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1.	Systematic	approximation	of	Governing	equations	 	

 

�	Reading	Materials	�	Holton	(Chapter	1,	2)	for	the	exact	equation	set	and	primitive	equation,	

and	Geophysical	Fluid	Dynamics	(Pedlosky,	Chapter	6)	for	hydrostatic	approximation	

Before	going	into	the	lecture,	the	governing	equation	sets	of	the	atmosphere	with	

various	complexity,	from	the	most	complete	set	of	equations	to	the	simplest	possible	

equation,	are	introduced	in	this	section.	In	particular,	introduced	is	how	the	

nondivergent	barotropic	vorticity	equation,	which	is	a	simple	equation	and	will	be	used	

for	most	of	the	topics	in	this	lecture,	is	obtained	from	the	exact	equation	set	of	fluid	

dynamics.	 	

1)	The	exact	equation	set	(compressible,	inhomogeneous,	inertial	system)	

The	equation	set	of	fluid	dynamics	includes	(1)	the	Newton’s	second	law	of	

motion	field,	(2)	the	first	law	of	thermodynamics,	(3)	the	mass	conservation,	and	(4)	

the	ideal	gas	law.	
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ρ 	 	 	 	 	 	 (3)	

RTp ρ= 	 	 	 	 	 	 	 	 	 	 	 	 (4)	

The	above	4	equation	set	has	four	variables	( Tpv ,,, ρ
!

),	therefore	it	is	a	closed	system.	

The	exact	equation	set	governs	the	motion	field	and	thermodynamic	property	of	all	

kinds	of	fluids.	This	equation	set	contains	all	kinds	of	waves,	such	as	the	sound	waves,	
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gravity	waves,	and	large-scale	Rossby	waves	when	the	governing	equations	of	motion	

fields	include	the	Coriolis	force,	particularly	for	large	scale	fluids	whose	time	scale	is	

about	or	longer	than	a	day	(earth	rotational	time	scale).	Note	that	the	vorticity	

equation	of	the	above	system	is	 	

pvv
Dt
D

∇×∇−⋅∇−∇⋅= )1()()(
ρ

ωω
ω !!!!
!

.	 	 	 	 (5)	

	

2)	The	primitive	equation	set	

Assumption:	 DL >> 	 ⇒	 Hydrostatic	 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
−=

z
pg

ρ
1 	 =>	pressure	coordinate	

	 	 =>	pressure	gradient	 p g zδ
δ δφ

ρ
= =  (p	&	z	are	in	opposite	directions.)	 	

u
Du d fv F
Dt dx

φ
= − + + 	 	 	 	 	 	 (6)	

v
Dv d fu F
Dt dy

φ
= − − + 	 	 	 	 	 (7)	

,dp g
dz

ρ= − 	 =>	 d
dp
φ

α= − 	 	 	 	 (8)	

p
dT dpc Q
dt dt

α= − + &	 	 	 	 	 (9)	

0,du dv d
dx dy dp

ω
+ + = 	 dp

dt
ω = 		 	 	 (10)	

	 	 p RTρ= 	 	 	 	 	 	 (11)	

The	above	primitive	equation	set	is	based	on	the	hydrostatic	approximation,	

where	the	vertical	momentum	equation	becomes	a	diagnostic	equation	expressing	the	
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balance	between	the	gravity	force	and	the	vertical	pressure	gradient.	This	system	is	

applicable	to	the	large-scale	fluid	motion	whose	horizontal	scale	is	much	larger	than	

the	vertical	scale	and	therefore	the	Coriolis	forcing	terms	should	be	included.	This	

system	provides	a	very	good	approximation	of	atmospheric	state	for	a	spatial	scale	of	

more	than	few	tens	of	km.	Therefore,	the	regional	models	as	well	as	global	general	

circulation	models	usually	use	this	primitive	equation	set	for	the	weather	and	climate	

simulations.	

	

3)	Shallow	water	system	(hydrostatic	&	homogeneous	 0ρρ = )	 	

Assumption:	 DL >> ,	 0ρρ = .	 	 Hydrostatic	equation	 g
z
p

0ρ−=∂

∂ .	

Integrating	the	hydrostatic	equation	from	the	top	of	water	surface	to	the	height	z,

	 ∫∫ −=
Z

H

p

p

zgp δρδ 0

0

,	we	get	 )(00 zHgpp −+= ρ .	

Now	the	horizontal	pressure	gradient	 Hgp
H

H ∇=
∇

0ρ
	 is	 independent	of	 z ,	which	

implies	that	 u & v 	 are	independent	of	 z ,	giving	the	barotropic	(vertically	uniform)	

condition.	Also	the	constant	density	implies	that	the	temperature	is	proportional	to	

the	 pressure,	 which	 depends	 on	 the	 height	 H	 in	 this	 system,.	 Now	 the	 governing	

equations	of	the	shallow	water	system	are	

	 	 du Hg fv
dt x

∂
= − +

∂
	 	 	 	 	 (12)	

	 	 dv Hg fu
dt y

∂
= − −

∂
	 	 	 	 	 (13)	
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	 	 0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

	 	 	 	

From	the	above	continuity	equation,	 zvw H

H

H

WH
δδ
!

∫∫ ⋅∇−=
00

	 which	gives	

Hvw HHHz )()(
!
⋅∇−== ,	and	since	

Dt
DHw Hz == )( ,	 	

	 	 Hv
Dt
DH

HH )( !
⋅∇−= 	 	 	 	 	 	 (14)	

Equations	(12),	(13),	and	(14)	consist	of	the	equation	set	for	the	shallow	water	

system.	Applying	the	curl	to	Eqs.	(13)	and	(14),	

( ) ( )( )HH
d f f v
dt

ζ ζ+ = − + ∇
r
g 	 	 	 	 (15)	 	

Combining	Eqs.	(14)	and	(15),	we	can	obtain	the	following	potential	vorticity	equation.	

