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Lecture 1

The moduli space of curves

1.1 Introduction

In my lecture today, I will give a very informal description of the moduli space of
curves. More complete notes about moduli spaces can be found in Section 1.7. For further
reading, I recommend [Kol96, Chapter 1], [EH00, Chapter VI], Kleiman’s article on the
Picard Scheme in [FGI`05], and [HM98].

I will also try to motivate why one might be interested in studying globally generated
vector bundles on the moduli space of curves. In particular, I’ll define nef divisors and
cones of nef divisors, and the kinds of questions we ask about them. I want to illustrate
how these cones tell us about the moduli space of curves, and in turn how by answering
such questions we can learn about curves too. Moreover, we can see in this context how
these questions for general curves can often be reduced to analogous questions about
rational curves.

In Section 1.7 I have included additional information about topics related to the lec-
ture.

1.2 What is Mg and why compactify it?

By M
g

, I mean the quasiprojective variety whose closed points correspond to isomor-
phism classes of smooth curves of genus g. If C is a smooth curve (a 1-dimensional
scheme over an algebraically closed field k), its genus is

g “ dim H0pC,!
C

q “ dim H1pC,O
C

q,

where !
C

is the sheaf of regular 1-forms on C. If k “ C, then C is a smooth compact
Riemann surface, and the algebraic definition of genus is the same as the topological.
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In fact M
g

is more than just a variety, it is a moduli space. By this I mean that given
any flat family F Ñ B of curves of genus g, there is a morphism B Ñ M

g

, taking a point
b to the isomorphism class of the fiber.

In fact M
g

is something called a coarse moduli space. Because every curve with auto-
morphisms can be used to construct a nontrivial family whose fibers are all isomorphic,
one can show that M

g

is not a fine moduli space.

Problem Session 1.2.1. In Section 1.7, look up the definitions of coarse and fine moduli space.
Read the example illustrating how M

g

is not a fine moduli space.

Intuitively, smooth curves degenerate to singular ones. For example, we can write
down the “general curve of genus 2” using the equation:

y2 “ x6 ` a5x
5 ` a4x

4 ` ¨ ¨ ¨ ` a1x ` a0.

A general point pa0, . . . ,a5q P A6 determines a smooth curve. In other words, there is a
family of curves parametrized by an open subset of A6, that includes the general smooth
curve of genus 2. Certainly you can see that as the coefficients change, the curves will
change, and some choices of coefficients will result in singular curves.

To usefully parametrize families of curves like this one, it really pays to work with
a proper space that parametrizes curves that have singularities. The space we will talk
about today is denoted M

g

, and it parametrizes stable curves of genus g.

Definition 1.2.2. A stable curve C of (arithmetic) genus g is a reduced, connected, one dimen-
sional scheme such that

1. C has only ordinary double points as singularities.

2. C has only a finite number of automorphisms.

Remark 1.2.3. To say that C has only a finite number of automorphisms, comes down to requiring
that if C

i

is a nonsingular rational component, C
i

meets the rest of the curve in at least three
points, and if C

i

is a component of genus one, then it meets the rest of the curve in at least one
point.

Definition 1.2.4. Let M
g

, the moduli space of stable curves of genus g be the variety whose points
are in one-to-one correspondence with isomorphism classes of stable curves of genus g.

That such a variety1 M
g

exists is nontrivial. This was proved by Deligne and Mumford
who constructed M

g

using Geometric Invariant Theory [DM69]. There are other choices
of compactifications of M

g

, and some of these compactifications receive birational mor-
phisms from M

g

; other compactifications receive rational maps from M
g

. In Section 1.7.3
I discuss some of these alternative compactifications of M3.

1In fact, we may regard the moduli space of curves as a variety, or a scheme, or a stack. For today and
this week, we consider it as a variety.
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Figure 1.1: Components of the boundary of M
g

1.3 Components of the boundary

The moduli space M
g

, has dimension 3g´3 and the set of curves with at least k-nodes
has codimension k. So for example:

1. �1pM
g

q “ the set of curves having at least one node. �1 has codimension one. This
is the boundary M

g

z M
g

, and it is a union of irreducible boundary components.

2. �3g´4pM
g

q “ the set of curves having 3g ´ 4 nodes. �3g´4 is 1-dimensional, com-
posed of a union of curves whose numerical equivalence classes we call F-curves.

Even more specifically, we can describe the co-dimension one boundary of M
g

as a
union of components:

M
g

z M
g

“ Ytg2 u
i“0 �i

,

• �0 is the closure of the locus of curves with a single non-separating node, and

• for i ° 0, �
i

is the closure of the locus of curves with a single separating node whose
normalization consists of a curve of genus i and a curve of genus g ´ i.

As one can see in the images pictured in Figure 1.1, moduli of pointed curves come
up naturally even if one is only interested in studying M

g

: Each of these co-dimension
one boundary components is the image of a morphism from moduli of pointed curves:
By normalizing curves representing elements of these components, one can see examples
of pointed curves, and we are led naturally to study moduli of such objects.

Definition 1.3.1. A stable n-pointed curve is a complete connected curve C that has only nodes
as singularities, together with an ordered collection p1, p2, . . ., p

n

P C of distinct smooth points
of C, such that the pn ` 1q-tuple pC;p1, . . . ,p

n

q has only a finite number of automorphisms.
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Definition 1.3.2. Let M
g,n, the moduli space of stable n-pointed curves of genus g, be the variety

whose points are in one-to-one correspondence with isomorphism classes of stable n-pointed curves
of genus g.

In fact every component of the boundary is the image of a map from a moduli space
of stable n-pointed curves, or a product of them:

M
g´1,2 ⇣ �0, and for 1 § i § tg

2
u, M

i,1 ˆ M
g´i,1 ⇣ �

i

.

One can represent the F-curves as images of maps from M0,4 and M1,1.

1.4 The cones of nef and pseudo effective divisors

One way to study a projective variety X, like the moduli space of curves, is to regard
it as an object in the category of projective varieties. From this point of view, it is natural
to try to understand not only the objects in the category, but also the morphisms. In other
words, to understand X, we would like to identify all the morphisms from X to other
projective varieties. Such morphisms give rise to nef divisors on X.

Nef divisors and the nef cone

Given a projective variety Y, and a morphism f : X �Ñ Y ãÑ PN, then for any ample
divisor A “ Op1q|

Y

on Y, one has the pullback divisor D “ f˚A on X is base point free. In
fact, this divisor D is not only base point free, it has the much weaker property that it is
nef. For if C is a curve on our projective variety X, then by the projection formula

D ¨ C “ f˚pD ¨ Cq “ A ¨ f˚C,

which is zero if the map f contracts C, and otherwise, as A is ample, it is positive.

Definition 1.4.1. A divisor D on X is nef if D nonnegatively intersects all curves C on X.

Definition 1.4.2. The Nef cone NefpXq is the set of all nef divisors on X.

The nef cone lives in a finite dimensional vector space called the Néron Severi space,
which I briefly take a moment to describe. Let X be a projective, not necessarily smooth
variety defined over an algebraically closed field. Good references for the concepts below
are [Laz04a],[Laz04b].

Definition 1.4.3. A variety X is called Q-factorial if every Weil divisor on X is Q-Cartier. We
assume today that X is a Q-factorial normal, projective variety over the complex numbers. The
moduli spaces M

g,n have these properties.
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Remark 1.4.4. It is not true that every nef divisor on an arbitrary proper variety X has an associ-
ated morphism; To have such a property would be very special (a dream situation). But as we saw
above, the divisors that give rise to maps do live in the nef cone, and for that reason the nef cone
can be used a tool to understand the birational geometry of the space.

Sufficiently high and divisible multiples of any effective divisor D on X will define a
rational map (although not necessarily a morphism) from X to a projective variety Y. The
stable base locus of D is the locus where the associated rational map will not be defined.

Definition 1.4.5. For a Q-Cartier divisor D on a proper variety X, we define the stable base locus
of D to be the union (with reduced structure) of all points in X which are in the base locus of the
linear series |nmD|, for all n, where m is the smallest integer • 1 such that mD is Cartier.

The pseudo-effective cone may be divided into chambers having to do with the stable
base loci [ELMta`09], [ELMta`06], [ELMta`05].

