Cosmological
Structure Formation

Spatial statistics



STATISTICS OF RANDOM
FIELDS

e Section 3.2-3.4 (p.32-38) in PT review
(Bernardeau et al. 2002)

e Section 2.1 in Halo Model review (Cooray-
Sheth 2002)

But first ... some background



Continuous probability distributions

* P(<x) = ["dx p(x)
e m" moment: <x™> = [dx p(x) x™
e Fourier transform: F(t) = [dx p(x) exp(-itx)

— sometimes called Characteristic function

— d™F/dt™ ~ im<x™>, so F(t) is equivalent to
knowledge of all moments

e If x>0, Laplace transform more useful:
e L(t) = [dx p(x) exp(-tx)



Distribution of sum of n
independent random variates

* p,(s) = Jdx p(x) [dy p(y) Sp(x+y =s)
= [dx p(x) p(s-x)
e F,(t) = [ds exp(-its) [dx p(x) p(s-x)
= [ds [dx p(x) exp(-itx) p(s-x) exp[-it(s-X)]
= :1(t) Fl(t)
¢ Fylt) = [Fy(0))

= Convolve PDFs = Multiply CFs




Fourier transform exp(ikx) useful

 Convolutions become products
— Smoothing on scale R: 8;(x) = 6(k) e** W(kR)
e Each derivative brings down a power of ik

— Can transform differential equations into algebraic
equations

e Integral brings 1/ik

— divergence at k=0 ~ constant of integration
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Quantify clustering by number of pairs compared to
random (unclustered) distribution, triples compared to
triangles (of same shape) in unclustered distribution, etc.



2pt spatial statistics

e dP=<n;>dV,<n,>dV, [1+(r,1,)]
=<n>2dV,dV, [1+&(r,—T,)] homogeneity
=<n>2dV, dV, [1+&(|r,—r,])] isotropy

Define: o(r) = [n(r) — <n>]/<n>
Then: (r) =< o(x) o(x+r)> & is the correlation function
Estimator: <(D;-R,)/R; (D,-R,)/R,>~ (DD-2DR+RR)/RR
translational invariance isotropy
And FTis: < 0(k,) d(k,) >=(2m)3 6, (k,+k,) P(|k,])
P(k) is the power spectrum
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Abstract

The correlation function for the spatial distribution of galaxies in the
universe i8 determined to be (ro/r)'?, »r being the distance belween galaxies.
The characteristic length =y i8 4.7 Mpe. This determination is based on the
distribution of galaxies brighter than the apparent magnitude 19 counted by
SHANE and WIRTANEN (1967). The reason why the correlation function has the

form of inverse power of r is that the universe is in a state of *neutral”
stability.

Number of data pairs with separation r DD(r) — 1 + é:(r)
Number of random pairs with separation r RR(r)



ot Power-law: &(r) = (ry/r)”
L slope y=-1.8
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2pt spatial statistics

e dP=<n;>dV,<n,>dV,[1+¢(r,,r,)]
=<n>2dV,dV, [1+&(r;—r,)] homogeneity
=<n>2dV, dV, [1+&(|r —T,])] isotropy

Define: &(r) = [n(r) — <n>]/<n>

Then: &(r)=<0(x) d(x+r)> & isthe correlation function

Estimator: 1+ &(r) = data-pairs/random-pairs = DD(r)/RR(r)
=3 Ndata 1 (if r; =)/ 3 Nrandom 1 (if r; = r in same volume)
or <(D,;-R,)/R, (D,-R,)/R,>~ (DD-2DR+RR)/RR

And FT is: < O(k,) d(k,) > = (2m)3 o,(k,+k,) P(|k,|)
P(k) is the power spectrum



(Better) Estimator
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&r) = (5(X)5(X+I‘)>
= lim f Zékexp (ik - X)Zék, exp [—ik’ - (x +1)] d
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P(k) and &(r) are FT pairs
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Variance of o, (0 smoothed on R):
c(R) = [dk/k A(k) W%(kR)

Correlations in smoothed field

A(K) = k3P(k)/2m2
De,r,(K) = A(K) W(KR,) W(KR,)

Earr, (1) = J dK/K Bg o (K) jo(kr)



E.g. Power-law P(k)
o &(r) = [dk/k [k3 Ak"/2r2] j,(kr) oc r3if n>-3
» 52(R) = (A/2r2) [dk/k kn*3 exp(-k?R2)
= (A/2n?) [[(n+3)/2]/2 R3™
o Ex(r) = (A/2m?) [dk k2*" exp(-k2R?) jo(kr)
= (A/21?) (1/2r) erf(r/2R) if n=-2
— &olr) whenr » R
(smoothing irrelevant on large scales? BAO ...)




Gaussian PDF

p(x) = exp[-(x-n)%/26%]/c\2n
F(t) = exp(itu) exp(- t> 6?)
F.(t) = exp(it nu) exp(- t> nc?)

Distribution of sum of n Gaussians is Gaussian
with mean nu and variance nc?

In general, PDFs are not ‘scale invariant’



Gaussian field

e p(x)=exp(-x"C1x/2)/ (2m)"/2 \/Det[C]
where X = (X, ... X,) with x; =x(ry) - <x(r)>
and Cij = <X; X;>

e HW: Show that Fourier Transform/CF is
F(t) = <exp(it.x)> = [dx p(x) exp(it.x) = exp(im't - t'Ct/2)
where m = (<x(r,)>, ..., <x(r,)>)

e For Gaussian field C may be much simpler (e.g.
approximately band diagonal) than C.



Gaussian Random Fields

Rayleigh (2d Gaussian) amplitude + uniform random phase

In 2 Gaussian field Fourier modes are uncorrelated, by this we mean

(6(k1)...0(kops1))=0
(8(ky) . 5(kzp)

2. [T (6(ki)o(ky))

all pair associations p pairs (i,j)
remember that (6(k)§(K'))= dép(k+K)P(k)

These properties are usually summarized by saying that connected moments of
order larger than 2 are zero,

(6(ky)...0(ky))e=0, N >2

Thus, to generate a Gaussian field, just draw 2 random numbers per mode...



One realization of n=0 one-dimensional Gaussian Random Field
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One realization of n=-2 one-dimensional Gaussian Random Field
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Gaussian field (contd.)

Let 6(k) be multivariate Gaussian with zero-mean and
diagonal covariance  P; = <6(k;) 6(k;)>.

Let 6(x) = 2 &(k) exp(ik.x) = F; &(x;)

Since 6(x) is sum of (zero-mean) Gaussians for each x, it
is itself a Gaussian number. So joint distribution of all
&(x) is multivariate Gaussian.

HW1: Show that distribution of 6(x) is multivariate
Gaussian with zero mean and covariance §=F' P F. In
general, ¢ will not be diagonal:



ion for P(k) oc k"

Structure format




GRFs are special. In general there’s
(much) more to it than 2pt statistics
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Both distributions have ~ same Pk



Full N-body

Both distributions have same P(k)
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