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Glacial climates: “Sawtooth”

at multiple timescales

Warming faster than cooling



Hoffman et al., Science Advances 2017

Snowball

Fig. 5. Cryogenian paleogeography and the breakup of Rodinia. Global paleo-
geographic reconstructions in Mollweide projection for (A) Marinoan termination
at 635 Ma and (B) Sturtian onset at 720 Ma (34). Red lines are oceanic spreading
ridge-transform systems, and dark blue lines with barbs are inferred subduction
zones. Stars are glacial-periglacial formations (Fig. 4), red stars are formations with

Earth Late Neoproterozoic,

circa 700 Ma



Is the climate unique?

* Big climate changes of the past:
* large changes in global mean temperature, and equator-to-pole gradient
- fraction of surface covered by ice has varied between 0% and 100%

- Two fundamental questions about our planet:
e What sets the equilibrium surface temperature?

* Is the climate uniquely determined by its boundary conditions: geography,
CO: levels, etc? Or are multiple equilibria possible?

* Does a large climate change necessarily imply a large change in external
forcing?

* Is climate modeling an initial value problem?



Outline

. lce-Albedo feedback and multiple equilibria in simple
models (without the ocean!)

. What’s special about the ocean? Why do we need to
model it? What’s wrong with the simplest picture?

. Multiple equilibria in a hierarchy of ice-ocean-
atmosphere models

. Climatic impact of ocean heat transport in ice-free
worlds



0 have multiple equilibria, need a non-
inear system with competing positive and
negative feedbacks

The Earth has these.

Classic example: ice-albedo
feedback and the Snowball
—arth instability
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leMA

equator T ="1Tyg pole

Simple Energy Balance Model

oT ,
C— =(1-a)S—[A+BT]+KV’T

Seasonal heat Absorbed solar Outgoing Heat transport
storage radiation longwave convergence
radiation

The classic Energy
Balance Model




AS
Fout: Aout+ BoutT

| . . L
e The ice line albedo parameterization

oL
Hoc—Ka—y

Simple Energy Balance Model

alT(z,t)] = a, = ag, T(v,t) > T

ar, T(x,t) <Tj

The model becomes nonlinear (but still analytically tractable)

Consider the deep-water limit (deep mixed layer and/
or short solar year) -
use steady-state annual mean model
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Stability of ice caps (1)

Graph of equilibrium ice edge position vs. radiative forcing (insolation) for one set
of (quasi Earth-like) parameters
(e.g. North 1975)
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Stability of ice caps
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Stability of ice caps (3

Efficient
transport
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Energy Balance Models
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Typical solutions

* Albedo feedback --> multiple equilibria (both
stable and unstable)

* No stable ice edges equatorward of a certain
subtropical latitude

e Never more than one stable solution with finite
Ice cover
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Totally missing from the EBM....
The oceans!

EQUATOR

— Total
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-  (Qcean

CESM slab ocean
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How does the energy redistribution
by ocean currents affect the mean
climate at Earth’s surface!?

Do ocean dynamics actually matter?



Ocean heating, SST, sea ice and show in
state-of-the-art climate model simulation

CAMS control

CAMS control CAMS5 control

0 1 2 3 4 5 6 7 E
SST(° Q) Ice thickness (m)

—400 -300 -200 -100 ©0 100 200 300 400 01 2 3 4 5 6 7 8

. -400 -300 -200 100 0 100 200 300 400 0 1 2 3 4 5 6 7 8
Slab ocean heating rate (W m=?2) Ice thickness (m)

Slab ocean heating rate (W m~?) Ice thickness (m)



Now set the “qg-flux” to zero!

CAMS5 zero OH

treat the
ocean as
as0m

deep I
swamp! R

@
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SST(° C) Ice thickness (m)




With and without ocean heat transport — two very
different worlds!

0 5 10 15 20 0 3 8 12 16 20 24 0 2 4 6 8 10 12
SST(° C) Sea Ice thickness (m) Months of snow cover

Without ocean heat transport:

- global cooling of 24°C!