Digression: using the effective cone to illustrate that by studying M
g

one can learn
about curves

We started our discussion today by considering a family of curves parametrized by an
open subset of A6, that included the general smooth curve of genus 2.

Generally speaking, if there is a family of curves parametrized by an open subset of
AN`1 that includes the general curve of genus g, then one would have a dominant rational
map from PN to our compactification M

g

. In other words, M
g

would be unirational.
This would imply that there are no pluricanonical forms on M

g

. Said otherwise still, the
canonical divisor of M

g

would not be effective.
On the other hand, one of the most important results about the moduli space of curves,

proved almost 40 years ago, is that for g °° 0 the canonical divisor of M
g

lives in the
interior of the cone of effective divisors (for g “ 22 and g • 24, by EH, HM, and for by
g “ 23 [Far00]). Once the hard work was done to write down the classes of the canonical
divisor, and an effective divisor called the Brill-Noether locus, to prove this famous result,
a very easy combinatorial argument can be made to show that the canonical divisor is
equal to an effective linear combination of the Brill-Noether and boundary divisors when
the genus is large enough.

The upshot is that by shifting focus to the geometry of the moduli space of curves, we
learn something basic and valuable about the existence of equations of smooth general
curves. Moreover, for these values of g for which M

g

is known to be of general type, one
can consider the canonical ring

R‚ “ à

m•0
�pM

g

,mKM
g

q,
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Figure 1.2: Nef1pM3q Ä Eff
1pM3q

with generators �, 12� ´ �0, and
10�´ �0 ´ 2�1.

which is now known to be finitely generated by the celebrated work of [BCHM10]. In
particular, the canonical model ProjpR‚q, is birational to M

g

.
It is still an open problem to construct this model, and efforts to achieve this goal

have both furthered our understanding of the birational geometry of the moduli space of
curves, as well as giving a highly nontrivial example where this developing theory can
be experimented with and better understood.

Morphisms from M
g

A simple example illustrates how even very crude information about the location of
the cone of nef divisors with respect to the effective cone tells us valuable information
about the geometry of the variety X, as we see for M

g

.

Theorem 1.4.6. Every nef divisor on M
g

is big. In particular, there are no morphisms, with
connected fibers from M

g

to any lower dimensional projective varieties other than a point.

Theorem 1.4.6 says that the nef cone of M
g

sits properly inside of the cone of effective
divisors– and their extremal faces only touch at the origin of the Nerón Severi space.

Morphisms from M
g,n

The question of what morphisms are admitted by M0,n is still open! We can say some-
thing fairly simple in case g ° 0:
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Theorem 1.4.7. For g • 2, any nef divisor is either big, or is numerically equivalent to the
pullback of a big divisor by composition of projection morphisms. In particular, for g • 2, the
only morphisms with connected fibers from M

g,n to lower dimensional projective varieties are
compositions of projections given by dropping points, followed by birational maps.

In all known examples for n “ 0, the nef and effective cones are polyhedral, and the
extremal rays are generated by semi-ample divisors. It turns out that in case g “ 0, and
g “ 1 the effective cones for M

g,n are not polyhedral for n large enough. In particular,
there is less hope than one might like for some kind of description of all the maps (maps
with base loci), say given by combinations of extremal rays of the pseudo-effective cone.

One can still hope that the nef cone is tractable, and ask:

Question 1.4.8. 1. Is NefpM
g,nq polyhedral?

2. Is every nef divisor on M
g,n semi-ample?

1.5 Reduction of a problem for g ° 0 to g “ 0

As was mentioned earlier in the lecture, on M
g,n, the locus

�kpM
g,nq “ tpC,~pq P M

g,n : C has at least k nodes u
has codimension k. For each k, the locus �kpM

g,nq decomposes into irreducible compo-
nents indexed by dual graphs � with k edges. Moreover, the closure of the component
corresponding to � contains components consisting of curves whose corresponding dual
graph � 1 contracts to � . This gives rise to a stratification of the space which is both rem-
iniscent and analogous to the combinatorial structure determined by the torus invariant
loci of a toric variety.

On a complete toric variety, every effective cycle of dimension k can be expressed as a
linear combination of torus invariant cycles of dimension k. Fulton compared the action
of the symmetric group S

n

on M0,n with the action of an algebraic torus a toric variety.
Following this analogy, he asked whether a variety of dimension k could be expressed
as an effective combination of boundary cycles of that dimension. As M0,n is rational,
of dimension n ´ 3, this is true for points and cycles of codimension n ´ 3. For the
statement to be true for divisors, it would say that every effective divisor would be in the
cone spanned by the boundary divisors. This was proved false by Keel [GKM02, page
4] and Vermeire, who found effective divisors not in the convex hull of the boundary
divisors. For the statement to be true for curves, it would say that the Mori cone of curves
is spanned by irreducible components of �n´4pM0,nq: whose dual graph is distinctive: the
only vertex that isn’t trivalent has valency four. In particular this says a divisor is nef
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if and only if it nonnegatively intersects those curves that can be described as images of
attaching or clutching maps from M0,4.

This question could be asked for higher genus, and Faber did this independently (as
an intermezzo in his thesis), proving the statement for M3 and M4.

In honor of Faber and Fulton, the numerical equivalence classes of the irreducible
components of �3g´4`npM

g,nq are called F-Curves. One can ask the following question:

Question 1.5.1. (The F-Conjecture [GKM02]) Is every effective curve numerically equivalent
to an effective combination of F-Curves? Otherwise said, is a divisor is nef, if and only if it
nonnegatively intersects all the F-Curves?

In [GKM02], using the flag map (see Definition 1.5) we showed that in fact a positive
solution to this question for S

g

-invariant nef divisors on M0,g`n

would give a positive
answer for divisors on M

g,n. In particular, there is the potential that the cone of nef
divisors on M0,g`n

can tell us about the cone of nef divisors on M
g,n. We know now that

the answer to this question is true on M0,n for n § 7 KeelMcKernan, and on M
g

for g § 24
[Gib09].

The flag map

The flag map is defined as follows. Fix a point pE,qq P M1,1 and define the morphism
f : M0,g`n

�Ñ M
g,n, which takes a stable g ` n-pointed rational curve pC; tq1, . . . ,q

g

u Y
tp1, . . . ,p

n

uq to a stable n-pointed curve of genus g by attaching g copies of pE,pq to C

by gluing C and E by identifying q and q
i

for 1 § i § g. In [GKM02], we showed that
an F-divisor D on M

g,n is nef if and only if f˚D is nef. An F-divisor is, by definition,
any divisor that nonnegatively intersects all the F-curves. Moreover, by [GKM02], every
S
g

-symmetric nef divisors on M0,g`n

is equal to the pullback of a nef divisor on M
g,n.

1.6 Why globally generated vector bundles?

Vector bundles of covacua for affine Lie algebras give rise to elements of the cone of
nef divisors: each bundle on M0,n is globally generated, and so has base point free first
Chern class (ie. is of the form f˚A for some morphism f : M0,n Ñ Y where Y is a projective
variety, and A is an ample line bundle on it). There are a lot of these bundles: They
generate a full dimensional sub-cone of the nef cone.

The F-Conjecture, if true, would give a positive answer to Question 1.4.8 Part (1).
Therefore, Question 1.4.8 and the F-Conjecture motivates our interest in vector bundles
of conformal blocks. If every nef divisor on M0,n is a conformal blocks divisor, then the
answer to Question 1.4.8 Part (2) will hold for g “ 0. If this is true and the cone generated
by conformal blocks is polyhedral, then the answer to Question 1.4.8 Part (2) is true and
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we have more evidence for the F-Conjecture. If If this is true and the cone generated by
conformal blocks is not polyhedral, then both the answer posed by Question 1.4.8 Part (2)
and the F-Conjecture are false.

Of course it may be that the nef cone is not generated by these bundles, and there is
something more to the story.

There are a lot of questions, and in trying to answer just a few, we’ve learned new
things about vector spaces of conformal blocks and the moduli space of curves, some of
which I hope to share this week.

