
The Spherical Evolution model

Beyond linear theory:
Spherical collapse of ‘halos’

Spherical expansion of ‘voids’



Recall linear theory:
• When radiation dominated (H = 1/2t):  

(d2δ/dt2) + 2H (dδ/dt)  = (d2δ/dt2) + (dδ/dt)/t = 0
δ(t) = C1 + C2 ln(t)  (weak growth)

• In distant future (H = constant):  
(d2δ/dt2) + 2HΛ(dδ/dt) = 0

δ(t) = C1 + C2 exp(-2HΛt)
• If flat matter dominated (H = 2/3t):

δ(t) = δ+ t2/3 + δ- t-1 ∝ a(t)     at late times

• Linear growth just multiplicative factor, so if initial 
conditions Gaussian, linearly evolved field is too, with

P(k,t) = D2(t)/D2(tinit) P(k,tinit)



Growing mode in ΛCDM
δ(x,t) = D(t) δinit(x)

Conventional to express as function of z:
D(z) = (5/2) Ω0H0

2 H(z) zʃ
∞ dz’ (1+z’)/H3(z’)

This is normalized so that D(z) → 1/(1+z) at high 
z, since early universe is matter dominated (EdS). 
Growth slows down as Λ dominates.



At small k, only 
amplitude 
grows

At high k, shape 
also changes

Bumps and 
wiggles = 
cosmic variance

Ratio of Pk not 
sensitive to 
cosmic variance



Linear theory
shape

Nonlinear
evolution

changes
shape

Figure does not show this, 
but nonlinear evolution also 
couples modes (recall k-modes 
independent in a GRF)



Initially 
Gaussian 

fluctuation 
field becomes 

very non-
Gaussian

Linear growth just 
multiplicative factor, so  

cannot explain non-
Gaussianity at late times



Estimate of ‘nonlinear’ scale
• σ2 (r) = <δ2(t)> = ∫dk/k 4π k3 P(k,t) W2(kR) 
• If P(k) = Akn then <δ2(t)> ~ R-(3+n) ~ M-(3+n)/3

(converges only for n>-3).
– Convergence of potential fluctuations only if n=1.  

• Note:   P(k,t) = D+
2 (t) P(k),  so <δ2(t)> ~ 1 

means  nonlinear structure on scales smaller 
than Rnl ~ D+

2/(3+n) ~ t(4/3)/(3+n)

Hierarchical structure formation for -
3<n<1



Structure formation for P(k) ∝ kn



Spherical evolution model

d2R/dt2 = − GM/R2 + ΛR 
= − ρ (4πG/3H2) H2R + ΛR 
= − ½ Ω(t)H(t)2 R + ΛR

• Note:  currently fashionable to modify gravity.  
Should we care that only 1/R2 or R give stable circular 
orbits?



• Excise a sphere and replace with smaller one of 
same mass

• Perturbing time of ‘big bang’ → decaying mode
• Perturbing energy of sphere → growing mode

growing modedecaying mode



Spherical evolution model
• Initially,  Ei = – GM/Ri + (HiRi)2/2         (Λ = 0)
• Shells remain concentric as object evolves; if 

denser than background, object pulls itself 
together as background expands around it

• At ‘turnaround’:  E = – GM/rmax = Ei

• So  – GM/rmax = – GM/Ri + (HiRi)2/2
• Hence (Ri/r) = 1 – Hi

2Ri
3/2GM 

= 1 – (3Hi
2 /8πG) (4πRi

3/3)/M
= 1 – 1/(1+∆i) = ∆i/(1+∆i) ≈ ∆i



To match to ‘growing mode’
Ei = – G ρi (4πRi

3/3)(1+∆i )/Ri + (HiRi)2(1 - ∆i /3)2/2
= [– (ρi /ρci)(1+∆i ) + (1 - ∆i /3)2] (HiRi)2/2
≈ [– 1-∆i + 1 - 2∆i /3] (HiRi)2/2 = – (5∆i /3) (HiRi)2/2
= – GM/rmax = – GM/Ri (Ri/rmax) 
= – (Ri/rmax) (ρi /ρci)(1+∆i ) (HiRi)2/2
= – (Ri/rmax) (1+∆i ) (HiRi)2/2 

• Hence (Ri/rmax) = (5∆i/3)/(1+∆i) ≈ 5∆i/3



Virialization
• Final object virializes:   −W = 2K
• Evir = W+K = W/2 = −GM/2rvir= −GM/rmax

– so  rvir = rmax/2:  
• Ratio of initial to final size  = (density)⅓

– final density determined by initial overdensity
• To form an object at present time, must 

have had a critical over-density initially 
• Critical density same for all objects!
• To form objects at high redshift, must have 

been even more over-dense initially



Nonlinear evolution:
Spherical collapse

R(t)
Rinit

t/tinit

Turnaround:  E = -GM/rmax

Virialize: -W=2K

E = W+K = W/2
rvir = rmax/2

Modify gravity → modify collapse



Spherical evolution model
• ‘Collapse’ depends on 
initial over-density ∆i; 
same for all initial sizes
• Critical density 
depends on cosmology
• Final objects all have 
same density, whatever 
their initial sizes
•Collapsed objects 
called halos are ~ 200×
denser than critical 
(background?!), 
whatever their mass 

(Figure shows particles at z~2 which, at z~0, are in a cluster) 

Tormen 1997



Exact Parametric Solution 
(Ri/R) vs. θ and  (t/ti) vs. θ

1 + δ(t) =  Mass/(ρcomVolume) 
= (Rinitial/R)3

= (9/2) [θ – sin(θ)]2/ [1 – cos(θ)]3

And
δL(t) = (3/10) (9/2)1/3 [θ – sin(θ)]2/3

This is for EdS, but cosmology dependence weak.  

