The Spherical Evolution model

Beyond linear theory: Spherical collapse of 'halos' Spherical expansion of 'voids'

Recall linear theory:

- When radiation dominated (H = 1/2t): $(d^{2}\delta/dt^{2}) + 2H (d\delta/dt) = (d^{2}\delta/dt^{2}) + (d\delta/dt)/t = 0$ $\delta(t) = C_{1} + C_{2} \ln(t)$ (weak growth)
- In distant future (H = constant): $(d^{2}\delta/dt^{2}) + 2H_{\Lambda}(d\delta/dt) = 0$ $\delta(t) = C_{1} + C_{2} \exp(-2H_{\Lambda}t)$
- If flat matter dominated (H = 2/3t): $\delta(t) = \delta_+ t^{2/3} + \delta_- t^{-1} \propto a(t)$ at late times
- Linear growth just multiplicative factor, so if initial conditions Gaussian, linearly evolved field is too, with P(k,t) = D²(t)/D²(t_{init}) P(k,t_{init})

Growing mode in ACDM $\delta(x,t) = D(t) \ \delta_{init}(x)$ Conventional to express as function of z: $D(z) = (5/2) \ \Omega_0 H_0^2 H(z) \ \int^{\infty} dz' \ (1+z')/H^3(z')$

$$g(z) \equiv (1+z) D(z) \approx \frac{5\Omega(z)}{2} \frac{1}{\Omega^{4/7}(z) - \Omega_{\Lambda}(z) + [1 + \Omega_m(z)/2][1 + \Omega_{\Lambda}(z)/70]}$$

This is normalized so that $D(z) \rightarrow 1/(1+z)$ at high z, since early universe is matter dominated (EdS). Growth slows down as Λ dominates.

Power spectra in DEUS Full Universe Run: Non-linear imprint - ACDM WMAP7

Initially Gaussian fluctuation field becomes very non-Gaussian

Linear growth just multiplicative factor, so cannot explain non-Gaussianity at late times

Estimate of 'nonlinear' scale

- $\sigma^2(r) = \langle \delta^2(t) \rangle = \int dk/k \ 4\pi \ k^3 \ P(k,t) \ W^2(kR)$
- If $P(k) = Ak^n$ then $\langle \delta^2(t) \rangle \sim R^{-(3+n)} \sim M^{-(3+n)/3}$ (converges only for n>-3).

Convergence of potential fluctuations only if n=1.

• Note: $P(k,t) = D_{+}^{2}(t) P(k)$, so $\langle \delta^{2}(t) \rangle \sim 1$ means nonlinear structure on scales smaller than $R_{nl} \sim D_{+}^{2/(3+n)} \sim t^{(4/3)/(3+n)}$ Hierarchical structure formation for -

3<n<1

Structure formation for P(k) $\propto k^n$

Spherical evolution model

- $d^{2}R/dt^{2} = -GM/R^{2} + \Lambda R$ $= -\rho (4\pi G/3H^{2}) H^{2}R + \Lambda R$
- $= \frac{1}{2} \Omega(t) H(t)^2 R + \Lambda R$
- Note: currently fashionable to modify gravity. Should we care that only 1/R² or R give stable circular orbits?

- Excise a sphere and replace with smaller one of same mass
- Perturbing time of 'big bang' → decaying mode
- Perturbing energy of sphere \rightarrow growing mode

Spherical evolution model

- Initially, $E_i = -GM/R_i + (H_iR_i)^2/2$ ($\Lambda = 0$)
- Shells remain concentric as object evolves; if denser than background, object pulls itself together as background expands around it
- At 'turnaround': $E = -GM/r_{max} = E_i$
- So $-GM/r_{max} = -GM/R_i + (H_iR_i)^2/2$
- Hence $(R_i/r) = 1 H_i^2 R_i^3 / 2GM$

