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Outline

e Introduction:

» Dynamical concepts
» Overview of “essential” literature

e Detection of regimes in atmospheric and model datasets
» PDF estimation in one or two dimensions
» An example of cluster analysis for the North Atlantic domain

e Sources of extended-range predictability
» Impact of external/boundary forcing on atmospheric regimes
» Linear and non-linear impact of ENSO on regime properties
» MJO and Euro-Atlantic regimes
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Multiple equilibria, flow regimes and related dynamical concepts

Multiple equilibria:

Multiple stationary solutions of a non-linear
dynamical system

Flow regime:

A persistent and/or recurrent large-scale flow pattern
in @ (geophysical) fluid-dynamical system

Weather regime:

A persistent and/or recurrent large-scale atmospheric
circulation pattern which is associated with specific
weather conditions on a regional scale
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Flow regimes in non-linear systems

3-variable model of Rayleigh-Benard convection (Lorenz 1963)
o dX/dt =0 (Y -X)
o dY/dt =-XZ+rX-Y
o dZ/dt =XY-bZ
Unstable stationary states

e X=Y=2Z=0
e X=Y=x[b(r-1)]% ,Z=r-1

s

Heat input
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Atmospheric regimes as quasi-stationary states

g : barotropic or quasi-geostrophic potential vorticity

0:9=-Vy-gradq-D(q-qg*)

steady state for instantaneous flow:

0=-Vy-gradq-D(q-g*)

steady state for time-averaged flow:

O0=-<Vy> grad <> - D (x> - g*)
-<V'y -grad q' >
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Multiple equilibria: Charney and DeVore 1979

Multiple steady states of low-order barotropic model with wave-shaped bottom
topography
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FiG. 4. Streamfunction fields of the stable first mode equilibria of a topographically forced flow for k = 10°%, Lia = Y4, n = 2,
fio/H = 0.2 and 7 = 0.2: for the spectral model above resonance (a) and slightly below resonance (b): and for the grid-point
model above resonance (c¢) and slightly below resonance (d). The nondimensional topographic heights are shown with light lines: the
contour spacing is 0.05 units, with negative regions shaded.
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Weather regimes: Reinhold and Pierrehumbert 1982

Hemispheric weather regimes arising from equilibration of large-scale
dynamical tendencies and “forcing” from transient baroclinic eddies
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Eddy “forcing” of blocking regimes: the Imperial College school

e Green 1977: The weather during July 1976: some dynamical
consideration of the drought

e Illari and Marshall 1983: On the interpretation of eddy fluxes
during a blocking episode

e Shutts 1986: A case study of eddy forcing during an Atlantic
blocking episode

e Haines and Marshall 1987: Eddy-forced coherent structures as a
prototype of atmospheric blocking
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Regional regimes: Vautard and Legras 1988

Regional weather regimes arising from equilibration of
large-scale dynamical tendencies and PV fluxes from transient
baroclinic eddies

PSI LEVEL 1 ZONALI PSI LEVEL 1 ZONAL2

LA N B B B N NN S B b ——4

S ECMWF ICTP School on Multiple Equilibria - June 2018 °



< ECMWF

Bimodality in one-dim. PDF (Hansen and Sutera 1986)

Bimodality in the probability density function (PDF)
of an index of N. Hem. planetary wave amplitude

due to near-resonant wave-numbers (m=2-4)
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Regimes from 2-dim. PDF estimation (Corti et al. 1999)

b) PDF (PC1, PC2) Re—An. 1955-98 [h = 0.4]
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Regimes from cluster analysis (Michelangeli et al. 1995)

AV

.

FIG. 4. Composites of the 700-hPa geopotential heights for the four clusters found over the ATL sector. Contour interval is 50 m. Dark
shaded areas show arcas where the anomaly of the composite with respect to the wintertime average is larger than 50 m. Light shaded
areas correspond to anomalies lower than —50 m. Clusters are sorted by their consistency: (a) cluster 1; (b) cluster 2; (¢) cluster 3; (d)
cluster 4.
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Regime behaviour and anomalous forcing

Lorenz (1963) truncated convection model with additional
forcing (Molteni et al. 1993, Palmer 1993)

o dX/dt = 0o (Y - X)
o dY/dt =-XZ +rX - (Y- Y¥*)
e dZ/dt =XY-bZ
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III

Impact of “external” forcing in non-linear systems

The properties of flow regimes may be
affected by anomalous forcing in two

different ways:

» Weak forcing anomaly: the number
and spatial patterns of regimes remain
the same, but their frequency of
occurrence is changed