1.7 Appendices to Lecture One

1.7.1 What is a moduli space, technically speaking?

The functor of points

Definition 1.7.1. Let X be a scheme over a field k. The functor of points of a scheme X is the
contravariant functor

hX : pSch
k

q Ñ pSetsq,

from the category pSch
k

q of schemes over k to the category pSetsq of sets which takes a scheme
Y P ObpSch

k

q to the set hXpYq “ MorSch
k

pY, Xq, and takes maps of schemes f : Y Ñ Z, to maps
of sets:

hXpfq : hXpZq Ñ hXpYq, rg : Z Ñ Xs fiÑ rg ˝ f : Y Ñ Xs.
Definition 1.7.2. We say that a contravariant functor

F : pSch
k

q Ñ pSetsq,

is representable if it is of the form hX for some scheme X. By Yoneda’s Lemma (below), if X exists,
then it is unique, and we say that X represents the functor F.

For a proof of Yoneda’s Lemma, which we next state, see for example [EH00, pages
252-253]

Lemma 1.7.3 (Yoneda). Let C be a category and X, and let X 1 P ObjpCq.

1. If F is any contravariant functor from C to the category of sets, the natural transformations
from Morp, Xq to F are in natural correspondence with the elements of FpXq;

2. If functors Morp , Xq and Morp , X 1q are isomorphic, then X – X 1.
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Fine moduli spaces

See also [Kol96, Chapter 1], [EH00, Chapter VI, page ], Kleiman’s article on the Picard
Scheme in [FGI`05], and [HM98].

Definition 1.7.4. Given a reasonable2 collection of objects S, we define a (contravariant) moduli
functor from the category pSch

k

q of schemes over k to the category pSetsq of sets

FS : pSch
k

q Ñ pSetsq, T fiÑ FSpTq,

where FSpTq is equal to the set of flat families of objects in S parametrized by T up to isomorphism
over T.

The question one then asks is whether there is a scheme which we can call ModS, or
better said, a flat morphism of schemes:

u : US Ñ ModS,

which is a fine moduli space for the moduli functor. This means that for every object
T P ObjpSch

k

q, pulling back, gives an equivalence of sets:

FSpTq “ Mor
Sch

pT, ModSq.

For example, taking T “ ModS, we obtain the universal family u : US Ñ ModS which
corresponds to the identity element id P Mor

Sch

pModS, ModSq. And taking T “ Specpkq,
we see that the set of k-points of ModS corresponds to the fibers of the family u : US Ñ
ModS.

Another more formal way to say this is the following.

Definition 1.7.5. The functor FS from Definition 1.7.4 is represented by the scheme ModS if
there is a natural isomorphism between FS and the functor of points Mor

Sch

p , ModSq. In this
case we say ModS is a fine moduli space for the functor FS.

Example: The Grassmannian

Let S be a scheme of finite type over a field k, and let pSchSq denote the category
of schemes of finite type over S. Fix two integers 0 † d † r. We will consider the
contravariant functor from pSchSq to the category pSetsq of sets:

g

r,d
S : pSchSq Ñ pSetsq, T fiÑ g

r,d
S pTq,

2As part of being a reasonable collection of objects, we require that S is closed under base extension. So
for example, if objects X in S are defined over Specpkq, where k is a field, and if k ãÑ k is a field extension,
then Xk “ X ˆSpecpkq Specpkq is also in S.
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such that

g

r,d
S pTq “ t q : Or

T ⇣ F : F a coherent locally free OT -module of rank d u{ „,

where two quotients q1 : O
r

T ⇣ F1 and q2 : O
r

T ⇣ F2 in g

r,d
S pTq are equivalent if there is an

isomorphism f : F1 Ñ F2, making the diagram

F1
f // F1

Or

T

q1

``

q2

OO

commute. Grothendieck proved that there is a projective scheme Gr,d
S of finite type over

S (ie an object in pSchSq) that represents the functor gr,d
S .

One can generalize the Grassmannian, forming Hilbert schemes, and Quot schemes
for example.

Example: Hilbert schemes

If X is a projective scheme of finite type over S, we can consider the contravariant
functor

hX { S : pSchSq Ñ pSetsq, T fiÑ hX { SpTq,

and for X
T

“ X ˆS T, one has hX { SpTq “ tq : OXT ⇣ F : F satisfying p1q and p2qu{ „.

1. is a coherent sheaf of OT-modules; and

2. is flat and with compact support with respect to the projection p2 : X ˆS T Ñ T.

Notice here that r “ 1, and as OXT is the ring of regular functions for X
T

“ X ˆS T, by
taking kernels of the maps q : OXT ⇣ F, we get that the set hX { SpTq is in bijection with
the set of closed subschemes of X parametrized by T . Grothendieck showed this functor
is representable by the Hilbert scheme HilbX { S, which while not of finite type over S, is
a union of schemes of finite type, parametrized by Hilbert polynomials, each of which
represents a moduli functor. We’ll speak more about these.

Example: Quot schemes

A common generalization of the previous two examples are the following two con-
travariant functors.

QOr

X{ X { S : pSchSq Ñ pSetsq, T fiÑ QOr

X{ X { SpTq,

16



such that, for X
T

“ X ˆS T, the set QOr

X{ X { SpTq is equal to

tq : Or

XT
⇣ F : Fcoherent OXT-module, flat with compact support over Tu{ „ .

More generally, if E is a locally free sheaf on X, we define a contravariant functor

QE{ X { S : pSchSq Ñ pSetsq, T fiÑ QE{ X { SpTq,

where for p1 : XT “ X ˆS T Ñ X the projection onto the first factor, the set QE{ X { SpTq is

tq : p˚
1E ⇣ F : Fcoherent OXT-module, flat with compact support over Tu{ „ .

Grothendieck proved that QE{ X { S is represented by the so-called Quot-scheme QuotE{ X { S,
which while not finite type over S, again is a union of schemes of finite type over S,
parametrized by Hilbert polynomials.

Not an example: the moduli space of smooth curves

Consider, for g “ dim H1pC,Oq • 2:

M
g

: pSchkq Ñ pSetsq, T fiÑ M
g

pTq,

where M
g

pTq is the set of proper flat maps ⇡ : F Ñ T such that every fiber F
t

is a smooth
projective curve of genus g modulo isomorphism over T. This functor is not represented
by a fine moduli space: every curve with nontrivial automorphisms creates issues.

Example 1.7.6. We will consider a nontrivial family of hyperelliptic curves parametrized by
G

m

“ A1zt0u. To describe this family, let X “ Zpy2 ´ fpxqq be any smooth hyperelliptic curve of
genus g with AutpXq – C2 “† ⌧ °. The cyclic group C2 acts on X and on G

m

:

C2 ˆ X Ñ X, p⌧, px,yqq fiÑ px, ´yq, and C2 ˆG
m

Ñ G
m

, p⌧, zq fiÑ ´z;

and we can form the contracted product

F “ G
m

ˆC2 X “ pG
m

ˆ Xq{ „, where p⌧ ¨ ↵,pq „ p↵, ⌧ ¨ pq.

We’ll set
⇡ : F Ñ G

m

rp↵,pqs fiÑ ↵2,

which is well defined since by this prescription p⌧ ¨ ↵,pq “ p´↵,pq fiÑ ↵2, and p↵, ⌧ ¨ pq fiÑ ↵2.
To see that fibers of ⇡ are isomorphic to X, notice that one can view the set of points lying over
↵2 P G

m

as all points lying on two copies of X that are identified by the equivalence relation „. In

17



particular if the functor M
g

were represented by a fine moduli space M
g

with a universal family
u : U

g

Ñ M
g

, then there would be a constant map

µ
⇡

: G
m

Ñ M
g

, ↵ fiÑ rXs,

and so F would be equal to the constant family, giving a commutative diagram

F
F //

⇡ ##

G
m

ˆ X
p1
✏✏

G
m

.

But the map F : F Ñ G
m

ˆ X could simply not be well defined, for all points rp↵,pqs P F, and so
this is impossible.

However, there is a scheme M
g

with the following properties:

1. for an algebraically closed field k, the k-points of M
g

are in one to one correspon-
dence with the set of isomorphism classes of smooth curves of genus g defined over
k;

2. if ⇡ : F Ñ T is a flat family of curves of genus g, then there is a map µ
⇡

: T Ñ M
g

such that if t P T is a geometric point, then µ
⇡

ptq is the point rF
t

s in M
g

correspond-
ing to the isomorphism class of the fiber F

t

“ ⇡´1ptq.

