

Other things you might want to know about lsca (FAQs) - ICTP day 2

Dr Stephen I. Thomson

Some little things

- In the **submission** scripts, there is an option to provide an email address.
 - Argo will email you when the job starts and when it finishes (can be useful)
- I have added the lecture notes from yesterday to the ictp-isca-workshop-2018 repository. Download it from GitHub if you like.
- How long will the model take to run my experiment?
- How does the model know to run one month at a time?
- How is the fortran code structured? (What subroutine is calling what?)
- What is 'spin-up'?
- How do I know whether I have seasons or not?
- How do I know whether it's an aquaplanet or not?
 - How do I add land?

- How does the model know to run one month at a time?
 - Yesterday, I said the model runs one month at a time.
 - How does it know to do that?

How long will the model take to run my experiment?

Isca/src/extra/python/scripts/modified_time_script.py

Add your experiment folder names to the 'exp_dir_list' near the bottom of the script, then run with python.

• How is the Fortran code structured?

- In Isca repo on the 'pre_ictp_mods' branch, there is an Excel document called 'Isca_fortran_code_structure.xlsx'.
- It shows you a simple representation of the code structure:
 - Which subroutines are calling which subroutines
 - A simple explanation of what each subroutine does...

Atmos_model	atmos_model.F90)				
]	atmosphere	atmosphere.f90				
		idealized_moist_phys	idealized_moist_phys.F90			
]			qe_moist_convection	qe_moist_convection.F90		
]			lscale_cond	lscale_cond.F90		
]			two_stream_gray_rad_down	two_stream_gray_rad.F90		
			surface_flux	surface_flux.F90		
				mo_drag	monin_abukhov.F90)
			two_stream_gray_rad_up	two_stream_gray_rad.F90		
			vert_turb_driver			
				diffusivity	diffusivity.F90	
					pbl_depth	diffusivity.F90
					diffusivity_pbi	diffusivity.F90
			gcm_vert_diff_down	vert_diff.F90		
			mixed_layer	mixed_layer.F90		
		spectral_dynamics	spectral_dynamics.F90			
		compute_pressures_and_heights	press_and_geopot.F90			
		spectral_diagnostics	spectral_dynamics.F90			

What is spin-up?

•

- The model will start from a resting state will take some time to reach equilibrium.
- Can check this will the timevariation with my analysis scripts. For example,
- af.global_average_lat_lon(datas et, 't_surf')
- dataset.t_surf_area_av.plot.line()
- When does it reach a steady state, or a steady seasonal cycle?

How do I know whether I have seasons or not?

Example experiments:

- Project 1 Seasons
- Project 2 No seasons
- Project 3 No seasons
- Project 4 Seasons
- Project 5 No seasons
- Project 6 Seasons
- Project 7 No seasons
- Project P1 No seasons
- Project P2 No seasons

'rrtm_radiation_nml': {
 'do_read_ozone':True,
 'ozone_file':'ozone_1990',
 'solr_cnst': 1360., #s set
 'dt_rad': 4320, #Use 4320;
 'solday':90,
},

- If solday=90 is set, then it tells the radiation to run day 90 insolation every day (equinox)
- Same in grey and RRTM namelists
- If solday is not set, then you'll have seasons
- To add seasons, remove the solday namelist entry

- How do I know whether it's an aquaplanet or not?
 - By default, Isca has no land is an aquaplanet
 - In the mixed_layer.f90 `land_option='none'` is default

How do I add land?

•

- Look at e.g. project 3, as it has land
- Step 1: Add a land mask to the 'input_files' list near the top of your run script
- Step 2: Include the namelist entries with 'land' in the name in the relevant namelists
 - 3 in 'idealized_moist_phys_nml', 3 in 'mixed_layer_nml'
- Step 3: add 'ocean_topog_smoothing':0.8 to 'spectral_dynamics_nml'
- Step 4: Add the 'spectral_init_cond_nml' namelist as part of your namelist (this will add topography to the model)

- The factors that set the land-sea contrast are:
 - 'land_roughness_prefactor' how much rougher is the land than the ocean?
 - 'land_h_capacity_prefactor' how much lower is the land's heat capacity than the ocean?
 - 'land_albedo_prefactor' how much greater is the land albedo than the ocean albedo?
- The real-world land masks are provided in the lsca repo in lsca/input/land_masks
- If you want to make idealised land / topography talk to me and I'll show you how.

What about the output?

 $\sigma = 0.9$

- The atmospheric output data is provided on so-called 'sigma levels' (terrain-following coordinates)
- σ = atmospheric_pressure / surface_pressure
- On an **aquaplanet**, there's very little difference
- Makes a big difference with topography...
- If your simulation has topography, you'll need to interpolate the data onto pressure levels before analysing it - talk to me and I'll show you how.

P = 1000hPa

A quick note on q-fluxes

• The evolution equation for the mixed-layer temperature is the following:

$$C_{\rm m} \frac{\partial T}{\partial t} = SW + LW - \text{sensible} - \text{latent} + \nabla \cdot \boldsymbol{Q}$$

• In 'mixed_layer.f90' this looks like:

corrected_flux = - net_surf_sw_down - surf_lw_down + alpha_t * CP_AIR + alpha_lw - ocean_qflux

- So `ocean_qflux` actually corresponds to $abla \cdot {oldsymbol Q}$
- So your `ocean_qflux` field should integrate to zero over the globe, because the area integral of a divergence is zero
- The q-flux input files I have given you will integrate to zero
- But **be careful if you add land that this remains true**, otherwise you'll have a net source or sink of energy in the mixed-layer.