	 	 0)( =
+

H
f

Dt
D ς 	 	 	 	 	 	 (16)	

Now,	for	H=constant,	the	rigid	top	condition	is	equivalent	to	the	(horizontal)	

divergence	to	be	zero	from	Eq.	(14),	 0H H
u vv
x y
∂ ∂

∇ ⋅ = + =
∂ ∂

r .	Then,	

	 	 	 	 	 	 	 	 	 	 	 0)( =+ f
Dt
D

ς 	 	 	 	 	 (17)	

The	above	equation	is	called	the	“nondivergent	barotropic	vorticity	equation,”	which	

will	be	a	base	equation	of	this	lecture.	Comparing	of	(17)	with	(5),	we	see	the	simplicity	

of	(17),	which	contains	only	the	large-scale	Rossby	waves.	The	nondivergence	

condition	introduces	the	streamfunction	(ψ )	as	below	

	 	 	 	 	 	 0u v u and v
x y y x

ψ ψ∂ ∂ ∂ ∂
+ = => = − =

∂ ∂ ∂ ∂
	 	 =>	 2u v

y x
ζ ψ

∂ ∂
= − + =∇

∂ ∂
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Eq.	(17)	 0fu v v
t x y y
ζ ζ ζ∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
	 can	be	linearized	with	respect	to	the	basic	state	

of	 u and	 dydf /=β ,	which	are	assumed	to	be	constant	in	space	and	time,	and	

0v = .	After	neglecting	the	small	nonlinear	perturbation	terms,	 	 	 	

0'''
=+

∂
∂

+
∂
∂ v

x
u

t
β

ςς 			

The	above	equation	is	a	simplest	possible	equation	of	describing	large-scale	

atmospheric	and	ocean	circulations.	It	expresses	that	the	vorticity	change	can	be	due	

to	the	mean	advection	of	relative	vorticity	and	the	meridional	advection	of	planetary	

vorticity.	Note	that	for	the	planetary-scale	waves,	the	planetary	vorticity	advection	

(the	third	term)	is	much	larger	than	the	relative	vorticity	advection	(the	second	term).	-

--------------------------------------------------------------------------------------------------------------	

It	is	also	noted	that	Eq.	(15)	can	be	written	in	a	quasi-geostrophic	

approximation,	where	 f ζ>> and	the	absolute	magnitude	of	 ζ is	much	larger	than	

that	of	divergence	 D ,	Then,	the	vorticity	equation	in	a	quasi-geostrophic	

approximation	can	be	written	as	

( )v f fD
t ψ

ζ
ζ

∂
+ ⋅∇ + = −

∂

r
	 	 	 	 (18)	

where	 vψ
r

is	the	streamfunction	(non-divergent)	component	of	wind	and	

/ ogH fψ = .	It	is	noted	that	the	wind	associated	with	the	advection	term	in	(18)	is	

non-divergent,	and	therefore	the	Eq.	(18)	is	same	as	Eq.	(16)	except	the	right-hand	side	

term	 fD 	 which	is	often	considered	as	a	forcing	term	of	circulation	(streamfunction).	
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2.	Rossby	waves	 	

1)	Rossby	wave	dispersion	in	a	β-plane	and	wave	selection	 	

	 The	linearized	nondivergent	barotropic	vorticity	equation,	driven	in	the	

previous	section,	will	a	base	function	in	this	section.	 	 	 	 	

	 	 0'''
=+

∂
∂

+
∂
∂ v

x
u

t
β

ςς 						 																									 	 (1)	

Applying	 the	 following	 plane	 wave	 solution	 ˆ' exp[ ( )]i kx ly tψ ω=Ψ + − 	 	 to	 Eq.	 (1)	

after	 substituting ' 2 2 2 2 2' ( / / ) 'x yς ψ ψ=∇ = ∂ ∂ +∂ ∂ and ' '/v xψ= ∂ ∂ ,	 the	 following	

dispersion	relationship	can	be	obtained.	 	

	 	 22 lk
kku
+

−=
β

ω 	 	 	 	 	 (2)	 	

In	the	above,	the	phase	speed	 2 2c u
k k l
ω β

= = −
+

	 is	a	function	of	wave	number,	and	

therefore	 the	 Rossby	 wave	 is	 dispersive.	 If	 the	 basic	 zonal	 wind	 is	 zero,	 the	 phase	

speed	of	Rossby	wave	is	always	negative	(westward	propagating).	 	

The	group	velocity	of	the	Rossby	wave	can	be	written	as	 	

	 	 222

22

)(
)(

lk
lku

k
Gx +

−
+=

∂
∂

=
βω 	 	 	 	 (3)	 	

	 	 222 )(
2
lk
kl

l
Gy +

=
∂
∂

=
βω 	 	 	 	 	 	 	 (4)	

Substituting	 the	 equation	 of	 phase	 speed	 2 2c u
k l
β

= −
+

	 into	 (3),	 one	 obtains	

222

2

)(
2
lk
kcGx +

=−
β .	 	 Thus,	 in	 a	 frame	 of	 reference	 which	 moves	 with	 the	 phase	

speed	c,	the	group	velocity	can	be	expressed	as	 	
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222 )(
2
lk
kkG

+
=

!
! β 	 and	 	 	 y

x

G l
G k

= 		 	 	 (5)	 	

For	stationary	waves, 0=ω 	 and	 0c = , Eq.	(2)	gives	

	 	 	
u

lk β
=+ 22 	 	 	 	 	 	 (7)	 	

Combination	of	Eqs.	(3)	and	(4)	and	using	Eq.	(7),	we	obtain	the	equation	below	 	 	

2
222

2
22

)(
)( u

lk
GuG yx =

+
=+−

β 	 	 	 (8)	 	

	

Eq.	 (7)	 shows	 the	 constraint	 of	 Rossby	 wave	 number	 in	 a	 steady	 state.	 The	 Rossby	

wavenumbers	exist	only	 in	the	circle	of	 the	k	and	 l	space	shown	 in	the	figure	below.	 	