Coarse moduli spaces

Definition 1.7.7. We say that a scheme ModS is a coarse moduli space for the functor FS (from
Definition 1.7.4), if

1. there is a natural transformation of functors FS Ñ Mor
Sch

p , ModSq;

2. the scheme ModS is universal for p1q;

3. for any algebraically closed field extension k ãÑ K,

FSpKq – Mor
Sch

pSpecpKq, ModSq “ ModSpKq,

is an isomorphism of sets.

In particular, the scheme M
g

is a coarse moduli space for the functor M
g

described in
Section 1.7.1.
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Definition 1.7.8. For g “ dim H1pC,O
C

q • 2, consider the contravariant functor:

M
g

: pSchkq Ñ pSetsq, T fiÑ M
g

pTq,

where M
g

pTq is the set of flat proper morphisms ⇡ : F Ñ T such that every fiber F
t

is a stable
curve of genus g modulo isomorphism over T.

Theorem 1.7.9. [DM69] There exists a coarse moduli space M
g

for the moduli functor M
g

;
Moreover, M

g

is a projective variety that contains M
g

as a dense open subset.

Remark 1.7.10. Let T be any smooth curve and p P T a (geometric) point on T. Suppose there is
a regular map

µ˚
: T˚ “ T ztpu Ñ M

g

.

By definition of coarse moduli space, this map corresponds to a family ⇡ : X Ñ T˚ of stable curves
of genus g, parametrized by T˚. Now by Theorem 1.7.9, the moduli space M

g

is proper, and so by
the valuative criterion for properness, there is an extension of µ˚ giving a morphism µ : T Ñ M

g

.
But by Theorem 1.7.9, M

g

is also separated, and one can use this to show this extension µ is
unique. So this says that there is a unique extension to a family ⇡ : X Ñ T parametrized by T.
This is the content of the stable reduction theorem.

1.7.2 Tautological maps

We have, and will often continue to refer this week to the following tautological maps

1. projection maps:
⇡
i

: M
g,n �Ñ M

g,n´1,

given by dropping the i-th marked point (and stabilizing, if necessary).

2. attaching maps:
M

g1,n1`1 ˆ M
g2,n2`1 �Ñ M

g1`g2,n1`n2 ,

given by glueing pointed curves together;

3. clutching maps:
c : M

g´k,n`2k �Ñ M
g,n,

given by attaching marked points in pairs.

and combinations of these. It can be beneficial to think of the moduli spaces as a uni-
fied system, and ultimately many questions even about M

g,n and structures like vector
bundles on M

g,n, can be reduced to analogous questions on M0,N, for suitable N.

Underpinning the well-definedness of the projection maps is the Nodal Reduction
Theorem:
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Figure 1.3: A partial chamber de-
composition of

Nef1pM3q Ä MovpM3q Ä Eff
1pM3q

seen in a cross section.

Theorem 1.7.11. (Nodal Reduction) Let T be a smooth curve, p a point of T and T˚ “ T ztpu.
Let X Ñ T˚ be a flat family of nodal curves of genus g,  : X Ñ Z any morphism to a projective
scheme Z, and D Ä X any divisor finite over T˚. Then there exists a branched cover T 1 Ñ T
and a family X 1 Ñ T 1 of nodal curves, extending the fiber product X ˆT˚ T 1 with the following
properties:

1. The total space X 1 is smooth;

2. The morphism ⇡X ˝ : X ˆT˚ T 1 Ñ Z extends to a regular morphism on all of X 1;

3. The closure of ⇡´1
X pDq in X 1 is a disjoint union of sections of X 1 Ñ T 1.

Any two such extensions are dominated by a third and so have special fibers whose stable models
are isomorphic.

1.7.3 Chambers of the pseudo-effective cone of M3

The first work done to understand the nef and effective cones for the moduli space
of curves was done by Mumford in [Mum83], where everything was worked out for M2,
and where it was checked that the intersection theory could be done on M

g

in general.
By [Fab90], we know that NE1pM3q is spanned by the classes �0 “ r�0s, �1 “ r�1s and the
class h of the hyperelliptic locus H3. The hyperelliptic locus H

g

on M
g

is isomorphic to
rM0,2g`2 under the map

h :

rM0,2g`2
–�Ñ H

g

Ñ M
g

,
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given by taking a double cover branched at the marked points. For g “ 2, the map is
an isomorphism, for g “ 3 the image has codimension one, and for g • 4 the image has
higher codimension and isn’t a divisor.

There is a partial chamber decomposition of NefpM3q Ä MovpM3q Ä NE1pM3q. Two
chambers have to do with different compactifications of the moduli space A

g

of princi-
pally polarized abelian varieties: The classical Torelli map

M
g

t�Ñ A
g

,

which takes a smooth curve X of genus g to its Jacobian, doesn’t extend to a morphism
on M

g

. But there are extensions to various compactifications of A
g

.

The Satake Chamber

Let A
Sat

g

be the Satake compactification of the moduli space A
g

. The classical Torelli
map extends to a regular map

tSat : M
g

�Ñ A
Sat

g

.

This morphism is given by the divisor �. In other words, � “ ptSatq˚pAq, where A is an
ample divisor A

Sat

g

.

The 2nd Voronoi Chamber

We let A
Vor

g

: be the toroidal compactification of A
g

for the 2nd Voronoi fan. The
Torelli map is known to extend to the regular map

t
g

: M
g

t

Sat

�Ñ AVorp2q
g

.

This morphism is given by a divisor which lies on the (interior of the) face of the nef cone
spanned by � and 12�´ �0.

The Shepherd-Barron Unknown (SBU) Chamber

There is a morphism
f : M

g

�Ñ X,

given by the base point free extremal nef divisor 12� ´ �0. As far as I know, there isn’t a
modular interpretation for X.
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The Pseudo-Stable Chamber

Let Mps

g

be the moduli stack of pseudo stable curves. Replacing elliptic tails with cusps
gives the divisorial contraction

T : M
g

�Ñ Mps

g

.

T is given by a divisor that lies on the face of the nef cone spanned by 12� ´ �0 and
10�´ �0 ´ 2�1.

The C-Stable Chamber

Let Mcs

g

be the moduli space of c-stable curves. Contracting elliptic bridges to tacnodes
defines the small modification  : Mps

g

�Ñ Mcs

g

, and composing with T defines a regular
map

M
g

T�Ñ Mps

g

 �Ñ Mcs

g

,

given by the extremal divisor 10�´ �0 ´ 2�1.

The First Flip: H-Semistable Curves in the Moving Cone

We can also see the first flip: Let Mhs

g

be the moduli space of h-semistable curves.
There is a morphism  `

: Mhs

g

�Ñ Mcs

g

which is a flip of  :

M
g

T

}}

✏✏

Mps

g

 !!

pMps

g

q` “ Mhs

g

 

`
xx

Mcs

g

.

We can see the chamber of the effective cone of M3 corresponding to Mhs

g

. It doesn’t
touch the Nef cone of M3 because there isn’t a morphism from M3 to Mhs

g

. Instead, there
is a rational map, which for g “ 3 is given by the moving divisors pictured.

There is another chamber of the moving cone, as we can see in the picture. This corre-
sponds to the pullback of the nef cone of the second flip.
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Lecture 2

Conformal blocks, Co-invariants,
Factorization, and Propagation of Vacua

2.1 Introduction

Today I will describe fibers of the Verlinde bundles, and their duals, the vector spaces
of conformal blocks. First, I will state a theorem, which describes conformal blocks in
terms of Bun

G

pCq. We will return to this later in the week. Second, I will give a construc-
tion of vector spaces of coinvariants using the action of certain Lie algebra attached to the
pointed curve. I will also briefly describe two other important theorems: Factorization
and Propagation of Vacua, used in extending the definition of the fibers of the bundles
at smooth pointed curves, to fibers at stable curves with no marked points and to curves
with singularities. These are fundamental, and play a role in many results obtained about
the bundles.

The description I give can be modified to work in families, and used to define sheaves
of coinvariants and conformal blocks. Fibers can be shown to be finite dimensional, and
the sheaves of coinvariants coherent. These properties were originally proved in [TUY89].

In case it’s new, you may want to read the background sections I’ve prepared with
definitions from representation theory or consult the references given there. There are
many references on the topics I’ll cover in tomorrow’s lecture. I particularly like [Bea96],
[BK01, Chapter 7], [Fak12], and the original, [TUY89].

