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Coupled Climate Dynamics:
Energy transport by the Atmosphere and Ocean

John Marshall, MIT

1. Energy transport by A& O
Observations
Importance of hierarchical modeling

2. Climate of an Aquaplanet

3. Oceans and Climate asymmetries




1. Energy transport by A & O
Observations
Importance of hierarchical modeling

Figs from Marshall and Plumb, 2008



Earth’s Energy Balance
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Two important
consequences
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1. Warmer, and moister, in the tropics
than at higher latitudes

2. Atmosphere, and ocean, must
transport, energy from low to high

latitudes



Warm, and moist in the tropics
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Warm, and moist in the tropics
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Energy budget of the atmosphere and ocean
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Northward energy transport (PW)
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Air-sea heat flux
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Ocean heat transport, basin by basin
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Northward Energy Transport by Atmosphere and Ocean
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Trenberth and Caron, 2001
Notes:

- Atmosphere dominates over ocean in middle to high latitudes
- Ocean transports substantial amounts of heat out of the tropics
- Error bars are considerable



Key climate questions

* What determines the total meridional 0 'A S h '

energy transportand its partition _ | Amesherehsat /TN

between the atmosphere and ocean? i I v A

- What sets the pole-equator -l

temperature gradient? s

* What determines the extent =

of polar ice caps? £ /2

- To what extent is the ocean ‘slaved’ to =4 Aptal asal fansport:

the atmosphere? N 0 A
6 —8IU —6IU —4IU —2IU (I) 2|0 4IU BIO 8IU

« Can more than one climate state exist Latitude (degree north)

for the same external forcing? Trenberth and Caron, 2001

See afternoon sessions by Brian Rose and by David Ferreira



Framework for thinking about
Energy Partition between Aand O

Plot mass transport in energy space Meridional energy transport is:
|
Bernoull H — W < AB
_ a N
Mass Energy
transport contrast
kg s—! J kg!
H 4 Wy AB,
_ A |
i H ¢ W ABG
Poleward

Note: If we define a Sverdup (Sv) as 10° kg s~'then
can readily compare the mass transports in each fluid.



Example

Ocean circulation

1000

Warm, salty lenses driven by the wind,
floating on a well-mixed abyss.

Abyssal ocean, ventilated

by convection from poles
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Asymmetry of stratification of A and O in deep tropics
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to consider moist static energy Ho ABo

Czaja and Marshall, 2006



Observational estimates b+ 6p
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Czaja and Marshall, JAS, 2006

How robust is this partition?
Could it have been different in past, in future?



Modeling hierarchies

2-box model
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FV3.C3072.disk.cond.mp4
FV3.C3072.disk.cond.mp4

Modeling hierarchies



Modeling hierarchies



Modeling hierarchies
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Modeling hierarchies




Modeling hierarchies




Modeling hierarchies

Ken Fallin



Ken Fallin

‘Ken takes a sharp look, brandishes his steel quill,
and traces in ink the essence of a living soul’



Climate of a Water World

What would the climate of earth be like if there were no land?

Coupled A, O, Ice model

barrier

A, O, possibility of Ice, but no land

/'/
{ Double

Explore with a series of !\ Drake
numerical simulations of highly ;
idealized water worlds




Coupled Climate Dynamics:
Energy transport by the Atmosphere and Ocean

John Marshall, MIT

1. Energy transport by A& O
Observations
Importance of hierarchical modeling

2. Climate of an Aquaplanet

3. Oceans and Climate asymmetries




Aqua-planet Project
Aqua-planet

Project

Thanks to:

Martha Buckley
J-M Campin
Aaron Donohoe
Daniel Enderton
David Ferreira
Brian Green
Mukund Gupta
Chris Hill
David McGee
Paul O’'Gorman
Brian Rose
Sara Seager

Applied to: Series of papers by
Understand present climate John Marshall, Brian Rose,
Paleo climate David Ferreira & collaborators
Multiple equilibria of climate

Riccardo Farneti & Geoff Vallis
Exoplanets



Climate of an Aquaplanet

HOME | ABOUT | PAPERS | RESEARCH | CONTACT | GROUP | TEACHING

JOHN MARSHALL Cocil and da Gron Professor of Oceanagraphy,MIT

Dusnvy The dynamics of Aqua-planets

Ocean Dynamics

Climate Dynamics Aqua-planets are Earth-like planets with an atmosphere and ocean like our own, =
Aqua-planets but with highly schematized land distributions. They provide a context for the
Modes of Variability study of:

Climate Change

Climate Modeling + the elemental role of the ocean in climate
« questions raised by the paleo-record
« planetary dynamics.