From	the	(0,	0)	source	point,	the	particles	after	one	second	by	the	group	velocities,	Gx	

and	Gy,	should	be	distributed	as	below	(RHS	figure).				

											

	 	 	 	 	 	 	 	 	 	 	
Fig.	The	wavenumber	selection	of	k	and	l	and	wave	front	displacement	(group	velocity)	for	the	

stationary	waves.	
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2)	Pseudo-momentum	equation	  

For	 the	waves	 superimposed	on	 the	basic	 flow )(yu ,	 the	 linearized	vorticity	

equation	becomes	 	

	 	 '
''

v
x

u
t

γ
ςς
−

∂
∂

−=
∂
∂ 	 ,	 	 	

y∂
∂

+≡
ς

βγ 	 	 	 (9)	 	

Multiplying	 'ς 	 and	taking	zonal	mean,	the	above	equation	becomes	 	

''
2'

]
2
[ ς
γ
ς v

t
−=

∂

∂ 		 	 	 	 	 (10)	 	

For	 non-divergent	 eddies,	 the	 meridional	 vorticity	 advection	 is	 the	 same	 as	 the	

meridional	convergence	of	zonal	momentum.	 	

	 	 '''' vu
y

v
∂

∂
−=ς 	 	 	 	 	 	 (11)	 	

� 	Non-divergence	 0''
=

∂
∂

+
∂
∂

y
v

x
u 	 and	using	 ( ) ,0=

∂

∂

x
⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

=
∂
∂ 2'

2
1'' u

xx
uu ,	

y
vu

x
uu

y
vu

y
vu

y
uvv

xy
u

x
vvv

∂
∂

−=
∂
∂

+
∂
∂

+
∂

∂
−=

∂
∂

−⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−
∂
∂

=
)''('''')''(''

2
1'' 2''''ς .	

� 	 From	 the	 equation	 du df v
dt dx

ϕ
= − ,	 the	 R.H.S	 terms	 are	 all	 zero	 since	 v

x
ψ∂

=
∂

,	 therefore	

0du u u uu v
dt t x y

∂ ∂ ∂
= + + =
∂ ∂ ∂

,	 where	 the	 second	 term	 of	 RHS	 should	 be	 zero	 and	 the	 third	 term	 is	

' '' ' ' ' ' 'u vv u v u u v
y y y y

∂ ∂ ∂ ∂
= − =

∂ ∂ ∂ ∂
,	since	

' '' ' 0v uu u
y x
∂ ∂

= − =
∂ ∂

	 (
' ' 0u v
x y

∂ ∂
+ =

∂ ∂
)	 	

Therefore	 ' 'u u v
t y
∂ ∂

= −
∂ ∂

.	 	 	 	 	 	
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The	above	zonal-mean	zonal	wind	equation	combined	with	(11)	gives	

	 	 '''' ζvvu
yt

u
=

∂

∂
−=

∂

∂ 	 	 	 	 	 (12)	

The	above	equation	indicates	that	the	rate	of	change	

the	circulation	along	a	latitude	is	the	change	of	 	

vorticity	in	the	cap	north	of	the	latitude,	which	 	

is	equivalent	to	the	vorticity	flux	along	the	latitude.	

This	states	the	so	called	"circulation	theorem".	 	

Using	Eq.	(10),	Eq.	(12)	becomes	 	

0]
2
1[ 2' =+

∂
∂

ς
γ

u
t

	 	 	 	 	 (13)	

Now	 let	
γ
ς
2

2'

=M .	 M	 has	 a	 dimension	 of	 wind	 and	 it	 is	 so	 called	 to	 as	 "pseudo-

momentum"	or	 a	 measure	 of	 "wave	 activity".	Eq.	(13)	 indicates	 that	 if	 the	 wave	

activity	(M)	increases	with	time,	the	zonal	mean	flow	decreases	with	time:	Eddy-mean	

flow	interaction.	Also,	it	tells	that	since	 u 	 has	a	finite	value	in	the	domain,	 2'ς 	 can	

have	a	very	big	value	in	the	domain	only	if	 γ changes	the	sign	in	some	of	the	domain.	

This	is	called	“Rayleigh-Kuo	barotropic	 instability.”	The	 flow	can	be	unstable	only	 if	

0<γ 	 somewhere	in	the	domain.	 	

Now	we	develop	the	conservation	of	wave	pseudo-momentum.	Eqs.	(12)	and	

(13)	give	the	following	equation.	 	

0)(]
2
[ ''

2'

=−
∂

∂
+

∂

∂ vu
yt γ

ς 	 	 	 	 	 (14)	 	

or	 0=
∂
∂

+
∂
∂

y
F

t
M ,	 	 	 ''vuF −= 	 	 	 	 (15)	

''ζV
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If MGF y= ,	where	 yG is	the	group	velocity	of	the	wave	expressed	by	Eq.	(5),	 M 	 is	

conserved	in	the	frame	of	reference	moving	with	the	group	velocity.	The	conservation	

of	pseudo	momentum	in	the	frame	of	moving	with	the	group	velocity	is	expressed	as	 	

0GD M
Dt

= 	 	 	 	 	 	 (16)	 	

Now	we	will	prove	 MGF y= 	 using	a	plane	wave	solution,	 ]~Re[' )( lykxie +Ψ=Ψ .	 	