Each of the descriptions given today has its own advantages. For instance, the second
allows one to prove the bundles are globally generated in case g “ 0, as well as to give
Beauville’s Quotient Construction, which gives a simple proof of Propagation of Vacua,
and the finiteness results necessary for the proofs that the sheaves produced are vector
bundles. The first approach, gives contact with more geometric descriptions, as we’ll see
later in the fourth Lecture.
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If there is time, I’d like to say something about computing the ranks of these bundles.

2.2 Conformal blocks and BunG

The fibers of the vector bundles we study are determined by pn ` 1q-tuples consisting
of a simple Lie algebra g, and for every marked point, a g-module. We begin with the case
of no marked points, and no g-modules.

Statement with no marked points

For G be a simple, simply connected, complex linear algebraic group, C a stable curve
of arithmetic genus g • 2, let BunGpCq be the smooth algebraic stack whose fiber over
a scheme T is the groupoid of principal G-bundles on C ˆ T (Def 2.5.2). Principal G-
Bundles are defined in Section 2.5.2. To any representation G Ñ GLpVq, there corresponds
a distinguished line bundle on BunGpCq, the determinant of cohomology line bundle D “
DpVq, described below in Def 2.2.2.

Theorem 2.2.1. For G “ SLprq and ⇢ : G Ñ GlpVq the standard representation of G,

Vpg, `q|˚
pCq “ H0pBun

G

pCq,Db`q

History

Theorem 5.3.1 goes back to the 90’s for smooth curves, and first evidence of it appeared
in the work of Aaron Bertram.

In [Ber93], Bertram considered the moduli space MpX,D, `q of semistable parabolic
bundles of rank 2 with trivial determinant on pairs pX,Dq where X is a smooth curve,
D “ ∞

n

i“1 di

p
i

, and d
i

is the multiplicity of the divisor D at the point p
i

on X. Here
` • maxd

i

, and one can define a notion of stability associated to the weights d

i

`

at each
point p

i

. The moduli space has a determinant line bundle �, and Bertram proved that
h0pMpX,D, `q,�q is given by the Verlinde formula in case the degree of � is even. In the
proof he uses a geometric interpretation of the sections of the moduli spaces in terms of
classical projective geometry of curves. Later, in [Tha94], Michael Thaddeus gave a very
different proof of Bertram’s result.

Bertram’s initial result for SL2-bundles on a smooth curve C, ultimately indicated
the very general relationship in Theorem 5.3.1between H0pBun

G

pCq,Db`q and conformal
blocks, which was subsequently proved for smooth curves by the following authors:

• n “ 0, and G “ SL
r

Beauville-Laszlo [BL94];

• n “ 0, arbitrary G Faltings [Fal94], and Kumar-Narasimhan-Ramanathan [KNR94];
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• arbitrary n and G “ SL
r

Pauly [Pau96]; and

• full generality by Laszlo and Sorger in [LS97].

The analogous result that holds for curves with marked points replaces Bun
G

pCq by
Parbun

G

pCq and the determinant of cohomology by a different line bundle.
Only recently, in [BF15], Belkale and Fakhruddin proved that the result holds for stable

curves with singularities. The proof of Belkale and Fakhruddin holds in families and can
be used to define the sheaves of conformal blocks.

The determinant of cohomology line bundle

Following [Fal93], we describe the determinant of cohomology of a vector bundle on
a curve.

Definition 2.2.2. For any vector bundle E on a curve C, the determinant of cohomology of E on
C is the one dimensional vector space given by

(2.1) DpC,Eq “
´
⇤max H0 `

C,E
˘¯˚ b

´
⇤max H1 `

C,E
˘¯

.

BunGpCq is the smooth algebraic stack whose fiber over a scheme T is the groupoid of
principal G-bundles on CˆT . Following [LS97], we define the determinant of cohomology
line bundle on BunGpCq for G “ SLprq.

Definition 2.2.3. Let G “ SLprq, and ⇢ : G Ñ GlpVq be a representation of G. If E is a family
of G-bundles on C parameterized by a scheme T , then given a point t P T , one has that E

t

is a
G-bundle on C, and one can form a vector bundle E

t

pVq on C by taking the contracted product
E
t

pVq “ E
t

ˆ
G

V . The determinant of cohomology line bundle D
E

pVq is the line bundle on T

whose fiber over a point t P T is the line DpC,E
t

pVqq, described in Def 2.2.2.

Lemma 2.2.4. Let G be any semisimple group. Given a principal G-bundle E, and any represen-
tation ⇢ : G Ñ GLpVq, by the contracted product E “ E ˆ

G

V , has trivial determinant.

Proof. To see that detpEq is trivial, we note that since G is semisimple, rG,Gs “ G, and
so the image ⇢pGq is contained in the kernel of the determinant map which is SLpVq. In
particular, E has transition functions given by matrices with trivial determinant. These are
the transition functions of the line bundle detpEq, and so detpEq is necessarily trivial.
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2.3 Coinvariants and affine Lie algebras

To begin, we describe a fiber of Vpg,~�, `q on M
g,n at a point pC,~pq P M

g,n, such that
U “ Cztp1, . . . ,p

n

u is affine. This is the case for instance, if C is a smooth curve of genus
g with at least one marked point, but can also be true more generally (for instance if there
is at least one marked point on each component of a stable curve C with singularities).

Remark 2.3.1. The Propagation of Vacua theorem will enable one to show that the bundles are
defined on M

g

. The Factorization Theorem allows for the extension of this definition to curves
with singularities.

Since we have marked points to work with, we also have g-modules. As will be evi-
dent when we see the formulas for Chern classes in the fourth Lecture, the combinatorial
data of dominant integral weights provides a convenient language to index these mod-
ules, and reflects many of their properties. We therefore find it convenient to say that
vector bundles of coinvariants Vpg,~�, `q on M

g,n are determined by collections of data
including:

• a simple Lie algebra g;

• a positive integer `; and

• an n-tuple~� “ p�1, . . . , �
n

q of dominant integral weights for g at level `;

For the bundles to have nontrivial rank, the triples should satisfy a compatibility criterion,
which will be described.

Problem Session 2.3.2. In case you aren’t familiar with the language from representation theory,
I have included basic definitions here in Section 2.5.4, and you can reference the terms I refer to
there. Many other better references can be found (for instance [FH91]). In the problem session
today you can ask questions about this material.

As we shall see in the third Lecture, in case g “ 0, the bundles Vpg,~�, `q are quotients
of a constant bundle Apg,~�q. Fibers of Apg,~�q, the vector spaces of coinvariants rV~

�

sg are
easy to describe, and involve many of the same elements as fibers of Vpg,~�, `q.

Warmup: Fibers of the constant bundle Apg,~�q
Finite dimensional g-modules correspond to weights �

i

, and we write V
�

i

for such
g-modules. Set V~

�

“ V
�1 b ¨ ¨ ¨ b V

�

n

, and consider the diagonal action of g on V~
�

g ˆ V~
�

Ñ V~
�

, pg, v1 b ¨ ¨ ¨ v
n

q fiÑ
nÿ

i“1

v1 b ¨ ¨ ¨ v
i´1 b pg ¨ v

i

q b v
i`1 b ¨ ¨ ¨ v

n

.
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We write rV~
�

sg for the space of coinvariants of V~
�

: The largest quotient of V~
�

on
which g acts trivially. That is, the quotient of V~

�

by the subspace spanned by the vectors
X ¨v where X P g and v P V~

�

.
The fibers Vpg,~�, `q|pC,~pq are also vector spaces of coinvariants, analogous to rV~

�

sg, only
they have something to do with the point pC,~pq P M

g,n, as we next explain.

Affine Lie Algebras ĝ

i

and their modules

Problem Session 2.3.3. A Lie algebra is a vector space with a bracket. For example, Cpp⇠
i

qq, the
field of Laurant power series over C in the variable ⇠

i

, and O
C

pUq the ring of regular functions of C
on U can be considered Lie algebras. In Section 2.5.4, definitions and examples of Lie algebras are
given, including the Lie algebras commonly used in the constructions here, including Lie algebras
given by taking central extensions. Consult Section 2.5.4 or the references there for further details.