In our aqua-planet studies the geometrical constraints on ocean circulation and
extent of land are reduced to a minimal description: a sequence of 'stick models'.
The ‘sticks’ are narrow vertical barriers in an otherwise flat-bottomed ocean,
which extend from the bottom of the ocean to the top: there is no orographic
forcing of the atmosphere.

The sequence from Aqua to Ridge to Drake to Double Drake can be regarded as a
‘cartoon’ that increases the level of geometrical complexity: from the pure
Aquaplanet (where there are no topographic constraints on ocean circulation) to
the Double Drake (in which two barriers arcing down from the north pole
delineate a small basin and a large basin, with an unblocked circumpolar region IL::(I’J: marked in yellow, ocean
over the south pole). The Double Drake captures the two essential aspects of

basin geometry of our present world: inter-hemispheric asymmetries (zonally
blocked flow in the north, unblocked in the south) and zonal asymmetries (a

Stories about aqua-
planet research

What would the climate of earth be like

Study of this system has enabled to probe:

L « the partitioning of heat transport between the atmosphere and ocean and
If th ere were no I an d P Constraints o the toal AsO) heat ransport 561 103 104 and 105

H multiple equibria of the coupled climate - amazingly the aquaplanet
system (and perhaps the real climate too) exhibits more than one stable B
state for the same external forcing - [113], [124], [139]
zonal asymmetries in climate such as localization of the ocean’s MOC to
the small (Alantic) basin - [119], [141]
inter-hemispheric asymmetries in climate such as sinking around the P
north pole and upwelling around the south pole [109] and the 5
- displacement of the Inter-tropical Convergence Zone north of the equator

How would it achieve the requisite ,
: PAOC /EAPS

meridional energy transports? Sp

http://oceans.mit.edu/JohnMarshall/research/climate-dynamics/page-1/



Coupled Climate Model |
Fully coupled:

e e e e e e e no adjustments

Atmospheric Ocean
Physics Physics
I : \
_ on same grid —_
| CE[ Winton, 2000 ! ===

.

Franco Molteni, 2003 (synchronous)

Dynamical Kernel

MITgcm

J-M Campin and Chris Hill built the model
David Ferreira helped drive forward the science




Aqua-planet
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Sea Surface Temperature & Sea Ice

Aquaplanet with Ice
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Sea-ice thickness (m)

| NN NENEEE
17 1513 11 9 7 5 3 1




Climate of aqua-planet
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Surface Winds in ocean Marshall, Ferreira et al JAS, 2007



Eulerian view Aqua planet

Exp = AquaPlanet; FId = Psi [Sv]; [Min,Max] = [-61.5306,64.2045] 7
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Interpretation Dominates in

extra-tropics

/
T 77,7
Atrmosphere Fa = — 7 T pav h a
Ts "~ bolus transport

Balance one-another
in extra-tropics

. Yo
In tropics v, ~ 1
: Yo pov'h' o
In extra-tropics  w, ~ "
'n!
Now vih' ~ %‘9 = Ksg

where K is an eddy diffusivity.
If isentropic slopes in the two fluids are comparable, then

Yo ~ poko | L

WYag ~ paKy | 4

supposing that Ka = 4 x 10°m?s™! typical of turbulent
Ko 103 m?s! diffusivities in Aand O



Why ice at the poles in aqua? H — W < AB
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Poleward mass transport in the ocean Very small high latitude meridional
all but vanishes at high latitudes energy flux

Pole freezes over



ConCI US|OnS Annual "[’.;;;. & "P‘_,:k (C1=10 Sv) within constant energy layers
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 Energy flux partition can be rationalized by [ |Atmosphere 120Sv |
16F i
H 4 sy AL, 14}
— =, =
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Dominance of Hs over Hp

is a consequence of ¥, >> ¥,

- Partition of heat transport on aqua-planet -e__l-ﬁs‘fg 1_9;%-5_1 ——

remarkably similar to present climate Latitucle

Can interpret using zonal-average theory

» Ocean energy transport on aqua-planet very small at high latitudes

~Aquaplanet with Ice

Vanishing of residual flow at
high latitudes

Ice builds up over the poles \%W/ R
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As we shall see, the aqua-planet supports multiple equilibria