	 	 ]~~[
2
1]~Re['' )(*)()( lykxilykxilykxi eileileil

y
u +−++ Ψ−Ψ−=Ψ−=

∂
Ψ∂

−= 	

	 	 ]~~[
2
1]~Re['' )(*)()( lykxilykxilykxi eikeikeik

x
v +−++ Ψ−Ψ=Ψ=

∂
Ψ∂

= 	

Using	the	above	equations,	we	can	express	the	meridional	momentum	flux	in	terms	of	

wave	number	and	wave	amplitude	as	below.	 	

	 	
2'' ~

2
1

Ψ−= klvu 	 	 	 	 	 (17)	 	

The	 above	 equation	 indicates	 that	 the	 northward	 zonal	 momentum	 transport	 is	

accompanied	by	the	southward	wave	propagation	and	vice	versa.	Now	we	solve	 yG M .	

Since	 ]~)(Re[' )(22 lykxielk +Ψ+−=ς ,	 	 	 	
22 2 2 21' ( )

2
k lζ = + Ψ% 	 	 (18)	 	

Using	 Eqs.	 (5)	 and	 (18),	 ''22' ~
2
1

2
vuklGMG yy −=Ψ==

γ
ς .	 Therefore FMGy = .	 For	

stationary	waves,	 0)( '' =−
∂

∂ vu
y

	 from	(17),	 indicating	that	 ''vu 	 is	 independent	of	y,	

and	then	 u 	 is	constant	in	time,	which	is	so	called	"non-acceleration	theorem"	in	this	

two	dimensional	flow.	 	
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3.	Meridional	dispersion	of	Rossby	wave	and	teleconnection	dynamics	

�	Reading	Materials	�	 	 	

Hoskins,	B.	J.	and	D.	J.	Karoly,	1981:	The	Steady	Linear	Response	of	a	Spherical	Atmosphere	to	

Thermal	and	Orographic	Forcing.	J.	Atmos.	Sci.,	38,	1179-1196.	 	 	 	

	

1)	Two-dimensional	Rossby	waves	 	

In	 the	 previous	 section,	 the	 Rossby	 wave	 was	 treated	 in	 a	 constant	 basic	

zonal	 flow.		However,	 observation	 shows	 that	 the	 zonal	 flow	 has	 a	 large-scale	

meridional	 structure.		 Also,	 the	 planetary-scale	 waves	 usually	 cover	 several	 ten	

degrees	 of	 latitude,	 and	 for	 such	waves	 the	 assumption	 of	 constant	 basic	 state	 is	

hard	to	be	justified.		 In	this	section,	we	will	study	the	two-dimensional	Rossby	wave	

based	on	the	"Ray	Theory"	developed	by	Hoskins	and	Karoly	(1981).		 	 	 	 	 	

�	Observations	indicate:	 	

(1) Away	 from	 a	 tropical	 wave	 forcing	 region,	 the	 planetary-scale	 wavetrain	 has	 a	

barotropic	structure	in	the	extratropics.	 	

(2) Planetary-scale	waves	 (i.e.,	with	 small	 zonal	wavenumber)	 propagate	poleward	as	

well	as	eastward,	with	a	wavetrain	path	similar	to	a	great	circle	path.	

(3) Shorter	 waves	 propagate	 eastward	 and	 are	 trapped	 along	 the	 jet-stream	 region	

(~40°).	
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They	developed	the	wave	theory	propagating	 in	a	slowly	varying	medium.	 In	

the	Mercator	projection	of	the	sphere,	the	linearized	nondivergent	vorticity	equation	

can	be	written	as	 	

0]][[ 2

2

2

2

=
∂
Ψ∂

+
∂
Ψ∂

+
∂
Ψ∂

∂
∂

+
∂
∂

xyxx
u

t MM β 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (1)	

	

where,	 λax = 	 and	 ⎥⎦

⎤
⎢⎣

⎡
Φ

Φ+
=

cos
)sin1(lnay .	

Φ
=
cos
uuM 	

)(cos
cos
1cos2 2
2

2
MM u

dy
d

dy
d

a
Φ

Φ
−Φ

Ω
=β 	

In	 a	 local	 analysis	 with	 an	 assumption	 that	 the	 basic	 state	 does	 not	 much	 change	

locally,	 we	 can	 introduce	 a	 plane	 wave	 solution exp[ ( )]o i kx ly tωΨ + − ,	 in	 which	

lk, and	 ω 	 are	determined	by	 the	property	of	 local	basic	state.	Then	the	dispersion	

relationship	can	be	obtained	as	before,	 	

22 lk
kku M

M +
−=

β
ω 	 	 	 	 	 	 	 	 	 	 (2)	

Based	on	the	above	dispersion	relation,	we	can	derive	the	group	velocities	for	x	and	y	

directions.	For	a	stationary	wave	( 0=ω ),	the	ray	path	can	be	obtained	as	

k
l

u
v

dx
dy

g

g == 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3)	

Eq.	(3)	indicates	that	the	slope	of	wave	ray	path	is	simply	expressed	by	the	ratio	of	the	

meridional	 wave	 number	 to	 the	 zonal	 wave	 number.	 Relatively	 small-scale	 waves	

(large	k)	such	as	the	synoptic	waves	propagate	along	the	zonal	direction	and	planetary-

scale	waves	(small	k)	propagate	along	the	meridional	direction.	 	
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Fig.	Teleconnection	patterns	obtained	by	simultaneous	temporal	correlation	between	500	mb	

geopotential	 heights	 at	 55N,	 20W	 and	 other	 Northern	 Hemisphere	 locations	 during	 boreal	

winter,	using	LHS:	band	pass	filtered	data	of	2.5-6	days	and	RHS:	monthly	mean	data.	 	