» Strong forcing anomaly: the number
and patterns of regimes are modified as
the atmospheric system goes through
bifurcation points
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El Nino and the Southern Oscillation

Normal Conditions
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El Nifio Conditions
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Extratropical teleconnections with ENSO

Correlation of 700hPa height with
a) PC1 of Eq. Pacific SST
c) SOI index

Schematic diagram of tropical-extratropical
teleconnections during El Nifio

= /" Horel and
Wallace 1981
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A regime approach to seasonal predictions

Cluster analysis of low-frequency anomalies of Z 200 in NCEP re-analysis and COLA
AGCM ensembles (Straus, Corti & Molteni 2007)
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A regime approach to seasonal predictions

Predictability of cluster frequencies (SCM 2007)

(a) Alaskan Ridge NCEP(blue),GCM(red) (¢) Pacific Trough NCEP(blue),GCM(red)
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e Ratio of inter-cluster to intra-cluster variance as a function of ENSO indices

Does ENSO affect the number of regimes?

(Straus and Molteni 2004)

(a) 3—cl. variance ratio vs. Nino3

(b) 3—cl. variance ratio vs. PC1
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FIG. 4. Scatterplots of (a) the 3-cluster (£ = 3) vanance 1atio vs
Nifio-3, and (b) the 3-cluster vanance ratio vs the leading PC of
ensemble/seasonal means. The leading PC and SST index time series
are standardized.
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Sub-seasonal variability: the Madden-Julian Oscillation (MJO)

OLR Anomalies; Daily—averaged; Base period 1979-2001
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Impact of MJO on Euro-Atlantic regimes

CL4 part. cl1 11EOF: art. ¢l3 11EQFs
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Summary

Flow regime behaviour can be reproduced in a variety of dynamical
models of different complexity.

Atmospheric flow regimes may be defined on a hemispheric or
regional domain.

Detection of regimes in atmospheric and model datasets is usually
performed by PDF estimation or cluster analysis; results are
dependent on adequate time-filtering and proper use/interpretation
of statistical significance tests.

The impact of forcing anomalies on regime properties may occur
through changes in regime frequencies or bifurcation effects.

Predictability of regime frequencies and variations in the number of
regimes as a function of the ENSO and MJO phases have been
detected in ensembles of GCM simulations, and offer an alternative
approach to long-range prediction.
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Flow regimes over the North Atlantic and
teleconnections with the tropics

Franco Molteni

ECMWEF, Reading, U.K.
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Outline

A comparison of regimes obtained from cluster analysis
over different NH domains: are Atlantic and Pacific

regimes connected?

Impact of tropical heating over the Indian — West Pacific
ocean: modelling studies on decadal and sub-seasonal

scales

Teleconnections with Indo-Pacific rainfall from GPCP data
and ECMWF re-analyses

Impact of At
fluxes over t

antic and Pacific regimes on surface heat
ne northern oceans

The role of the stratosphere
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EOF & cluster analysis in three NH domains

Data: 5-day means of Z 500 hPa in DJF 1979/80 to 2012/13
(from ERA-interim)

EOF 1 (=) EAT EOF 1 (=) PNA EOF 1 PAT

-120-100-80 —60 —40 =20 20 40 &0 80 100 120

Cluster analysis method: k-means
(Michelangeli et al. 1995, Straus et al. 2007)
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Euro-Atlantic 4-cluster centroids

NAO+
31.5%

Atl. Ridge
22.2%

EAT cluster 1
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Pacific-North American 4-cluster centroids
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Trough
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Centroid of the most populated cluster

EAT cluster 1 PNA cluster 1

PAT cluster 1
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AGCM exp: late 20t cen. trends, Hurrell et al. 2004

Linear Trend (JFM) Multi-AGCM 1950-99
500hPa Z (m 50yr”)

Trend of JFM 500hPa NAO index (1950-99)
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AGCM exp: late 20th cen. trends, Hoerling et al. 2004

Responses (JFM) to Tropical SST Trends 1950-99

Tropic-wide Eastern Hemisphere Indian Ocean CCM3
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Impact of the MJO on the NH extra-tropics: composites from ERA-int.

a) gh500 anomaly MJO phase2+15d b) gh500 anomaly MJO phase3+10d

[ T T T T T T
g 8

C) MJO phase2+15d & phase3+10d
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Impact of the MJO on the NH extra-tropics

