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Outline 

•  Introduction: 
Ø  Dynamical concepts 
Ø  Overview of “essential” literature 

•  Detection of regimes in atmospheric and model datasets 
Ø  PDF estimation in one or two dimensions 
Ø  An example of cluster analysis for the North Atlantic domain 

•  Sources of extended-range predictability 
Ø  Impact of external/boundary forcing on atmospheric regimes 
Ø  Linear and non-linear impact of ENSO on regime properties 
Ø  MJO and Euro-Atlantic regimes 
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Multiple equilibria, flow regimes and related dynamical concepts 

Multiple equilibria: 
Multiple stationary solutions of a non-linear 

dynamical system 
Flow regime: 
A persistent and/or recurrent large-scale flow pattern 

in a (geophysical) fluid-dynamical system 
Weather regime: 
A persistent and/or recurrent large-scale atmospheric 

circulation pattern which is associated with specific 
weather conditions on a regional scale 
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Flow regimes in non-linear systems 

3-variable model of Rayleigh-Benard convection (Lorenz 1963)  
•  dX/dt = σ (Y – X) 
•  dY/dt = - X Z + r X –Y 
•  dZ/dt = X Y – b Z  

Unstable stationary states 
•  X = Y = Z = 0 
•  X = Y = ± [ b (r -1)] ½  , Z = r -1 
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Atmospheric regimes as quasi-stationary states 

 
 q : barotropic or quasi-geostrophic potential vorticity 
 ∂ t q = - Vψ ∙ grad q - D (q – q*)  

 
 steady state for instantaneous flow: 
 0 = - Vψ ∙ grad q - D (q – q*)  

 
 steady state for time-averaged flow: 
 0 = - ‹ Vψ ›∙ grad ‹q› - D (‹q› – q*)  
    - ‹ V’ψ ∙ grad q’ ›  
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Multiple equilibria: Charney and DeVore 1979 

Multiple steady states of low-order barotropic model with wave-shaped bottom 
topography 
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Weather regimes: Reinhold and Pierrehumbert 1982 

Hemispheric weather regimes arising from equilibration of large-scale 
dynamical tendencies and “forcing” from transient baroclinic eddies  
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Eddy “forcing” of blocking regimes: the Imperial College school 

 
•  Green 1977: The weather during July 1976: some dynamical 
consideration of the drought 

•  Illari and Marshall 1983: On the interpretation of eddy fluxes 
during a blocking episode  

•  Shutts 1986: A case study of eddy forcing during an Atlantic 
blocking episode 
 
•  Haines and Marshall 1987: Eddy-forced coherent structures as a 
prototype of atmospheric blocking 
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Regional regimes: Vautard and Legras 1988 

Regional weather regimes arising from equilibration of 
large-scale dynamical tendencies and PV fluxes from transient 

baroclinic eddies  
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Bimodality in one-dim. PDF (Hansen and Sutera 1986) 

Bimodality in the probability density function (PDF) 
of an index of N. Hem. planetary wave amplitude 

due to near-resonant wave-numbers (m=2-4)    
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Regimes from 2-dim. PDF estimation (Corti et al. 1999) 
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Regimes from cluster analysis (Michelangeli et al. 1995) 
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Regime behaviour and anomalous forcing 

Lorenz (1963) truncated convection model with additional 
forcing (Molteni et al. 1993; Palmer 1993)  

•  dX/dt = σ (Y – X) 
•  dY/dt = - X Z + r X – (Y – Y*) 
•  dZ/dt = X Y – b Z  

Y* > 0                                                                                Y* < 0 
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Impact of “external” forcing in non-linear systems 

The properties of flow regimes may be 
affected by anomalous forcing in two 
different ways: 
Ø Weak forcing anomaly: the number 

and spatial patterns of regimes remain 
the same, but their frequency of 
occurrence is changed  

Ø Strong forcing anomaly: the number 
and patterns of regimes are modified as 
the atmospheric system goes through 
bifurcation points  
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El Niño and the Southern Oscillation  

SOI: Tahiti – Darwin SLP 

Nino3.4 SST 
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 Extratropical teleconnections with ENSO  

Correlation of 700hPa height with  
a) PC1 of Eq. Pacific SST 
c) SOI index 
 
Schematic diagram of tropical-extratropical 

teleconnections during El Niño 

Horel and 
Wallace 1981 
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A regime approach to seasonal predictions 

 Cluster analysis of low-frequency anomalies of Z 200 in NCEP re-analysis and COLA 
AGCM ensembles (Straus, Corti & Molteni 2007) 
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A regime approach to seasonal predictions  

 Predictability of cluster frequencies (SCM 2007) 
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Does ENSO affect the number of regimes? 