	

	 For	 a	 stationary	 wave	 with	 a	 zonal	 wave	 number	 k,	 the	 meridional	 wave	

number	 l 	 is	defined	as	 	

222 kKl s −= 	 	 ;	 	
M

M
s u
K β

=2 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4)	

	

where	 sK 	 is	 called	 "stationary	 wave	 number",	 which	 is	 determined	 by	 the	 basic	

state.	It	is	also	noted	that	the	meridional	wave	propagation	is	possible	only	if	the	zonal	

wave	 number	 is	 smaller	 than	 the	 stationary	 wave	 number,	 that	 is,	 the	 meridional	

propagation	 is	more	 favorable	 for	planetary-scale	waves.	Observed	characteristics	of	

meridional	wave	propagation	for	different	zonal	wavenumbers	can	be	discussed	with	

the	figures	below.	
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Fig.	Two	states	of	 zonal-mean	zonal	wind	obtained	 from	the	EOF	 analysis	 (upper	 figure)	and	
the	associated	stationary	wave	numbers	(lower	figure).	

	

Now	we	derive	the	solution	of	Eq.	(1)	more	rigorously	for )(yfu = .		 The	general	

solution	has	a	form,	 	 	

)(exp)( tkxiyP ω−=Ψ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (7)	

Substituting	Eq.	(7)	into	Eq.	(1),	 	

0))(( 2

2
2 =+

∂
∂

+−− kPi
y
PPkkui MM βω 	

With	a	manipulation,	the	above	equation	can	be	expressed	as	 	

0)( 2
2

2

=+
∂
∂ Pyl
y
P 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (8)	
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where,		 2
2

22

1
k

uk

Kk
ku
kl

M

s

M

M −
−

=−
−

=
ωω

β 	

The	 solution	 of	 Eq.	 (8)	 depends	 on	 the	 structure	 of	 )(yl 	 and	 is	 not	 easy	 to	 solve	

analytically.	Now	we	examine	the	solution	using	the	WKB	method,	which	 is	a	kind	of	

local	analysis	by	assuming	that	the	length	scale	of	 1−l 	 is	a	slowly	varying	function	of y .	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Then,	let	 yY ε= 	 and 1<<ε ,	then	Eq.	(8)	becomes	 	

02

2

2

2

=+ Pl
dY
Pd

ε
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (9)	

Look	for	the	solution	of	the	above	equation	with	a	form	below,	which	is	a	first	order	of	

approximation	of	the	WKB	series	of	solution.	 	

)](exp[)( 0 YliYP β
ε

α −= 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (10)	

Substituting	the	solution	(eq.	(10))	into	eq.	(9),	 	

0]2(][ ''''0
2

2
2'

2

2
0'' =+−+− αββα

εε
αβ

ε
αα

lill
	 	 (11)	

In	 the	 above	 equation,	 the	 real	 and	 imaginary	 parts	 should	 be	 zero	 separately.	 The	

zero	condition	of	real	part	gives	 02

2
2'

2

2
0'' =+−

ε
αβ

ε
αα

ll
.	Now,	since 0→ε ,	the	first	

term	can	be	neglected,	and	therefore			 	

)(
0

'

l
l

±=β 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (13)	

The	imaginary	part	of	Eq.	(11)	gives	after	dividing	it	by '2αβ .	

	 	 	 0
2 '

'''

=+
β
β

α
α

	 	 	 à	 	 0))ln((ln 2
1

' =+ βα
dy
d

	 	 à	 antconst=2
1

' )(βα .	
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Substitution	of	Eq.	(13)	into	the	above	gives	 	

)()( 2
1

2
1

0

−−
== lconst

l
lconstα 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (14)	

Substituting	Eqs.	(13)	and	(14)	into	Eq.	(10),	one	can	obtain	 	

	 	 	 	 	
1
2

0

1exp[ ]
Y

P Cl i ldY
ε

−
= ± ∫ 	 	 	 or	 	 	 ∫±=

− y
ldyiClP

0
2
1

]exp[ 	

The	above	equation	describes	the	meridional	structure	of	wave,	and	the	full	 solution	

can	be	obtained	by	substituting	the	above	equation	into	Eq.	(7).	 	

0

1 exp[ ( )]
y

C i kx ldy t
l

ωΨ = ± + −∫ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (15)	 	

Along	the	ray	of	a	particular	zonal	wave	number ntconstak = ,	the	wave	amplitude	is	

a	 function	 of	 meridional	 wave	 number	 ~	 2 21/ 1/ Sl K k= − .		 Usually	 sK 	 is	 a	

decreasing	 function	 of	 latitude	 as	 shown	 above,	 and	 therefore	 l 	 decreases	 with	

latitude,	resulting	that	the	wave	amplitude	 increases	with	 latitude	until	 the	 turning	

latitude	where	 0=l 	 with	largest	wave	amplitude.	Therefore,	the	largest	amplitude	

of	the	waves	forced	from	the	tropics,	particularly	during	ENSO,	is	appeared	not	near	

the	forcing	region	but	away	from	the	forcing	region,	particularly	in	the	high	latitude	

where	the	turning	latitudes	locates.	
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Fig.	Streamfunction	respnse	of	a	 linearized	barotropic	model	to	the	idealized	vorticity	forcing	

center	 at	 140E	 and	 20N	 and	 the	 Plumb’s	wave	 flux	 vector	 (arrow).	 a)	 is	 for	 the	 zonal-mean	

basic	state	of	the	stronger	jet	case 1u ,	b)	for	the	broader	jet	case	 2u .	 	
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On	the	other	hand,	the	critical	 latitude	 is	defined	as	the	latitude	where	 u =	c	

(u =	0	for	stationary	waves).	As	seen	above,	the	meridional	structure	of	Rossby	wave	is	

described	by	the	following	equation.	 	

