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& Laser interferometer in space: LISA
& Sources and event rate

& Data analysis: Part 1




LIGO/VIRGO
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frequency

LLIGO/VIRGO noise

The noise in LIGO/VIRGO is stationary only on relatively short time scale
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Other GW sources in LIGO/VIRGO frequency band

neutron star
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LISA: Laser Interferometric Space Antenna

O LISA: GW observatory in space: The launch date 2032 - 2034. Leading by
European Space Agency:.

O LISAPathfinder - Technological mission to prove the technical readiness of
LISA - fantastic results, order of magnitude better than minimum requirement

1 AU (150 million km)
Sun




LLISA (cartoon)




LISA

Princi LISA: three satelites in free falling orbits around the sun,
rinciple of measurement

constellation forms equelateral triangle

S(ender) L1~L2~L3= 2.5 mIn. km.

Ay Operates in freq. range 0.1 mHz - 0.1 Hz.
Exchange laser light - measurement of the proper distance
between satellites.

®
I'(eciever) Lwew =1 — few =20mHz Long wavelength is not applicable

We cannot cover the detector by LIF, use “TT” frame: in this frame GW can be seen as affecting
the phase (or frequency) of the laser light.

Change in laser freq. — > Ay n%n‘l?Ahz‘j —— ARV =1V (ts) — RV (tr)
due to GWs = ISy N
/,VO 2(1 T knl)
e N X/
bed f i
unperturbed {req. direction of GW
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propagation




LISA
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o A4 Amplitude of GW times antenna beam function

O Sinc — zero of sinc function gives freq. of GW signal which cannot be measured (f-n of sky
position) - wiggles in the sensitivity at high frequencies
O Phase: t — k.Ry(t) Doppler modulation (dominant) due to relative motion of the detector

and the source N ‘{
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LISA

O The localization of the sources in the sky comes from the Doppler modulation of the phase
and from the amplitude modulation (time dependent antenna beam f-n)
O The term(s) dependent on the position of each spacecraft explicitely (q-vectors): important
at very high frequency: constellation “feels” GW propagation

TDI — Time Delay Interferometry: technique which we apply to cancel the laser noise (in post-
processing the data)

Equal arm Michelson
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GW sources in LISA band

O GW signals in LISA are strong and long-lived.

O LISA data will contain thousands of GW signals simultaneously: need to separate
and characterize them

O Non-stationary noise
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[.ISA sources

O We believe that all galactic nuclei host Massive Black Holes: Milky Way has 4
min. solar mass BH

O Galaxies merge: we can form Massive Black Hole Binary (MBHB) system

O We need stars and gas to bring MBHs close together for GW to be efficient
(binary is merging within Hubble time)

[Credits: Hassinger+, VLA, Chandra, NASA]



[.ISA sources: MBHB

MBHs are formed from the initial BH seed. Those seeds could be “light”
remnant of the first generation of stars or “heavy” from the direct collapse of a
giant gas cloud. BHs accumulated the mas through gas accretion and merging
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LISA: GW signal from MBHB

The signal from MBHB is similar to what we have observed in LIGO (scaled
up in the amplitude and streched in time). GW signal from MBHB is expected
to be the strongest signal (seen by eye in the simulated data). Imposes
stringent demands on the accuracy of GW signal modelling
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EMRIs (extreme mass ratio inspirals)

O Massive BHs in galactic nuclei surrounded by stars and gas with
quite high density

O MBH could capture a compact object (BH, NS, WD) which is thrown
on a very eccentric orbit (due to N-body interaction). The orbit
shrinks and circularizes due to grav. radiation.

O EMRI: binary system with extreme mass ratio of component 107 -
105

O Compact object revolves 10¢ orbits in the proximity of MBH before
the plunge.

117



EMRI

365 days before merger, axis units AU, current average speed 0.164 ¢

[Credits: S Draco, CalTech]
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EMRI

O Orbital motion: (almost) elliptical with a strong relativistic precession +
orbital precession due to spin-orbital coupling

O Signal is very rich in structure (hard to detect but gives a lot of information)

O Ultra-precise parameter determination (if detected). Can map spacetime of
a heavy object: holiodesy
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Galactie white dwart binaries

O We expect to have 107 WD binaries all emitting GWs in the LISA band, only 104
can be resolved individually, other form stochastic GW signal (foreground)

O GW signal is almost monochromatic

O Verification binaries: known from current e/ m observations (+GAIA,+ LSST)

detected binaries: unsubtracted ;
detached, foreground -
mass transferring / :
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Expected event rate in LISA

O MBHB : high uncertainties in the event rate - from few to few
hundreds per year

O EMRIs: even more uncertain - from few to few thousands of
detectable GW signals per year.

O GW signal from solar mass BBH (LIGO/VIRGO sources). We expect
to observe about 10 sources: GW signal first observed in LISA and
then 5-10 years later with the ground based detectors.

O Possible detection of the stochastic GW signal from energetic
processes in the early Universe.
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[LISA data

LISA data analysis is quite a complex task. We organize the LISA data
challenge: https:/ /lisa-ldc.lal.in2p3.fr/home . We simulate LISA data (noise
and GW signals) and anyone can download the data and analyse it.
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https://lisa-ldc.lal.in2p3.fr/home

Data analysis: Matched filtering

GW150914 SR Raw data

GW signal from merging BHs (we search for)

=
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Matched filtering: is used when we are searching for a signal of known form in the noisy data.
The basis: we correlate the data with expected signal and search for a maximum of correlation.

wavform /template we search for.

@ AR / - CZ(f )iL* (f ) d f Correlation in frequency domain,

% S(f) weighted by detector sensitivity
data \

noise power spectral density
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SNR

Matched filtering
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Matched filtering and parameter estimation

template

Noise = data - template
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Matched filtering and parameter estimation

template residuals
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[LOSC: https:/ /losc.ligo.org / tutorials/]
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Likelihood

Let us assume that the data contains the signal.: hypothesis (model) H:

d(t) =n(t) + s(t,0;)  signal “s” depends on parameters 9;

data = noise + signal

If the template matches the GW signal exactly h(t,0;) = s(t,0;) —> d(t) — h(¢,0:) = n(?)

—

p(d(t)u{lv §(t, >‘)) T p(d(t) = S(tv A)) — Pn

O Assume that the noise is Gaussian (but not necessarily white): non white noise has different
variance at different frequencies. The the likelihood can be written as

Likelihood: p(d|H7,0;) oc e~ 2(d—R(0:)d—h(6:)

b
The inner product: matched filtering (a]b) = 4R /

O We search for parameters which maximize the likelihood: making the residuals most

A

noise-like — maximum likelihood estimators for parameters ¢,
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