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Clouds seen from above
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Where does it rain?

Annual mean precipitation
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Where does it rain?

Annual mean precipitation
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Data source: GPCP Why is the maximum precipitation (ITCZ) north of the equator?



Precipitation is tied to the atmospheric circulation

Annual mean winds
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Precipitation is tied to the atmospheric circulation

Hadley cell
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Precipitation is tied to the atmospheric circulation

Hadley cell
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Maximum precipitation is co-located with ascending motion in the Hadley cells



Large-scale circulations and clouds
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Where does it rain?

Annual mean precipitation
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When does it rain?

July mean precipitation
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When does it rain?

January mean precipitation
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When does it rain?

July mean precipitation
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Monsoons are part of the atmospheric overturning
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Monsoon circulations are cross-equatorial Hadley circulations that project
strongly on the solstice zonal mean

e.g., Bordoni & Schneider (2008), Walker, Bordoni & Schneider (2015), Walker & Bordoni (2016)



Convection and large-scale circulations

- The conceptof conditional instability has been central to the thinking about
moist convection and its interaction with large-scale circulations;

- Conditional implies that the instability is finite amplitude in nature:

« The existence of CIN acts
as a barrier to convection;

« Only large perturbations can
trigger convection;

- But unambiguosly
conditionally unstable
/ profiles have only been
/’ demonstrated over

continental areas.
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Is convection a heat source for large-scale circulations?

« In this external view, energy released by convection drives the flow:

- Latent heat released typically exceeds energy required to maintain the
KE of large-scale motions against dissipation;

- Latent heating leads to KE production.

- But this energy conversion requires positive correlation between heating
and temperature fluctuations:

* No a priori reason for this to be the case;

- In fact, latent heatrelease is largely balanced by radiative and
adiabatic cooling — any residual is a small percentage of large
compensating terms.



Convective quasi-equilibrium

Convective scale processes act on timescales that are much smaller
than those of large-scale processes;

Convection consumes CAPE as soon as it is generated by radiation or
large-scale flow;

CAPE can be non-zero, but it’s rate of change is approximately zero.
For typical tropical conditions, net surface flux and column radiative
cooling generate ~4000 J kg-'day!, while CAPE values are below
1000 J kg'day.

The fact that CAPE is largely invariant has important implications for
the temperature of convective atmospheres:

- Moist convection does not act as a heat source for large-scale
flow, but maintains free troposphere close to a moist adiabat;

- Changesin free tropospheric temperatures are in equilibrium with
changesin boundary-layer moist static energy.

e.g., Emanuel et al. (1994)



CQE and convectively coupled large-

scale circulations
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Convectively coupled view of cross-equatorial Hadley cells

Maxima of T,and h,
coincide at poleward
edge of cell

e.g., Emanuel et al. (1994), Emanuel (1995), Prive and Plumb (2007), Nie et al. (2010)



Convectively coupled view of cross-equatorial Hadley cells

Maxima of T,and h,
coincide at poleward
edge of cell

Monsoons are NOT driven by near-surface temperature gradients!

e.g., Emanuel et al. (1994), Emanuel (1995), Prive and Plumb (2007), Nie et al. (2010)



Monsoons are not large-scale sea breeze circulations!

Monsoons are NOT driven by near-surface temperature gradients!

e.g., Ruddiman (2007)



What drives Hadley and monsoonal circulations

Energy

Budget l ¢
Energy loss

POLE
Transport energy from

regions (or hemisphere)
with net energy gain to
regions (or hemisphere) of
net energy loss

EQUATOR

Copyright & 2008, Elsevier Inc. All rights reserved.



Height

Energetically-direct circulations

A Net energy deficit

ITCZ

Net energy input

Moist static energy

N h=CyT+ L,q+ gz

Adapted from Schneider et al. 2014



Energetically-direct circulations

A Net energy deficit Net energy input Moist static energy

ITCZ

Height

S Eq N h=CpT' + Lyq + gz

Weaker energy stratification in moist circulations require a stronger circulation to
accomplish same energy transport as dry circulations. Moist circulations are less
efficient than dry circulations.

Adapted from Schneider et al. 2014



Energetically-direct circulations

A Net energy deficit Net energy input Moist static energy

Height

N h=CyT+ L,q+ gz

Because MSE is positively stratified, Hadley and monsoonal circulations transport
energy in the direction of the upper-level flow.