For each i P t1, . . . ,nu, let ⇠
i

be a local parameter of p
i

on C. A local parameter on C

at p
i

is a holomorphic function with a simple pole at p
i

. Consider the affine Lie algebra

ĝ

i

“ g b Cpp⇠
i

qq ‘ C ¨ c,

be the one-dimensional central extension of the Lie algebra g b Cpp⇠
i

qq, where Cpp⇠
i

qq is
the field of Laurent series, and c is in the center of ĝ

i

. To define the bracket, we note that
elements in ĝ

i

are tuples pa
i

,↵cq, with a
i

“ ∞
j

X
ij

bf
ij

, with f
ij

P Cpp⇠
i

qq. We define the
bracket on simple tensors:

rpX bf,↵cq, pY b g,�cqs “ rX, Ys b fg, cpX, Yq ¨ Res
⇠

i

“0pgp⇠
i

qdfp⇠
i

qq.

Problem Session 2.3.4. Check that ĝ
i

is a Lie algebra (this is done in Section 2.5.4)

The affine Lie algebra pg
i

has a triangular decomposition

pg
i

“ ppg
i

q†0 ‘ g b Cc ‘ ppg
i

q°0,

where
ppg

i

q†0 “ g b ⇠´1
i

Cr⇠´1
i

s, ppg
i

q°0 “ g b ⇠
i

Crr⇠
i

ss,
and we write

ppg
i

q•0 “ g b Cc ‘ g b ⇠
i

Crr⇠
i

ss.
To every g-module V

�

i

, one can form the Verma module, a pg
i

-module

V
�

i

“ Upppg
i

q†0q bC V
�

i

“ Uppg
i

q b
Uppp

g

i

q•0q V�
i

,

where to do this, we extend the action of g on V
�

i

to an action of ppg
i

q•0 “ g b Cc ‘ ppg
i

q°0

on V
�

i

by declaring that ppg
i

q°0 act by zero, and the central element c by ` ¨ id
V

�

i

. One has
simple pg

i

-modules H
�

i

“ V
�

i

{Z
�

i

, where Z
�

i

Ä V
�

i

is the unique maximal submodule.
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In fact, the Lie algebra

p
grns “

´
nà

i“1
g b Cpp⇠

i

qq
¯

‘ Cc

acts diagonally on the tensor product H~
�

“ bn

i“1H�i .
For U “ Cztp1, . . . ,p

s

u, and gpUq “ gbO
C

pUq, one can show there is a homomorphism
of Lie algebras:

(2.2) gpUq �Ñ p
grns, pX bfq fiÑ pX bf

p1p⇠1q, . . . , X bf
p

n

p⇠
n

q, 0q.

This is important, so that one can restrict the action of p
grns on H~

�

to the image gpUq under
this map

gpUq ˆ H~
�

Ñ H~
�

,

(2.3) ppX bfq, pv1 b ¨ ¨ ¨ b v
n

qq fiÑ
nÿ

i“1

v1 b ¨ ¨ ¨ v
i´1 b pX bf

p

i

q ¨ v
i

b ¨ ¨ ¨ b v
n

.

Definition 2.3.5. The fibers of the bundles of covacua are the vector spaces of coinvariants:

Vpg,~�, `q|pC,~pq – rH~
�

sgpUq “ H~
�

{gpUqH~
�

.

Problem Session 2.3.6. Check that Eq (2.2) is actually a homomorphism of Lie algebras, and
that Eq (2.3) is an action (See Claim 2.5.33).

2.4 Propagation of Vacua and Factorization

Notice in the construction above, we assumed that U “ Cztp1, . . . ,p
n

u is affine. In
particular, we assumed that n ° 1. To remove this condition, a theorem is required. In
the third Lecture we will rearrange the coinvariants so that the following result can be
easily proved:

Theorem 2.4.1. Let q P Cz~p. Then Vpg,~�, `q|pC,~pq “ Vpg, ~�Y t0u, `q|pC,~pYtquq.

The Factorization Theorem, originally proved by Tsuyshiya, Ueno and Yamada [TUY89,
Prop 2.2.6], explains how a vector bundle of conformal blocks at a point on the moduli
space where the underlying curve has a node, factors into sums and products of bundles
on the normalization of the curve where the sum is taken over all possible weights at
points over which the normalization is “glued” to make the original curve. Applications
of Factorization include inductive formulas for the rank and Chern classes of the bundle.
In fact, Beauville, in [Bea96] gives an elementary proof of Factorization using this quotient
construction.
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Definition 2.4.2. Given a weight µ P P
`

pgq, let µ‹ P P
`

pgq be the element with the property that
´µ‹ is the lowest weight of the weight space V

µ

.

Theorem 2.4.3 (Factorization). Let pC0;p1, . . . ,p
n

q be a stable n-pointed curve of genus g where
C0 has a node x0.

1. If x
o

is a non-separating node, ⌫ : C Ñ C0 the normalization of C0 at x0, and ⌫´1px0q “
tx1, x2u, then

Vpg,~�, `q|pC0;~pq – à

µPP
`

pgq
Vpg,~�Y µ Y µ‹u, `qpC;~pYtx1,x2uq.

2. If x0 is a separating node, ⌫ : C1 Y C2 Ñ C0 the normalization of C0 at x0 and ⌫´1px0q “
tx1, x2u, with x

i

P C
i

, then

(2.4) Vpg,~�, `q|pC0;~pq

– à

µPP
`

pgq
Vpg, �pC1q Y tµu, `q|pC1;tp

i

PC1uYtx1uq b Vpg, �pC2q Y tµ‹u, `q|pC2;tp
i

PC2uYtx2uq,

where �pC
i

q “ t�
j

|p
j

P C
i

u.

Example 2.4.4. If µ P P
`

psl2q, then µ‹ “ µ.

Example 2.4.5. For g “ sl

r`1 we express a weight �
i

as a sum �
i

“ ∞
r

j“1 cj!j

, and �
i

has a
corresponding Young diagram that fits into an pr` 1q ˆ ` sized grid, where since �

i

is normalized,
the last row is empty. In terms of Young diagrams, the level is the number of “filled in” boxes across
the top, and |�

i

| means the total number of boxes “filled in” altogether. To find the Young diagram
corresponding to �‹ we fill in the boxes in the diagram directly below the boxes corresponding to �,
and then rotate by 180 degrees to get the Young diagram associated to the weight �˚. For example,
if r ` 1 “ 4, and ` • 5 for the weight � pictured in white on the left below, then the dual weight
�‹ is pictured in green on the right.

Example 2.4.6. [BGM15a] We will factorize the bundle Vpsl
r`1, t!1,!1, p`´1q!1`!

r

, `!
r

u, `q
on M0,4 at the two types of points pC;p1, . . . ,p4q, where the curve C has one node: the first type
X1 “ pC11 Y C12;p1, . . . ,p4q where C11 is labeled by p1 and p2 and C12 by p3 and p4; and the
second type of curve X2 “ pC21 YC22;p1, . . . ,p4q where C21 is labeled by p1 and p3 and C22 by p2

and p4.

1. If r ` 1 “ 2 this is Vpsl2, t!1,!1, `!1, `!1u, `q, and we obtain:

Vpsl2, t!1,!1, `!1, `!
r

u, `q|
X1

– à

m•0
even

Vpsl2, t!1,!1,m!1u, `q|pC11,p1,p2,x1q b Vpsl2, t`!1, `!
r

,m!1u, `q|pC12,p3,p4,x2q.
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Figure 2.1

� “ 3!1 `!2 `!3

for sl4,
and level `p�q • 5.

�‹ “ !1 `!2 ` 3!3.

As we’ll see later, the only term in the sum above that gives bundles of nonzero rank occurs
when m “ 0, and that both bundles have rank one.

Vpsl2, t!1,!1, `!1, `!
r

u, `q|
X2

– à

m•0
m``”1pmod 2q

Vpsl2, t!1, `!1,m!1u, `q|pC21,p1,p3,x1qbVpsl2, t!1, `!1,m!1u, `q|pC22,p2,p4,x2q.

Again, we’ll see that the only term above that gives two bundles of nonzero rank occurs
when m “ p`´ 1q, and has rank one in this case.

