ a(t)     at late times

• Because linear growth just multiplicative factor, it 
cannot explain non-Gaussianity at late times



Super-horizon ‘growth’
• Start with Friedmann equation when κ=0:

H2 = (8πG/3) ρ
• Now consider a model with same H but 

slightly higher ρ (so it is a closed universe):
H2 = 8πGρ1/3 – κ/a2

• Then δ = (ρ1 – ρ)/ρ = (κ/a2)/(8πGρ/3)
• For small δ we have δ ∝ a (matter dominated) 

but δ ∝ a2 (radiation dominated)



Long and short modes enter horizon at 
different times, so will grow differently



Potential
outside horizon = constant 

inside horizon = decay during rad. dom

Short modes enter 
earlier so decay more

Long modes enter 
later so decay less



If there were no 
DM wells to fall 
into, baryon 
fluctuations 
today would be 
much smaller; 
observed 
clustering 
strength → DM 
must exist!



• Consider two modes, λ1 and λ2 < λ1 , which entered at 
a1/a2 = λ1/λ2 while radiation dominated

• Their amplitudes will be (a1/a2)2 = (k2/k1)2 so expect 
suppression of power ∝ k-2 at k>keq (i.e. for the short 
wavelength modes which entered earlier)

• After entering horizon, dark matter grows only 
logarithmically until matter domination, after which it 
grows ∝ a

• Baryons oscillate (i.e. don’t grow) until decoupling, 
after which they fall into the deeper wells defined by 
the dark matter

Putting it together



Transfer function is approximately  
TCDM(k) ∝ 1/[1+(k/keq)2]

P(k) ∝ k TCDM
2(k)

FT of TCDM = (keq
-3/4π) exp(-rkeq)/rkeq

so might wish to think of TCDM as 
describing ‘smoothing’ on scale Req

Similarly, sometimes useful to think of 
P(k) as ‘smoothing’ of ‘white-noise’ field 

to obtain field with correlations



Transfer function:  
TCDM(k) ∝ 1/[1+(k/keq)2] 

P(k) ∝ k T2(k)

TWDM(k) ≈ TCDM(k) [1 + (αk)2]-5 



Each species will have its own transfer 
function.  E.g., baryons have Tb(k), so

P(k) ∝ k [ΩCDMTCDM (k) + ΩbTb(k)]2

TCDM(k) ∝ 1/[1+(k/keq)2]
Tb(k) ∝ j0(krBAO)



If all matter 
baryonic, 
power below 
200 Mpc/h is 
suppressed

Need 
nonbaryonic
gravitating 
dark matter 
to explain 
structure 
formation
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