- More than half the planet covered by ice and snow

- Perennial snow cover on many high-latitude land
surfaces would lead to glaciation and further cooling

Oceans matter mostly through interactions with sea ice!



Atmospheric Heat Transport destabilizes the climate because heat is
shared between the ice-free and ice-covered latitudes

atmospheric heat transport is
continuous across the ice edge

Energy gaj

Sea ice is an insulator... ocean cannot carry
heat under the ice (at equilibrium)

Meridional structure of OHT is critical




Putting the ocean in an EBM
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For wind-driven gyres
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Rose & Marshall (2009) JAS



Energy-Momentum Balance Model

Energy Angular Momentum

Budget | f Budget

POLE

Implied momentum
fransport

Loss of
angular mim

Gain of
angular mfm

EQUATOR

Extension of classic EBM to include: Rose & Marshall (2009) JAS

1. Mixing of potential vorticity subject to an angular momentum constraint
(White, 1977; Marshall, 1981)
2. Representation of heat transport by wind-driven ocean circulation

Key is the ‘surface wind equation’



Wind stress and momentum flux

Assume Uq ~ —K — Green (1970)

get diffusive model for PV
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Possible climatic implications

External forcing that raises/lowers energy budget has potential to generate
asymmetrical warming/cooling
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What about more complex models?

A series of calculations with a coupled
atmosphere-ocean-sea ice GCM with highly
iIdealized continental boundaries explores the

elemental role of the oceans in climate

e.g. Enderton & Marshall (2009) JAS

Coupled MITgcm, primitive equations on the “cubed sphere”: 5-level atmosphere,
15-level ocean, interactive clouds and thermodynamic sea ice



A deterministic view:
Contigents ---> OHT ---> sea ice extent ---> climate
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Model setup

» Coupled MITgecm at C24 resolution - Seaice:
(cubed sphere, 24x24 points per

cube face) with simplified geometry * Thermodynamic energy-
(Aqua, Ridge) conserving 3 layer model based

on Winton (2000)

* Atmosphere: * horizontal diffusion of ice

* 5 levels, primitive equations thickness (a proxy for ice
- Simplified moist physics based dynamics)
on SPEEDY (Molteni 2003) - Machine-accuracy global
. N " conservation of heat, water and salt
O topograpny during long simulations

. Ocean: - External forcing:

- 15 levels, uniform 3 km depth - Insolation with full seasonal cycle

- GM-Redi eddy parameterizations,

° e 1t
vertical convective adjustment That's it! (e.g. no flux

adjustments)



350
£ 340
=

330

0

1000

Sea ICe

Ickness

2000

3000

4000
Years

5000

6000

7000

8000




T Ocean temperature

Eq

Sea-Ice thickness (m)

N N = =
A~ O O DN

Warm state |

WColdstatenn Ferreira, Marshall and Rose,
- snowbal  SEmEOT

Sea Ice extent

Wind-driven subtropical cell

MUltlple ocean / sea ice deposits heat at poleward edge
states: a cartoon of subtropical thermocline, limits

ICe expansion




" Ocean temperature

Pole

7
Atm. W
/
Oc. —”i-ég—)

Eq. Pole

Sea-Ice thickness (m) / ,

N N = -
A O O DN

Capturing the Warm and ~ Wodify the AO-EBM to account

for the heat transport by ocean’s

COld states in the EBM overturning circulation




Let’s decouple OHT from the climate system and
vary it systematically.

* Replace the full ocean model with a slab mixed layer.
 Prescribe OHT as a heat source / sink term (g-flux).

* Is the climatic role of OHT very different in cold versus warm climates?
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Ocean heat transport (PW)

290 -60  -30 0 30 60 90
Latitude g o6 and Ferreira, J. Glim. 2013

Ocean heat transport in
Mmodels and observations



Rose and Ferreira, J. Clim. 2013
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for ocean heat transport




Ocean heat transport (PW)

Map out the climatic impact of OHT

Latitude
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® \Vhat is the equilibrium relationship between
OHT and sea ice”?