2. If r ` 1 “ 3 this is Vpsl3, t!1,!1, p`´ 1q!1 `!2, `!1u, `q, and we obtain, for

Vpsl3, t!1,!1, p`´ 1q!1 `!2, `!1u, `q|
X1

– à

µ“c1!1`c2!2
c1`2c2”1pmod 3q

Vpsl3, t!1,!1,µu, `q|pC11,p1,p2,x1qbVpsl3, t`!1, `!
r

,µ‹u, `q|pC12,p3,p4,x2q.

We’ll later see that the only summand on the right hand side with nonzero rank is the one
with µ “ !1 (so c1 “ 1, and c2 “ 0).

(2.5) Vpsl3, t!1,!1, p`´ 1q!1 `!2, `!1u, `q|
X2

– à

µ“c1!1`c2!2
``c1`2c2”1pmod 3q

Vpsl3, t!1, `!1,µu, `q|pC21,p1,p3,x1qbVpsl3, t!1, `!2,µ‹u, `q|pC22,p2,p4,x2q.

We’ll later see that the only summand on the right hand side with nonzero rank is the one
with µ “ p`´ 1q!2 (so c1 “ 0, and c2 “ p`´ 1q).

3. In general:

Vpsl
r`1, t!1,!1, p`´ 1q!1 `!

r

, `!
r

u, `q|
X1

– à

µ“∞
r

i“1 c

i

!

i∞
r

i“1 i¨c
i

`2”0pmodpr`1qq

Vpsl
r`1, t!1,!1,µu, `q|pC11,p1,p2,x1qbVpsl

r`1, tp`´1q!1`!
r

, `!
r

,µ‹, `q.
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Moreover, one can show that the only summand on the right hand side with nonzero rank is
the one with µ “ !

r´1.

Vpsl
r`1, t!1,!1, p`´ 1q!1 `!

r

, `!
r

u, `q|
X2

– à

I

Vpsl
r`1, t!1, p`´1q!1`!

r

,µu, `q|pC21,p1,p3,x1qbVpsl
r`1, t!1, `!

r

,µ‹, `q|pC22,p2,p4,x2q,

where we sum over the set

I “ tµ “
rÿ

i“1

c
i

!
i

P P
`

psl
r`1q :

rÿ

i“1

i ¨ c
i

` `` r ” 0pmodpr ` 1qqu.

We will eventually show that the only summand on the right hand side with nonzero rank
is the one with µ “ p`´ 1q!

r

and µ‹ “ p`´ 1q!1. We’ll see that:

rkVpsl
r`1, t!1, p`´ 1q!1 `!

r

, p`´ 1q!
r

u, `q “ rkVpsl
r`1, t!1, `!

r

, p`´ 1q!1, `q “ 1.

Remark 2.4.7. This example exhibits the potential for the use of factorization to compute ranks,
which is the idea behind the proof of the Verlinde formula. The comments made also indicate
that there is a lot of vanishing happening – which is a foreshadowing of one of the open problems
in the subject: that is to determine given g and ` necessary and sufficient conditions which will
guarantee that the first Chern class of the bundle Vpg,~�, `q is not zero. One indication is that it’s
rank is nonzero, which is actually enough for sl2, but this is not in general. For example, while the
rank of Vpsl4, t!1, 2!1 `!3, 2!1 `!3, 2!1 `!3u, 3q is one, the first Chern class of this bundle
is zero [BGM16]. We’ll discuss this problem.

2.5 Appendix

2.5.1 Witten’s Dictionary

To compute the ranks in Example 2.4.6 one can use the Verlinde formula, or one may
use the following cohomological form of Witten’s Dictionary, which expresses ranks of
the bundles as the intersection numbers of particular classes (depending on the bundle)
in the small quantum cohomology ring of certain Grassmannian varieties.

Theorem 2.5.1. Let V “ Vpsl
r`1,~�, `q be a vector bundle on M

g,n such that
∞

n

i“1 |�
i

| “ pr `
1qp`` sq for some integer s.

1. If s ° 0, then let � “ `!1. The rank of V is the coefficient of qs�
`!

r`1 in the quantum
product

�
�1 ‹ �

�2 ‹ ¨ ¨ ¨ ‹ �
�

n

‹ �s
�

P QH˚pGrpr ` 1, r ` 1 ` `qq.

31



2. If s § 0, then the rank of V is the multiplicity of the class of a point �
k!

r`1 in the product

�
�1 ¨ �

�2 ¨ ¨ ¨ ¨ ¨ �
�

n

P H˚pGrpr ` 1, r ` 1 ` kqq,

where k “ `` s.

The relation to quantum cohomology follows from [Wit95] and the twisting procedure
of [Bel08a], see Eq (3.10) from [Bel08a]. Examples of such rank computations were done
using Witten’s Dictionary in [BGM15b], [BGM16], and [Kaz16].

2.5.2 Background reading: Principal G-bundles

Definition 2.5.2. Let G be an algebraic group, X a variety, and T a Grothendieck topology. A
principal G-bundle on X with respect to T , is a morphism ⇡ : P Ñ X together with an action
P ˆ G

aÑ P such that the following properties hold:

1. The diagrams

P ˆ G
a //

⇡1
✏✏

P

⇡

✏✏
P

⇡

// X

and P ˆ G ˆ G
idˆµ //

aˆid

✏✏

P ˆ G

a

✏✏
P ˆ G

a

// P,

commute, where µ : G ˆ G Ñ G denotes the multiplication operation on G.

2. There exists a covering tY
jPJUj

Ñ Xu of X in the T topology, for which for each j P J there
are G-space isomorphisms  

j

: P|
U

j

–Ñ U
j

ˆ G, meaning that the following two diagrams

P|
U

j

 

j //

⇡

✏✏

U
j

ˆ G

⇡1
zz

U
j

and P|
U

j

ˆ G
a //

 

j

ˆid

✏✏

P|
U

j

 

j

✏✏
U

j

ˆ G ˆ G
idˆµ

// U
j

ˆ G

commute.

Remark 2.5.3. If X is defined over a field of char 0, then the fppf and etale topologies are the same.
If G is simply connected and X is a curve, as in our situation, then this is the same as working
with the Zariski topology.
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2.5.3 Background reading: The universal enveloping algebra

From any associative algebra A one can build a Lie algebra LpAq by taking the Lie
bracket to be the commutator. Given a Lie algebra, we can also construct an associative
algebra called the universal enveloping algebra – it has many of the features of the Lie
algebra we start with but is in some sense easier to work with.

Definition 2.5.4. For any (possibly infinite dimensional) Lie algebra g, the universal enveloping

algebra of g is defined to be any pair pU, iq where U is an associative algebra with unity and i :

g Ñ LpUq is a homomorphism of Lie algebras with the property that, if A is any other associative
algebra with unity and if � : g Ñ LpAq is any Lie algebra homomorphism, then there is a unique
homomorphism of unital algebras  : U Ñ A, so that the following diagram

g

i //

� !!

LpUq
 ˚
✏✏

LpAq.

commutes. In the diagram, the map  ˚ is equal to  , considered as a homomorphism of Lie
algebras.

The universal enveloping algebra pUpgq, iq is constructed from the tensor algebra Tpgq.

Definition 2.5.5. Given a vector space V over a field k, the tensor algebra TpVq is defined to be
the direct sum

TpVq “
8à

k“0
TkpVq, where TkpVq “ Vbk “ V b V b ¨ ¨ ¨ b V ,

with multiplication determined by the canonical isomorphism

TkpVq â
TmpVq Ñ Tk`mpVq,

given by the tensor product and extended linearly to all of TpVq.

Definition 2.5.6. Let g be a Lie algebra. Then set Upgq equal to the quotient of Tpgq by the ideal
generated by all elements of the form

X b Y ´ Y b X ´rX, Ys,
for all X and Y P g, and define

i : g Ñ Upgq, X fiÑ X .

Check that the relations defining Upgq ensure that i : g Ñ Upgq is a morphism of Lie
algebras, and that pUpgq, iq is a universal enveloping algebra. Show that the universal
enveloping algebra pU, iq of g is unique up to isomorphism.
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2.5.4 Background reading: Just enough representation theory

Simple Lie algebras

Throughout, we fix a field k, which will be useful to assume later is algebraically
closed, and of characteristic 0.