Lin et al, MWR 2010

See also

Simmons et al JAS 1983

Ting and Sardeshmukh JAS 1993
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Teleconnections from Indian Ocean & W. Pacific in DJF

a) cov (wcio, prec)
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Teleconnections from Indian Ocean & W. Pacific in DJF

a) cov (wcio, prec)
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Covariances with W. Indian Ocean rainfall in CERA20C
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Teleconnections and multi-decadal variability in CERA20C
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Modelling decadal variability on near-surface temperature trends

Kosaka and Xie (Nature 2013):
“pacemaker” experiment for 2002-2012
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st.dev. of annual-mean non—solar heat flux
ERA—interim 1979-2013
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Key Points:

Spread in the magnitude of climate model interdecadal - Climate models show substantial
- - - - d. h i d Df
== global temperature variability traced to disagreements natusal globol mean sfoce -
over high-latitude oceans temperature variability
- The spread in the simulated
Patrick T. Brown' ("), Wenhong Li' {, Jonathan H. Jiang® "/, and Hui Su® magnitude of global temperature

variability is not due to model

disagreement over the tropical Pacific
« The spread in the simulated

magnitude of global temperature

'Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, North Carolina, USA, *Jet
Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

Abstract: ... efforts to constrain the climate model produced range of unforced variability is linked strongly to model
interdecadal variability in global SAT would be best served by focussing on air- disagreement over high-latitude
sea interactions at high latitudes. oceans
Key Points:
 Ocean model is forced with air-sea Drivers of uncertainty in simulated ocean circulation
fluxes from CMIP5 models to examine
the drivers of uncertainty in ocean and heat u pta ke

circulation and heat uptake (OHU)

- High-latitude air-sea fluxes are the
dominant source of uncertainty in the Markus B. Huber' ' and Laure Zanna'
spread of Atlantic MOC and OHU over
model structural uncertainty

- Subgrid-scale parameters lead to
large uncertainty in the circulation
and OHU, especially in the Pacific and
Southern Oceans

! Department of Physics, University of Oxford, Oxford, UK

Abstract: ... This study demonstrates that model biases in air-sea fluxes are one
of the key sources of uncertainty in climate simulations.
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Co-variability of NH ocean heat fluxes and circulation anomalies

Thermal forcing Covariance with TW

Wave index (TW) index in DJF

in DJF 1982 - 2011 (from ERA-
interim):

Positive =

Increased heat flux 7 500 hPa

from oceans to atm. in
40N-70N band

(Molteni et al. 2011,
2017)

[ T >
&

inspired by theories on
thermal equilibration
of planetary waves:

s Net downward

i surface

—{—6

_12 heat flux

Mitchell and Derome 1983
Shutts 1987
Marshall and So 1990
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Co-variability of NH ocean heat fluxes and circulation anomalies

Thermal forcing
Wave index (TW)
in DJF 1982 - 2011

Positive =
Increased heat flux

from oceans to atm. in _

40N-70N band

(Molteni et al. 2011,
2017)

inspired by theories on
thermal equilibration
of planetary waves:

Mitchell and Derome 198
Shutts 1987
Marshall and So 1990
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Covariance with TW
index in DJF

(from ERA-
interim):

Z 500 hPa

Net downward
surface
heat flux
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NH heat flux co-variability with tropical Indo-Pacific rainfall
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1st EOF of T 100 hPa in DJF and its covariance with Z 500 hPa

EOF—=1 T 100 hPa D-J-F cov (T_100 PC1, gh 500 hPa)
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A role for the stratosphere (Fletcher, Kushner, Cassou 2010/2013/2015)

30N

15N-:

158} |-

30S}-

-

180

Fletcher & Kushner 2010
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responses. The contour interval is 20 m and negative contours are dashed.



Zonal mean heat transport [v*T*] in the lower stratosphere
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Summary

e Flow regimes in the North Atlantic and North Pacific sectors can be detected
independently and explained by dynamical interactions on a regional scale.

e Teleconnections from tropical rainfall anomalies can create preferred
combinations of Atlantic and Pacific regimes, and particularly a planetary
wavenumber-2 regime with anomalies of the same sign on the northern side of
both oceans (~ COWL pattern). This occurs when rainfall anomalies of the same
sign and comparable amplitude exist in the W Indian Ocean and central Pacific.

e This teleconnections is important for both seasonal and decadal scales, and is
also similar to the teleconnections from MJO phase 2-3. It is also related to
anomalies in surface heat fluxes over the northern oceans.

e The Rossby waves originated by the Indian and Pacific ocean heating anomalies
have opposite effects on the meridional heat flux convergence into the polar
lower stratosphere/upper troposphere, creating opposite forcings on the polar
vortex. In turn, this can affect the phase/intensity of the NAO response.
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