® Can we change the number and type of
different possible equilibria by varying OHT?
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Figure 9. Ice edge latitude in slab ocean simulations. Meridional structure of prescribed OHT is sketch in thick grey
curves. Colors indicate peak amplitude of prescribed OHT. Runs are initialized in two different initial conditions: no ice

and ice near 45°. Years Rose (2015) JGR



warm states
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In the icy regime:

- Idealized GCM (and simple EBM) has a continuum of cold icy climates, in
which the sea ice edge is slaved to the OHT convergence.

« Sea ice edge must be poleward of any location receiving > 30 W/m2 OHT
convergence.

 This limit is set by the insulating effect of the ice.

- In this model, no small ice caps are possible (poleward of about 50°). Detailed
shape of high-latitude OHT convergence is probably important here!

» Very cold, stable tropical ice edges are possible, so long as OHT is sufficiently
Intense and narrow.



Let’s go back to the fully coupled system with a dynamic ocean
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Figure 6. Evolution of the sea ice edge in long integrations of the coupled Ridge GCM with time-varying solar constant.
The red and blue curves were described in detail by Rose et al. [2013]. This figure shows that a slight increase in the
amplitude of the forcing leads to qualitatively different behavior: the model enters the Waterbelt state with subtropical
sea ice. The Waterbelt state with ice edge at 24° latitude is a stable equilibrium of Ridge (black curve) at the reference
solar constant of 1352 W m~2 (as used by Ferreira et al. [2011] and Rose et al. [2013]), along with the Warm, Cold, and
Snowball states pictured in Figure 1. Once in the Waterbelt state, the ice edge adjusts only minimally to a 35 W m™2
increase in solar constant (magenta curve).

Hysteresis in the :%Idgeworld Transient simulations with slowly

varying solar constant
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Figure 2. Ocean heat transport and convergence. (left) OHT (in PW) from the three non-Snowball states of Ridge shown -

in Figure 1. The grey shading spans two different observational estimates of present-day OHT [Trenberth and Caron,
2001]. (center) Spatial map of OHT convergence (W m~2) in the Waterbelt Ridge simulation, with the ice edge indicated
by the black contours. This shows the zonal asymmetries associated with the subtropical gyre circulation. (right) zonal
average convergence in Waterbelt (blue line). The dashed black line is the convergence estimated from equation (1) with
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AtmOSpheriC CirCU|atiQn Equatorward shift of wind systems
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11 CO | d b} ) shown in each case. Plotted with a logarithmically stretched depth axis to highlight upper ocean structure. “Wa_te rbe |_|: 1)

Ocean: thermal structure Shallow thermocline, intense but
and overty rning narrow wind-driven overturning
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Figure 3. Zonally averaged potential temperature (gray shading, in °C) and residual mean overturning mass streamfunc-
tion (red contours, in Sv) in the ocean for the (left) Cold and (right) Waterbelt states of Ridge. Only one hemisphere is
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Surprises from the Waterbelt Climate:

 As ice edge moves equatorward, storm tracks and jets shift along with it.

* New equilibrium is made possible by narrow, intense STCs in the ocean, carrying
large amounts of tropical-source heat to the edge of the ice. A robust feature of
tropical ocean circulation, need to account for it in any theory of cold climates!

- A fundamentally coupled mechanism: stable ice edge requires intense OHT
convergence, which requires equatorward shift in wind systems, which requires
equatorward shift in ice edge!

« Relevance to Neoproterozoic Snowball Earth? Ridgeworld model suggests this
state is “easy” to get into and “hard” to get out of. Exists over a 46 W m-2 range of
solar constant.

 Future work: distinguish between “hard snowball” and “waterbelt” scenarios for
Snowball Earth based on the ocean circulation and its implications for the
sedimentary record.



B=23.45°, a=0.44

W T

Back to basic ideas...

)]
o
T

Bifurcation diagram for the simple EBM

(no ocean)

ice edge latitude
N
(6]
T

w
o
T

=
(9]
T

o

I I I
1.0 1.2 1.4 1.6 1.8



Back to basic ideas...