For underdensities:
θ – sin(θ) → sinh(θ) – θ 
1 – cos(θ) → cosh(θ) – 1



Nonlinear over-density
• Turnaround at θ=π, so nonlinear density at 

turnaround is (9/2)(π2/8) = 5.55x background
• Subsequent collapse and virialization on a scale 

that is 2x smaller → density 8x larger.
• This happens at time 2tta so background density 

has decreased by (22/3)3 = 4. 
• As a result final object is (9/2)(π2/8) x 8 x 4 = 

18π2 x background density.
• This factor depends on cosmology: For LCDM,   

18π2 [1 + (Ωvir -1) 82/178 – (Ωvir -1)2 39/178]/Ωvir



Exact Parametric Solution 
(Ri/R) vs. θ and  (t/ti) vs. θ

very well approximated by…
(Rinitial/R)3

=  Mass/(ρcomVolume) 
= 1 + δ ≈ (1 – DLinear(t) δi/δsc)−δsc

Dependence on cosmology from  
δsc(Ω,Λ), but this is rather weak

Also works for underdensities!



Exact Parametric Solution 
(Ri/R) vs. θ and  (t/ti) vs. θ

Now, 1+δ vs δL is monotonic:
δ = δL+ (17/21) δL

2 + (341/567) δL
3 + …

These coefficients are exactly the same as  the monopole in PT
Terms like δL

2 are convolutions in k-space
Therefore k-modes of nonlinear δ are coupled

So it can be inverted:
δL = δ - (17/21) δ2 + (2815/3969) δ3 + …

This is for EdS, but in practice, approximately cosmology 
independent.



Exact Parametric Solution 
(Ri/R) vs. θ and  (t/ti) vs. θ

very well approximated by…
(Rinitial/Rt)3

=  Mass/(ρcomVolume) 
= 1 + δ(t) ≈ (1 – DLinear(t) δi/δsc)−δsc

Dependence on cosmology from  
δsc(Ω,Λ), but this is rather weak



1 + δ ≈ (1 – δLinear/δsc)−δsc

• As δLinear → δsc (≈ 1.686), δ → infinity 
– This is virialization limit
– Zeldovich (approximation) has δsc = 3
– Standard perturbation theory has δsc = 21/13 = 1.61

• As δLinear → 0, δ ≈ δLinear
• If δLinear= 0 then δ = 0

– This does not happen in modified gravity models where 
D(t) → D(k,t)

– Related to loss of Birkhoff’s theorem when r−2 lost?
• Note 1+δ → 0 as δLinear → -∞

– Why is δLinear < -1 sensible?  



Only very fat cows are spherical….

(Lin, Mestel & Shu 1963; Icke 1973; White & Silk 1978;  Bond & Myers 1996; Sheth, 
Mo & Tormen 2001; Ludlow, Boryazinski, Porciani 2014)



Triaxial collapse:  initial sphere 
evolves because of triaxial shear 

size

time

Collapse of 1st axis sooner than in spherical model; 
collapse of all 3 axes takes longer (Bond & Myers 1996; 

Sheth, Mo, Tormen 2001)

Evolution 
of 2nd axis 
very 
similar to 
spherical 
model of 
same 
initial 
density



Why does this work at all?

• Collapse is lumpy, not smooth
• Collapse is anisotropic, not spherical



• 8 halos,  
1015Msun at 
z=0 in ΛCDM

• Only dark 
matter 
particles 
within R200
shown 



• Same 
objects at 
z=1

• Blue 
shows 
dark 
matter 
within 
20kpc at 
z=0 



• Same 
objects at 
z=2

• Blue 
shows 
dark 
matter 
within 
20kpc at 
z=0 



Why does this work at all?

• Collapse is lumpy, not smooth
– Centers of virialized subclumps at early time end 

up in center of virialized halo at later time
– Spherical collapse has rank ordering in binding 

energy ‘built-in’  

• Collapse is anisotropic, not spherical
– Monopole of full anisotropic solution is given by 

SC at all orders



Virial Motions (within ‘halos’)
• (Ri/rvir) ~ f(∆i): ratio of initial and final sizes depends on 

initial overdensity
• Mass M ~ Ri

3 (since initial overdensity « 1)
• So final virial density ~ M/rvir

3 ~ (Ri/rvir)3 ~ function of 
critical density:  Hence, all virialized objects have the 
same density, ∆vir ρcrit(z), whatever their mass

• V2 ~ GM/rvir ~ (Hrvir)2∆vir ~ (HGM/V2)2 ∆vir ~ (HM)2/3:
massive objects have larger internal velocities or  
temperatures; H decreases with time, so, for a given 
mass, virial motions (or temperature) higher at high z



Hydrostatic equilibrium
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