0~~
2

2

2

=Ψ+
Ψ l

dy
d 	 and	 22 k

cu
l −

−
=

γ
	

Therefore,	 in	 the	 critical	 latitude,	 l 	 has	 an	 infinite	 value	 when	 u =	 c.	 In	 fact,	 the	

equation	breaks	down	at	 the	critical	 latitude.	The	meridional	group	velocity	near	the	

latitudes	becomes	zero,	since	
222 )(

2
lk
klGy +

=
γ 	~	

3
1
l

	 -->	0,	and	the	waves	never	 reaches	

the	 critical	 latitude,	meaning	 that	 the	 linear	waves	never	passes	 the	C.L.	 The	 critical	

latitude	usually	 locates	at	the	subtropical	 latitude	(around	10-20N)	and	therefore	the	

waves	generated	in	one	Hemisphere	can	not	propagate	to	the	other	Hemisphere.	It	is	

noted	 that	 the	Rossby	waves	generated	 in	 the	extratropics	are	 trapped	mostly	 there	

between	 the	 subtropics	 (the	 critical	 latitude)	 and	 the	 high	 latitude	 (the	 turning	

latitude).	
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4.	Forced	Rossby	waves	by	topography	

A	primary	energy	source	(forcing)	of	upper-level	planetary	waves	is	known	to	

be	orography.	The	flow	over	topographic	obstacles	generates	planetary	scale	waves	in	

several	ways.	 .Firstly,	 the	vortex	shrinking	and	stretching	caused	by	compression	and	

expansion	of	air	column,	respectively,	are	balanced	by	vorticity	advection	of	planetary	

waves	 in	 the	 presence	 of	mean	 zonal	 flow.	 Secondly,	 adiabatic	 heating	 and	 cooling	

induced	by	 rising	 and	 sinking	motions	 as	 air	 parcel	 flows	uneven	 topography	 can	be	

balanced	by	the	temperature	advection	provided	by	planetary	waves	in	the	presence	

of	mean	zonal	flow.	There	are	other	secondary	effects	such	as	orography	precipitation	

and	 momentum	 transport	 by	 gravity	 waves,	 etc.	 Here	 we	 consider	 only	 the	 first	

mechanism.	 Note	 that	 for	 a	 given	 the	 observed	 zonal	 mean	 flow	 and	 realistic	

topography,	 the	 linear	 barotropic	 model	 can	 simulate	 the	 observed	 upper-

tropospheric	geopotential	height	(streamfunction)	reasonably	well,	as	shown	by	Grose	

and	Hoskins	(JAS,	1979)	and	Held	(1983).	 	

	

Orography	forcing	in	a	potential	vorticity	equation	 	

As	introduced	before,	the	potential	vorticity	conservation	in	a	shallow	water	system	

can	be	written	as	 	 	

	 	 0fv
t H

ζ∂ +⎛ ⎞⎛ ⎞+ ⋅∇ =⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

r 																																					 (1)	 	

where	 H 	 is	 the	 thickness,	 ThhH −+= η0 .	 0h 	 is	 the	mean	height	of	 the	 fluid,	 η 	

is	the	deviation	of	free	surface	from	the	mean	height,	and	 Th 	 is	the	height	of	the	rigid	
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lower	 boundary	 or	 topography.	 In	 the	 quasi-geostrophic	 approximation	 on	 a	 beta-

plane	where	 &o Th hη>> ,	Eq.	(1)	becomes	to:	 	

	 	 0=⎟
⎠

⎞
⎜
⎝

⎛ ∇⋅+
∂
∂ qv
t g
!

																																																							 (2)	 	

where	
0

0
0

)(
h
hfyfq T−

−++=
η

ςβ ,	 	 	 	 η∇×= k
f
gvg
!!

0

		and		 ης 2

0

∇=
f
g

	

Linearizing	 about	 a	 zonal	 basic	 flow	 u 	 independent	 of x , y and	 t ,	 one	 can	

obtain	 the	 following	perturbation	equation	by	 the	 topography.	The	perturbed	waves	

are	represented	by	*.	

												 	
* *

* 0q q qu v
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
																																				 	 (3)	 	

		where	 0
0

0

fq f y
h
η

β ζ= + + − ,	 	 and	 	 * * *0

0

( )T
fq h
h

ζ η= − −   (4)	

														 		
2λ

β
u

y
q

+=
∂
∂ 		;		

2
0

02

f
gh

=λ 	

An	alternative	form	of	Eq.	(3)	can	be	expressed	as	 	

	 	
*

* * *0 0

0 0

Tf f hu v u
t h x h x

ς
ς η β
⎛ ⎞ ∂∂ ∂

− + + = −⎜ ⎟
∂ ∂ ∂⎝ ⎠

						 						 (5)	 	

*	Homework.	Derive	eq.	(5)	from	eq.	(4).	
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It	may	 be	 important	 to	 note	 that	 the	 tendency	 term	 consists	 of	 two	 terms,	

vorticity	and	 free	surface	height	variations.	 It	 is	noted	 that	 the	 rigid	upper-boundary	

condition	will	eliminate	 the	 tendency	 term	of	 the	 free	 surface.	Also	 the	 steady	state	

condition	(eliminating	the	first	term)	results	in	Eq.	(5)	going	back	to	the	non-divergent	

vorticity	equation	considered	in	the	previous	section.	 	