Bifurcation diagram for the simple EBM

(no ocean)

Convergence of ocean heat transport ¢
into midlatitudes creates an additional
fold in the diagram, with a “stability
ledge” for mid-latitude ice edges
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But the fully coupled system has an even more rich bifurcation structure...
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Figure 7. Bifurcation diagram for Ridge. Each marker represents a long
equilibrium simulation of the coupled GCM with fixed parameters.

The model is initialized in Warm, Cold, Waterbelt, or Snowball state as
indicated by marker color. A range of solar constants is used to map out
the stable branches for each model state. A stable Waterbelt is found
for solar constant between 1341 and 1387 W m~2, with ice lines ranging
from 21° to 30° latitude. The red axis shows approximate global mean
surface temperature; the Waterbelt states range between 250 and 260 K.
These are well separated from the Cold states, which have ice lines
between 40° and 50°, and temperatures between 272 and 282 K. Black
lines give a schematic sketch of the continuous bifurcation diagram of
ice edge versus solar constant, with solid (dashed) lines indicating stable
(unstable) branches (the critical value for Snowball deglaciation was not
searched for). The two crosses at 1352 W m~2 show a sensitivity test on
the sea ice thickness diffusion coefficient: a 50% diffusivity increase
leads to a stable ice expansion of 1° latitude, while a 100% increase
results in a Snowball climate.
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Summary... what have

e Multiple equilibria of ice, oceans and climate found across a hierarchy of models  *[— ———
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e Stable ice edges occur poleward of wherever OHT convergence is strong. | -
Meridional structure of OHT is key. T

15 e N

e Spatial structure of OHT is not fixed! In (long) transients at least, it is tightly
coupled to changes in sea ice.

e A continuum of different climates is possible for given radiative forcing,
depending on meridional structure of OHT.

e A fully coupled atmosphere-ocean-sea ice GCM has four stable states ranging :
from 100% to 0% ice cover. All four are found for present-day climate forcing
and with two different basin geometries.

e The Waterbelt is stabilized by equatorward shift of winds and ocean circulation.
Narrow, intense OHT by subtropical cells makes it possible. This wind shift is
tied to the baroclinicity associated with the ice edge. Thus, the Waterbelt results
from three-way coupled wind-ocean-ice feedback.

e Freezing over the tropical ocean is hard. Implications for Snowball Earth



Bonus:
Does ocean heat transport matter in ice-
free worlds?



Ocean heat transport (PW)

Map out the climatic impact of OHT
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® \Vhat is the equilibrium relationship between
OHT and sea ice”?

® Can we change the number and type of
different possible equilibria by varying OHT?
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Smaller N, higher amplitude



%& In the ice-free regime:

N/ ==

-50 0 |[——N=3|50
——N=4
—— N=6

1 1 N=8 —
’ NU% 1 0 - ; i ; .
* | v 1 -90 -60 -30 0 30 60 90

-50 0 50 Latitude
Latitude

® |ncreased OHT warms the poles, does not cool the tropics

— 1 PW
2 PW

—2.5PW
3 PW

— 4 PW

® No change in total (A + O) poleward heat transport (atmosphere compensates)

® |n absence of ice, the strongest coupling between OHT and climate is through
the distribution of surface evaporation, moist convection, and clouds

® Consequent radiative feedbacks warm the planet!
® Rose and Ferreira (2013), J. Climate
® Rencurrel and Rose (2018), J. Climate




Work by Cameron Rencurrel:
Same g-flux experiments in a more comprehensive GCM
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FIG. 2. Zonal, annual mean SST vs latitude as a function of amplitude for 0° (left) and 23.45° (right) obliquity.
Each panel has a fixed meridional scale parameter N as indicated. The dashed magenta lines show the spatial
pattern of the g-flux (plotted in W m~2 for a 1 PW peak transport). Dashed yellow lines (plotted in the N = 1

panels only) show the effects of doubling CO, from the zero-OHT control states.

Rencurrel and Rose (2018) J. Climate
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