 $= 1 - (3H_i^2/8\pi G) (4\pi R_i^3/3)/M$

 $= 1 - 1/(1 + \Delta_i) = \Delta_i/(1 + \Delta_i) \approx \Delta_i$

To match to 'growing mode' $E_{i} = -G \rho_{i} (4\pi R_{i}^{3}/3) (1 + \Delta_{i})/R_{i} + (H_{i}R_{i})^{2} (1 - \Delta_{i}^{3}/3)^{2}/2$ $= [-(\rho_i/\rho_{ci})(1+\Delta_i) + (1-\Delta_i/3)^2] (H_iR_i)^2/2$ $\approx [-1 - \Delta_i + 1 - 2\Delta_i/3] (H_i R_i)^2/2 = -(5\Delta_i/3) (H_i R_i)^2/2$ $= -GM/r_{max} = -GM/R_i (R_i/r_{max})$ $= - (R_i/r_{max}) (\rho_i/\rho_{ci})(1+\Delta_i) (H_iR_i)^2/2$ $= - (R_i/r_{max}) (1 + \Delta_i) (H_iR_i)^2/2$

• Hence $(R_i/r_{max}) = (5\Delta_i/3)/(1+\Delta_i) \approx 5\Delta_i/3$

Virialization

- Final object virializes: -W = 2K
- $E_{\text{vir}} = W + K = W/2 = -GM/2r_{\text{vir}} = -GM/r_{\text{max}}$ - so $r_{\text{vir}} = r_{\text{max}}/2$:
- Ratio of initial to final size = (density)^{1/3}
 - final density determined by initial overdensity
- To form an object at present time, must have had a critical over-density initially
- Critical density same for all objects!
- To form objects at high redshift, must have been even more over-dense initially

Spherical evolution model

 'Collapse' depends on initial over-density Δ_i ; same for all initial sizes • Critical density depends on cosmology • Final objects all have same density, whatever their initial sizes Collapsed objects called halos are ~ 200× denser than critical (background?!), whatever their mass

(Figure shows particles at z~2 which, at z~0, are in a cluster)

Exact Parametric Solution (R_i/R) vs. θ and (t/t_i) vs. θ $1 + \delta(t) = Mass/(\rho_{com}Volume)$ $= (R_{initial}/R)^3$ $= (9/2) [\theta - \sin(\theta)]^2 / [1 - \cos(\theta)]^3$ And $\delta_1(t) = (3/10) (9/2)^{1/3} [\theta - \sin(\theta)]^{2/3}$ This is for EdS, but cosmology dependence weak.

For underdensities:

$$\theta - \sin(\theta) \rightarrow \sinh(\theta) - \theta$$

 $1 - \cos(\theta) \rightarrow \cosh(\theta) - 1$

Nonlinear over-density

- Turnaround at $\theta = \pi$, so nonlinear density at turnaround is $(9/2)(\pi^2/8) = 5.55x$ background
- Subsequent collapse and virialization on a scale that is 2x smaller → density 8x larger.
- This happens at time 2t_{ta} so background density has decreased by (2^{2/3})³ = 4.
- As a result final object is (9/2)(π²/8) x 8 x 4 = 18π² x background density.
- This factor depends on cosmology: For LCDM, $18\pi^2 [1 + (\Omega_{vir} - 1) 82/178 - (\Omega_{vir} - 1)^2 39/178]/\Omega_{vir}$

Exact Parametric Solution (R_i/R) vs. θ and (t/t_i) vs. θ very well approximated by...

$(R_{initial}/R)^{3}$ = Mass/(ρ_{com} Volume) = 1 + $\delta \approx (1 - D_{Linear}(t) \delta_{i}/\delta_{sc})^{-\delta sc}$

Dependence on cosmology from $\delta_{sc}(\Omega,\Lambda)$, but this is rather weak Also works for underdensities!

Exact Parametric Solution (R_i/R) vs. θ and (t/t_i) vs. θ

Now, $1+\delta \text{ vs } \delta_{L}$ is monotonic: $\delta = \delta_{L} + (17/21) \delta_{L}^{2} + (341/567) \delta_{L}^{3} + ...$ These coefficients are *exactly* the same as the monopole in PT Terms like δ_{L}^{2} are convolutions in k-space Therefore k-modes of nonlinear δ are coupled

So it can be inverted: $\delta_{L} = \delta - (17/21) \delta^{2} + (2815/3969) \delta^{3} + ...$

This is for EdS, but in practice, approximately cosmology independent.