Adapted from Schneider et al. 2014



Energetically-direct circulations

A Net energy deficit Net energy input Moist static energy

Height

N =0T+ Lyqg+ gz

The fact that the ITCZ is shifted north of the equator implies that the NH receives
more energy than the SH: primarily due to ocean heat transport.

e.g., Marshall et al. (2014), Frierson et al. (2013)



Observational evidence

July climatology
Contours: 200-400 hPa temperature (K)
Colors: surface air moist static energy (¢, T+ gz + Ly g), In K)

Boos and Hurley (2013)



Also true on interannual timescales
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Walker, Bordoni and Schneider (2015)



Also true on interannual timescales
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And on intraseasonal timescales
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Rapid onset
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Latitude

Rapid onset
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Monsoons can exist over an aguaplanet

Aquaplanet Observations
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The reversed meridional temperature gradient can develop even without a
subtropical landmass (let alone topography!)

Adapted from Bordoni & Schneider (2008)



30S 0 30N
Latitude

What drives the rapid development of a monsoon in these simulations?

Adapted from Bordoni & Schneider (2008)



Angular momentum-conserving cross-equatorial HC
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Angular momentum-conserving cross-equatorial HC
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Is the observed Hadley cell AMC?
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Upper-level flow of the South Asian monsoon

40N -
/
T
® 4 |- N v
A 1 t 1 i
P
X n
20N PAS A1 1 —
\‘ X s
7 : ‘ i
.\ ; \
"~ 7
» . L] \\\I
0 —
S~ 1

Data source: GPCP 1DD and ERA-40 Reanalysis



Pressure (hPa)

Pressure (hPa)
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Momentum balance in aquaplanet monsoons
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Emerging theoretical framework

Aquaplanet simulations suggest rapid monsoon onset/end correspond to

transitions in leading angular momentum budget

Equinox

Monsoon

Role of eddies in angular
momentum budget

Large

Minor — approaches angular
momentum conservation

l

Circulation
constrained by
momentum budget

l

Circulation
constrained by
energy budget

More next week on how these mechanisms are modified by presence of
zonally symmetric continents, in the presence of zonal asymmetries
(stationary eddies) and in the observed AM balance of the South Asian

monsoon!




Energetic constraint on the ITCZ position

A Net energy deficit

Height

.,

Net energy input

ITCZ

SWroa LWroa

Adapted from Schneider et al. 2014



Energetic constraint on the ITCZ position

A Net energy deficit Net energy input Moist static energy

ITCZ

Height

S Eq N h=CpT' + Lyq + gz



Energetic constraint on the ITCZ position

A Net energy deficit Net energy input Moist static energy

Height

S Eq N h=CpT' + Lyq + gz



Energetic constraint on the ITCZ position

A Net energy deficit Net energy input Moist static energy

Height

N h=CyT+ L,q+ gz

ITCZ position is anti-correlated with the cross-equatorial energy
transport (vh)o

e.g., Kang et al. 2008, Hwang and Frierson 2012, Donohoe et al. 2013, Bischoff and Schneider 2014



ITCZ and EFE

A Net energy deficit

Net energy input Moist static energy
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e.g., Kang et al. 2008, Hwang and Frierson 2012, Donohoe et al. 2013, Bischoff and Schneider 2014



Change in annual mean P__, . (°)

ITCZ and cross-equatorial energy transport
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Open questions on energetic constraints on ITCZ/monsoons

 |s zonal mean framework useful?

How do we modify this framework to include zonal variability? (Boos
and Korty 2016, Adam et al. 2016)

Is the GMS always constant? (Seo et al. 2017)



Tipping points in monsoons?

Will monsoons shift abruptly and discontinuously from wet to dry
states for small changesin radiative forcing past a critical threshold?

Paleo-records show evidence of rapid changesin monsoon strength;

The rapid onset of the monsoon on subseasonaltimescales due to
nonlinearity? Can same mechanism(s) produce similar response to
imposed seasonal mean forcing?

- It has been suggestedthat albedo increasing above 0.5 can shut
down monsoons;

 Could GHG concentration increases also cause similar nonlinear
responses?

e.g., Zickfeld et al. 2005, Levermann et al. 2009, Schewe and Levermann (2012)



Tipping points in monsoons?

Model based on vertically-integrated T and q equations (as we have
discussed for derivation of MSE budget);

Horizontal advection of T and q;

Vertical terms representing adiabatic cooling and low-level moisture
convergence;

Meridional wind assumed proportional to meridional T gradient;
Simple closure for precipitation, P =q — T/ H(q — T);

No rotation, no non-linear momentum advection, no evaporation
dependence on surface winds.

Boos and Storelvmo (2016)



Tipping points in simple models?

Column energy source, Q (W/m?)
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Tipping points in GSMs?

surface albedo
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