•  Ratio of inter-cluster to intra-cluster variance as a function of ENSO indices 
(Straus and Molteni 2004) 
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Sub-seasonal variability: the Madden-Julian Oscillation (MJO) 

Wheeler	–	Hendon	(2004)	MJO	metric	based	on	composite	EOFs	
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Impact of MJO on Euro-Atlantic regimes 

Cassou 2008 
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Summary 

•  Flow regime behaviour can be reproduced in a variety of dynamical 
models of different complexity. 

•  Atmospheric flow regimes may be defined on a hemispheric or 
regional domain. 

•  Detection of regimes in atmospheric and model datasets is usually 
performed by PDF estimation or cluster analysis; results are 
dependent on adequate time-filtering and proper use/interpretation 
of statistical significance tests.  

•  The impact of forcing anomalies on regime properties may occur 
through changes in regime frequencies or bifurcation effects. 

•  Predictability of regime frequencies and variations in the number of 
regimes as a function of the ENSO and MJO phases have been 
detected in ensembles of GCM simulations, and offer an alternative 
approach to long-range prediction. 



Flow regimes over the North Atlantic and 
teleconnections with the tropics 
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Outline 

•  A comparison of regimes obtained from cluster analysis 
over different NH domains: are Atlantic and Pacific 
regimes connected? 

•  Impact of tropical heating over the Indian – West Pacific 
ocean: modelling studies on decadal and sub-seasonal 
scales 

•  Teleconnections with Indo-Pacific rainfall from GPCP data 
and ECMWF re-analyses 

•  Impact of Atlantic and Pacific regimes on surface heat 
fluxes over the northern oceans 

•  The role of the stratosphere 
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EOF & cluster analysis in three NH domains 

Data: 5-day means of Z 500 hPa in DJF 1979/80 to 2012/13  
(from ERA-interim) 

Cluster analysis method: k-means  
(Michelangeli et al. 1995, Straus et al. 2007)  
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Euro-Atlantic 4-cluster centroids 

NAO+ 
31.5% 
 
 
 
 
 
 
 
Atl. Ridge 
22.2% 
 

Blocking 
25.0% 
 
 
 
 
 
 
 
NAO- 
21.3% 
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Pacific-North American 4-cluster centroids 

Pacific 
Trough 
27.7% 
 
 
 
 
 
 
PNA+ 
24.0% 
 

Arctic Low 
( PNA- ) 
27.7% 
 
 
 
 
 
 
Alaskan 
 Ridge 
20.6% 
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Centroid of the most populated cluster  

     NAO+ 31.5%                 Pac Trough 27.7%                COWL 18.8% 
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AGCM exp: late 20th cen. trends, Hurrell et al. 2004 

JFM NAO index 
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AGCM exp: late 20th cen. trends, Hoerling et al. 2004 

CCM3 
 
 
 
Z 500 
 
 
 
 
 
 
Prec. 
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Impact of the MJO on the NH extra-tropics: composites from ERA-int. 
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F ig u r e 12: V er t i ca l ly av er a g ed anom a lou s h ea t in g ra t e for ( a ) E x p 1; an d ( b ) E x p 2 . T h e

cont ou r int er va l i s 0 .5 � C d ay - 1 . T h e z ero cont ou r is n ot p lot t ed , a n d cont ou r s w i t h n eg a t iv e

va lu es a re d a sh ed .

42

Lin et al, MWR 2010 
See also  
Simmons et al JAS 1983 
Ting and Sardeshmukh JAS 1993 

Impact of the MJO on the NH extra-tropics 

F ig u r e 12: V er t i ca l ly av er a g ed anom a lou s h ea t in g ra t e for ( a ) E x p 1; an d ( b ) E x p 2 . T h e

cont ou r int er va l i s 0 .5 � C d ay - 1 . T h e z ero cont ou r is n ot p lot t ed , a n d cont ou r s w i t h n eg a t iv e

va lu es a re d a sh ed .