Exact Parametric Solution (R_i/R) vs. θ and (t/t_i) vs. θ very well approximated by... $(R_{\text{initial}}/R_t)^3$ = Mass/(ρ_{com} Volume) = 1 + $\delta(t) \approx (1 - D_{\text{Linear}}(t) \delta_i / \delta_{\text{sc}})^{-\delta \text{sc}}$ Dependence on cosmology from $\delta_{sc}(\Omega,\Lambda)$, but this is rather weak

$1 + \delta \approx (1 - \delta_{\text{Linear}}/\delta_{\text{sc}})^{-\delta \text{sc}}$

- As $\delta_{\text{Linear}} \rightarrow \delta_{\text{sc}}$ (≈ 1.686), $\delta \rightarrow \text{infinity}$
 - This is virialization limit
 - Zeldovich (approximation) has $\delta_{\rm sc}$ = 3
 - Standard perturbation theory has δ_{sc} = 21/13 = 1.61
- As $\delta_{\text{Linear}} \rightarrow 0$, $\delta \approx \delta_{\text{Linear}}$
- If $\delta_{\text{Linear}} = 0$ then $\delta = 0$
 - This does not happen in modified gravity models where $D(t) \rightarrow D(k,t)$
 - Related to loss of Birkhoff's theorem when r^{-2} lost?
- Note 1+ $\delta \rightarrow 0$ as $\delta_{\text{Linear}} \rightarrow -\infty$

– Why is δ_{Linear} < -1 sensible?

Only very fat cows are spherical....

(Lin, Mestel & Shu 1963; Icke 1973; White & Silk 1978; Bond & Myers 1996; Sheth, Mo & Tormen 2001; Ludlow, Boryazinski, Porciani 2014)

Collapse of 1st axis sooner than in spherical model; collapse of all 3 axes takes longer (Bond & Myers 1996; Sheth, Mo, Tormen 2001)

Why does this work at all?

- Collapse is lumpy, not smooth
- Collapse is anisotropic, not spherical

 8 halos, 10¹⁵M_{sun} at z=0 in ΛCDM

 Only dark matter particles within R₂₀₀ shown

Same
objects at
z=1

Blue shows dark matter within 20kpc at z=0

 Same objects at z=2

 Blue shows dark matter within 20kpc at z=0

Why does this work at all?

- Collapse is lumpy, not smooth
 - Centers of virialized subclumps at early time end up in center of virialized halo at later time
 - Spherical collapse has rank ordering in binding energy 'built-in'
- Collapse is anisotropic, not spherical
 - Monopole of full anisotropic solution is given by SC at <u>all</u> orders

Virial Motions (within 'halos')

- (R_i/r_{vir}) ~ f(∆_i): ratio of initial and final sizes depends on initial overdensity
- Mass $M \sim R_i^3$ (since initial overdensity « 1)
- So final virial density ~ M/r_{vir}^{3} ~ $(R_i/r_{vir})^3$ ~ function of critical density: Hence, all virialized objects have the same density, $\Delta_{vir} \rho_{crit}(z)$, whatever their mass
- V² ~ GM/r_{vir} ~ (Hr_{vir})² Δ_{vir} ~ (HGM/V²)² Δ_{vir} ~ (HM)^{2/3}: massive objects have larger internal velocities or temperatures; H decreases with time, so, for a given mass, virial motions (or temperature) higher at high z

Hydrostatic equilibrium

$$P = \left(\frac{N}{V}\right)kT = \frac{\rho_b kT}{\mu m_H}$$

$$\frac{dP}{dr} = \frac{k_B}{\mu m_H} \left[T \frac{d\rho_b}{dr} + \rho_b \frac{dT}{dr} \right] = -\frac{GM\rho_b}{r^2}$$

$$\frac{k_B T}{\mu m_H} \left[\frac{1}{\rho_b} \frac{d\rho_b}{dr} + \frac{1}{T} \frac{dT}{dr} \right] = -\frac{GM}{r^2}$$

$$\frac{k_B T}{\mu m_H} \left[\frac{r}{\rho_b} \frac{d\rho_b}{dr} + \frac{r}{T} \frac{dT}{dr} \right] = -\frac{GM}{r}$$

$$M_{tot}(< r) = \frac{-kTr}{G\mu m_H} \left[\frac{dln\rho_b}{dlnr} + \frac{dlnT}{dlnr} \right]$$

V O I D S