Substituting	a	plane	wave	solution	 * ( )Re i kx ly te ωη η + −⎡ ⎤= ⎣ ⎦% 	 and	the	topography	

( )Re i kx ly
T Th h e +⎡ ⎤= ⎣ ⎦

% 	 into	Eq.	(10),	we	obtain	 	

	 	 { }[ ] Thkulkuklk ~~)()( 222222 −− −=−+−++ ληβλω 		 (6)	

For	free	waves	(away	from	the	topography) 0~
=Th ,	
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	 	 { }
222

22 )(
−++

−+
=

λ
β

ω
lk
lkuk 																																																			 (7)	 	

In	 the	 above,	 the	 system	 cannot	 provide	 a	 stationary	 Rossby	 wave	 ( 0)ω = 	 for	 a	

negative	 zonal-mean	 flow.	 But	 for	 a	 positive	 zonal-mean	 flow,	 the	 stationary	 wave	

number	is	defined	as	 	

	 	
u

lkK sss
β

=+= 222 	

This	stationary	wave	number	is	independent	of	 λ ,	therefore,	if	one	is	interested	only	

in	the	stationary	quasi-geostrophic	flow,	there	is	no	advantage	in	using	the	divergent	

rather	than	the	non-divergent	vorticity	equation.	 	

	

For	topographically	forced	stationary	waves,	the	wave	amplitude	is	from	(6)	

)(

~
~

222
s

T

KK
h
−

=
λ

η 												 											 	 			 	 	 	 (12)	 	

For )( ss KKKK <> ,	 the	wave	 response	 is	 exactly	 in	 (out	 of)	 phase	with	 respect	 to	

topography,	with	 the	vorticity	 forcing	by	 topography	balanced	primarily	by	 the	zonal	

(meridional)	advection	of	relative	(planetary)	vorticity.	It	is	important	to	note	that	the	

mountain	 induced	 (geopotential)	 height	 depends	 not	 only	 on	 the	mountain	 height	

but	 also	 on	 the	 stationary	 wavenumber	 determined	 by	 the	 zonal	 mean	 flow.	 In	

particular,	the	singularity	(infinity	amplitude)	appears	at	the	wave	of	the	stationary	

wavenumber.	This	wavenumber	is	resulted	from	the	resonance	of	the	wave	with	the	

zonal	mean	flow.	Thus,	 the	mountain	 induced	waves	are	 largely	determined	by	the	

given	basic	state	(zonal	mean	flow)	and	are	thus	different	for	different	seasons.	 	
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Following	Charney	and	Eliassen	 (1949),	 the	 resonance	singularity	 ( sKK = )	 is	

removed	by	 adding	 a	 linear	damping	 term	 *( )κζ− 	 in	 the	 vorticity	 equation.	 In	 that	

case,	the	solution	of	 η%	 is	 	

								 	 	
2

2 2 2 ,
( )

T

s

h Kwhere
K K i ku

κ
η ε

λ ε
= ≡

− −

%
% .										

Then,	the	final	solution	of	the	free	surface	(height)	forced	by	topography	is	 	

    * ( )
2 2 2Re
( )

i kx ly tT

s

h e
K K i

ωη
λ ε

+ −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

%
				~	 ( )

2 2 2Re sin( )
( )

i kx tT

s

h ly e
K K i

ω

λ ε
−⎡ ⎤

⎢ ⎥− −⎣ ⎦

%
.	
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5.	Multiple	equilibrium	 		

	 In	 their	 landmark	paper	on	multiple-equilibrium,	Charney	and	Devore	 (1979)	

(hereafter,	CD)	 argued	 that	 in	 the	 presence	 of	 topography,	 a	 forced	 zonal	 flow	 (the	

zonal	 flow	 interacted	 with	 the	 waves	 forced	 by	 topography)	 can	 satisfy	 the	 zonal	

momentum	balance	in	more	than	one	way.	For	an	incompressible	fluid	between	rigid	

lids,	the	zonal	momentum	balance	is	 	 	 	 	

[ ] [ ] [ ]( )* * * *

0
T e

u f h u u
t H

ν ζ ν κ
∂

⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦ ⎣ ⎦∂
	 	 	 	 	 	 	 (1)	

where	the	square	bracket	denotes	the	zonal	mean,	and	the	asterisk	the	deviation	from	

the	zonal	mean.	In	the	CD’	s	argument,	a	relative	large	value	of	the	second	term	on	the	

R.H.S.	of	Eq.	(1)	can	be	expressed	as	a	function	of	the	zonal	mean	flow	 [ ]u ,	which	is	

balanced	by	the	third	term.	Note	that	the	first	term	plays	no	role	in	their	quasi-linear	

argument.	 Note	 that	 we	 used	 a	 same	 damping	 coefficient	 for	 the	 waves	 and	 zonal	

mean	flow,	which	could	be	different	from	each	other.	

------------------------------------------------------------------------------------------------------------	

Eq.	(1)	can	be	obtained	from	the	potential	vorticity	equation	with	a	rigid	top	condition.	 	

0dq
dt

= ,	 	 	 	 	 	 	 	 	 	 	 0
0

0

Tf hq f y
h

β ς= + + + 	

Taking	the	zonal	mean,	 * *[ ] [ ]q v q
t y

∂ ∂
= −

∂ ∂
	 	 	 	 	 (1a)	

[ ] [ ][ ] ( )q u
t t t y

ζ
∂ ∂ ∂ ∂

= = −
∂ ∂ ∂ ∂

,	 	 * * * * *0

0

[ ] [ ] [ ]T
fv q v v h
h

ζ− = − −  from	(4)	in	previous	section.	

Substituting	the	above	equations	into	Eq.	(1a)	and	taking	out	the	y	derivative,	and	adding	the	

Newtonian	damping	term	with	respect	to	the	equilibrium	basic	state	 [ ] [ ]( )eu uκ− − ,	we	can	

obtain	Eq.	(1).	 	 	