42

F igure 13: 500 hPa geopotential height response averaged between day 6 and 10 (left) and

between day 11 and 15 (right) for E xp1 (top) and E xp2 (bottom). T he contour interval is

15 m. C ontours with negative values are dashed.

43

F igure 13: 500 hPa geopotential height response averaged between day 6 and 10 (left) and

between day 11 and 15 (right) for E xp1 (top) and E xp2 (bottom). T he contour interval is

15 m. C ontours with negative values are dashed.

43
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Teleconnections from Indian Ocean & W. Pacific in DJF  

Molteni, Stockdale, Vitart 
ClimDyn 2015 
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Teleconnections from Indian Ocean & W. Pacific in DJF  
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Covariances with W. Indian Ocean rainfall in CERA20C 
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Teleconnections and multi-decadal variability in CERA20C 
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Modelling decadal variability on near-surface temperature trends 

Kosaka and Xie (Nature 2013): 
“pacemaker” experiment for 2002-2012 

Linear trends from HadCRUT: 
1984-1998:	0.26	oC/decade	
1998-2012:	0.04	oC/decade	

37 
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October 29, 2014 

Abstract: … efforts to constrain the climate model produced range of unforced 
interdecadal variability in global SAT would be best served by focussing on air-
sea interactions at high latitudes. 

39 

Abstract: … This study demonstrates that model biases in air-sea fluxes are one 
of the key sources of uncertainty in climate simulations. 
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Co-variability of NH ocean heat fluxes and circulation anomalies 

Covariance with TW 
index in DJF 
(from ERA-
interim): 
 
Z 500 hPa 
 
 
 
 
 
 
 
Net downward 
surface 
heat flux 

40 

Thermal forcing 
Wave index (TW)  
in DJF 1982 – 2011 
 
Positive = 
Increased heat flux 
from oceans to atm. in 
40N-70N band 
 
(Molteni et al. 2011, 
2017) 
 
inspired by theories on 
thermal equilibration 
of planetary waves: 
 
Mitchell and Derome 1983 
Shutts 1987 
Marshall and So 1990  
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Co-variability of NH ocean heat fluxes and circulation anomalies 

Covariance with TW 
index in DJF 
(from ERA-
interim): 
 
Z 500 hPa 
 
 
 
 
 
 
 
Net downward 
surface 
heat flux 
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Thermal forcing 
Wave index (TW)  
in DJF 1982 – 2011 
 
Positive = 
Increased heat flux 
from oceans to atm. in 
40N-70N band 
 
(Molteni et al. 2011, 
2017) 
 
inspired by theories on 
thermal equilibration 
of planetary waves: 
 
Mitchell and Derome 1983 
Shutts 1987 
Marshall and So 1990  
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NH heat flux co-variability with tropical Indo-Pacific rainfall   

42 
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1st EOF of T 100 hPa in DJF and its covariance with Z 500 hPa  
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A role for the stratosphere (Fletcher, Kushner, Cassou 2010/2013/2015)  

Fletcher & Kushner 2010  
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Zonal mean heat transport [v*T*] in the lower stratosphere 
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Summary 

•  Flow regimes in the North Atlantic and North Pacific sectors can be detected 
independently and explained by dynamical interactions on a regional scale. 

•  Teleconnections from tropical rainfall anomalies can create preferred 
combinations of Atlantic and Pacific regimes, and particularly a planetary 
wavenumber-2 regime with anomalies of the same sign on the northern side of 
both oceans (~ COWL pattern). This occurs when rainfall anomalies of the same 
sign and comparable amplitude exist in the W Indian Ocean and central Pacific. 

•  This teleconnections is important for both seasonal and decadal scales, and is 
also similar to the teleconnections from MJO phase 2-3. It is also related to 
anomalies in surface heat fluxes over the northern oceans. 

•  The Rossby waves originated by the Indian and Pacific ocean heating anomalies 
have opposite effects on the meridional heat flux convergence into the polar 
lower stratosphere/upper troposphere, creating opposite forcings on the polar 
vortex. In turn, this can affect the phase/intensity of the NAO response.  