------------------------------------------------------------------------------------------------------------	
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The	 purpose	 of	 this	 section	 is	 to	 present	multiple	 states	 of	 the	 balance	 in	 the	

barotropic	vorticity	equation	of	Eq.	(1)	in	a	steady	state.	Now	express	the	eddy	forcing	

terms	as	

	 	 [ ]( ) [ ] [ ]Thh
fuD *

0

0** νζν −−= 	 	 	 	 (2)	

( ) ( )
* 2 *2

* * 2 * 2
2

1
2

g g gK K
f x f f x

η η
ν ζ η

∂ ∂
= ⋅ − = −

∂ ∂
            * * 0ν ζ⎡ ⎤ =⎣ ⎦ 	

Therefore,	 the	 first	 term	 of	 Eq.	 (2)	 in	 R.H.S.	 is	 zero,	 meaning	 that	 the	 zonal-mean	 	

meridional	 vorticity	 flux	 does	 play	 “no”	 role	 in	 the	 change	of	 zonal	mean	wind.	 The	

second	term	can	be	obtained	as	follows.	Assuming	that	the	topography	has	a	function	

of	 sin( )exp( )ly ikx , the wave has a form below (from the last equation of the previous 

section).	

( )
( )
( )

2 2
*

22 2 2 2 2 2 2
Re sin Re sin

T sikx ikxT

s s

h K K ih ly e ly e
K K i K K

ε
η

λ ε λ ε

⎧ ⎫⎧ ⎫ ⎡ ⎤− +⎪ ⎪ ⎪ ⎪⎣ ⎦= =⎨ ⎬ ⎨ ⎬
⎡ ⎤ ⎡ ⎤− − − +⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎢ ⎥⎣ ⎦⎩ ⎭

%%
	

Then	using	
*

*

o

gv
f x

η∂
=

∂
,	 	

( )
( )

( )
( )

( )

[ ]

2 2 * 2 2

2 22 2 2 2 2 2 2 2*0 0 0

0 0

*

22 2 2
0

1 sin sin
2Re

1 sin sin
2

sin

2

T s T sikx ikx

s sT

ikx ikx
T T

T

ikh K K i ikh K K ig lye lye
f f f K K K Kh
h h

h lye h ly e

f K h ly

u

ε ε
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−

−

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤− + − −⎪ ⎪⎢ ⎥⎣ ⎦ ⎣ ⎦−⎪ ⎪⎢ ⎥⎪ ⎪⎡ ⎤ ⎡ ⎤− + − +⎡ ⎤− = − ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎪ ⎪
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Interestingly,	 the	 form	 drag	 term	 by	 topography	 represented	 by	 - [ ]( )uD 	 is	

determined	not	only	by	the	topography	but	also	largely	by	the	zonal	mean	flow.	This	

term	can	be	computed	by	using	observation	data	 for	boreal	winter	and	be	drawn	 in	

the	figure	below	as	a	function	of [u].	 	

	

	

The	 steady	 solution	 of	 [ ]u 	 can	 be	 obtained	 by	 the	 graphic	 representation,	

that	is,	the	two	equations	 )][][( euuy −−= κ and	 )][( uDy = 	 produce	several	points	

of	 intersection,	 those	 points	 correspond	 to	 the	

solutions.	 From	 the	 figure,	we	 can	obtain	 the	 two	

solutions	 for	 the	 zonal	mean	 flow,	which	 are	 high	

and	 low	states.	The	stability	analysis	gives	the	two	

stable	solutions	and	one	solution	is	unstable	which	is	hard	to	exist	in	the	nature.	For	a	

strong	zonal	flow,	the	stationary	wave	is	relatively	small	and	results	in	little	form	drag	



 

 28 

on	the	zonal	 flow	so	that	 it	 is	kept	near	the	forced	value.	A	second	state	occurs	with	

the	zonal	flow	in	a	resonance	with	the	forced	wave,	where	a	large	form	drag	balances	

a	 large	 departure	 from	 the	 equilibrium	 zonal	mean	 state.	Although	 the	 argument	 is	

based	 on	 the	 linear	wave	 response	 for	 a	 given	 zonal	 flow,	CD	 also	 showed	multiple	

stable	states	in	their	numerical	simulations	of	the	model	on	a	beta-plane	channel.		

	

The	 state	 A:	 	 The	 difference	 between	 the	 damping	 term	 and	 the	 form	 drag,	

([ ] [ ]  ) ([ ])eu u D uκ −− − ,	 becomes	 to	 have	 a	 negative	 value	 as	 the	 zonal	mean	wind	

increases	at	the	state	A,	therefore	the	tendency	of	zonal	wind	has	a	negative	sign	as	

the	 zonal	 wind	 increase,	 and	 the	 tendency	 has	 a	 positive	 value	 when	 it	 decreases.	

Therefore,	 the	zonal	mean	wind	 tends	 to	go	back	 to	 the	equilibrium	state	when	 it	 is	

perturbed,	which	is	 in	a	“stable”	condition.	This	state	is	a	 low	index	case	of	the	zonal	

mean	flow	but	with	a	large	form	drag	by	large	amplitude	waves,	 ''Blocking state.	

The	 state	 B:	This	 state	 is	 “unstable”	since	with	 the	same	argument	above,	 the	zonal	

mean	state	is	departing	from	the	state	B	further	with	time	after	a	small	perturbation.	

The	 state	 C:	 This	 state	 is	 “stable”	 and	 has	 a	 high	 index	 of	 zonal	 flow	 with	 small	

amplitude	waves,	 '' FlowNormal 	 state.	