Definition 2.5.7. A Lie algebra is a k-vector space g together with an binary operation called
the Lie bracket

g ˆ g Ñ g, pA,Bq Ñ rA,Bs
which satisfies the following three conditions

1. bilinearity: rA ` B,Cs “ rA,Cs ` rB,Cs and rA,B ` Cs “ rA,Bs ` rA,Cs;
2. anti-symmetry: rA,As “ 0; or equivalently if charpkq ‰ 2, rA,Bs “ ´rB,As; and

3. the Jacobi identity: rA, rB,Css ´ rrA,Bs,Cs “ rB, rA,Css.

Example 2.5.8. Let V be a k-vector space of dimension n. We let glpVq be the general linear

Lie algebra, consisting of the set of linear transformations V Ñ V , and Lie bracket given by the
commutator r�, ✓s “ � ˝ ✓´ ✓ ˝ �.

In particular, as is conventional, we denote glpknq by gl
n

, taking elements to be nˆn matrices
over k, and the Lie bracket to be the commutator:

rA,Bs “ AB ´ BA.

Clearly this is bilinear and anti-symmetric. One may also verify that the Jacobi identity:

(2.6) rA, rB,Css ´ rrA,Bs,Cs
“ `

ApBC ´ CBq ´ pBC ´ CBqA˘ ´ `pAB ´ BAqC ´ CpAB ´ BAq˘

“ ABC ´ ACB ´ BCA ` CBA ` ABC ` BAC ` CAB ´ CBA

“ BAC ` CAB ´ ACB ´ BCA “ rB, rA,Css.

Definition 2.5.9. A Lie algebra g is Abelian if rA,Bs “ 0 for every A,B P g.

Definition 2.5.10. A Lie algebra is simple if it is not Abelian, and has no nonzero proper ideals.

34



Dominant integral weights for g

To define dominant integral weights for g we start with representations of g.

Definition 2.5.11. A homomorphism of Lie algebras is a linear map of vector spaces f : g1 Ñ
g2 preserving the bracket:

fp rA,Bsg1q “ rfpAq, fpBqsg2 , @ A,B P g1.

Definition 2.5.12. Let V be a vector space, and g a Lie algebra. A representation of g on V

is a Lie algebra homomorphism g Ñ glpVq. Equivalently, a representation of g on V is a rule
g ˆ V Ñ V , say pA, vq fiÑ A ¨ v such that

rA,Bs ¨ v “ A ¨ pB ¨ vq ´ B ¨ pA ¨ vq.

Remark 2.5.13. If g Ñ glpVq is a representation of g on V , we often abuse language and simply
refer to V itself as a representation (omitting the homomorphism from the notation).

Definition 2.5.14. If g is a Lie algebra, then it acts on itself via

g ˆ g Ñ g, pA,Bq fiÑ A ¨ B “ rA,Bs.

This gives the homomorphism of Lie algebras

adg : g Ñ glpgq, A Ñ adgpAq,

where adgpAq is the linear transformation on defined by

adgpAqpBq “ rA,Bs.

This very important representation is referred to as the adjoint representation.

Definition 2.5.15. We say that a representation of g on V is irreducible if it has no nontrivial
proper sub-representations. That is, if there is no non-trivial and proper vector subspace W Ä V

and representation g Ñ glpWq, making the natural induced diagram:

g Ñ glpWq Ä glpVq,

commute.

Definition 2.5.16. A linear subspace g1 Ä g2 is a Lie subalgebra if g1 is closed under the Lie
bracket of g2:

rA,Bsg2 P g1, @ A,B P g1.
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If g Ñ glpWq is a sub-representation of V , then glpWq Ä glpVq is a Lie subalgebra.

Example 2.5.17. Let slpVq (resp. sl
n

) denote the Lie subalgebra of glpVq (resp. gl
n

) called the
special linear Lie algebra consisting of those operators on V of trace 0 (ie. those matrices whose
trace is 0).

Definition 2.5.18. A Cartan subalgebra of a Lie algebra g is an Abelian Lie subalgebra h Ä g

which is maximal with respect to the property of being Abelian.

Exercise 2.5.19. Let h Ä sl
n

be the diagonal matricies. Show h is a Cartan subalgebra.

Definition 2.5.20. Let g be a Lie algebra and V be a representation for g. Suppose that h Ä g is a
Cartan subalgebra. We describe the weights and roots for g Ñ glpVq as follows:

1. By an eigenvalue for the action of h, we will mean an element ↵ P h

˚ such that Hpvq “
↵pHq ¨ v, for some nonzero v P V , and all H P h. An eigenvalue ↵ P h

˚ of the action of h
on the representation V of g is called a weight of the representation. The weights ↵ P h

˚

that occur in the adjoint representation are called roots. The convention is that 0 P h

˚ is
not considered a root.

2. By the eigenspace V
↵

associated to the eigenvalue ↵ we mean the subspace of all vectors
v P V such that Hpvq “ ↵pHq ¨ v. The corresponding eigenvectors in V

↵

are called weight

vectors and V
↵

is called the weight space. The eigenspaces g
↵

corresponding to the roots
are called root spaces.

Definition 2.5.21. We define the weights and roots for g as follows.

1. The weights for g are the weights for all representations g Ñ glpVq.

2. We denote the set of all roots by R Ä h

˚.

Definition 2.5.22. One can define a highest weight as follows:

• We choose a direction in h

˚ which means defining a linear functional f : h˚ Ñ C. This gives
a decomposition of the set

R “ R` Y R´, where

R` “ t↵ P R : fp↵q ° 0u, called the positive roots, and
R´ “ t↵ P R : fp↵q † 0u, called the negative roots.

• We say that a positive (resp., negative) root ↵ P R is primitive or simple if it cannot be
expressed as a sum of two positive (resp. negative) roots.
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• A nonzero vector v P V which is both an eigenvector for the action of h and in the kernel of
g

↵

for all ↵ P R` is called a highest weight vector.

Remark 2.5.23. In Definition 2.5.30 we will describe the Killing form. After that we will be able
to define a semisimple Lie algebra over a field of characteristic zero as one whose Killing form is
nondegenerate. The following can be shown to be equivalent for a finite-dimensional Lie algebra g

over a field of characteristic 0:

1. g is semisimple;

2. g is a finite direct product of simple Lie algebras.

In particular, if g is a finite dimensional simple Lie algebra defined over a field of characteristic
0, then g is semisimple. While not necessary for our application, the next statement holds for the
broader context of semisimple Lie algebras.

Proposition 2.5.24. [FH91, 14.13] For any semisimple complex Lie algebra g,

1. every finite dimensional representation V of g has a highest weight vector;

2. an irreducible representation has a unique highest weight vector up to scalars.

Definition 2.5.25. A dominant integral weight is an element↵ P h

˚ such that Hpvq “ ↵pHq¨v,
for all H P h, where v P V is the highest weight vector of an irreducible representation V of h.

Definition 2.5.26. [FH91, Section 14.2] R generates a lattice ⇤R Ä h

˚, the root lattice, of rank
equal to dimphq. The free generators for the lattice are fundamental dominant weights.

Remark 2.5.27. Depending on the author, weights are sometimes called integral weights; domi-
nant integral weights are sometimes referred to as dominant weights.

Definition 2.5.28. A character of a Lie algebra g is a linear map g Ñ k. That is, since k “ gl1, a
character of a Lie algebra g is a 1-dimensional representation of g.

Example 2.5.29. Let g “ sl2. We first set A “
˜

a b

c ´a

¸

P g. Then

adgpAq : sl2 �Ñ sl2, B fiÑ AB ´ BA,

so that in particular

adgpAq
˜

x y

z ´x

¸

“
˜

bz ´ yc 2pay ´ bxq
2pcx ´ azq ´pbz ´ ycq

¸

.
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The Cartan subalgebra h is the set of diagonal matrices in g “ sl2. Consider

A “
˜

a 0
0 ´a

¸

P h,

so that

adgpAq : sl2 Ñ sl2,

˜
x y

z ´x

¸

fiÑ 2a

˜
0 y

´z 0

¸

.

We shall see that adgpAq is a direct sum of three characters of h˚. Namely, one can decompose sl2

as a direct sum of three one-dimensional vector spaces sl2 – V1 ‘ V2 ‘ V3, where

V1 “ t
˜

x 0
0 ´x

¸

: x P ku; V2 “ t
˜

0 y

0 0

¸

: y P ku;

and

V3 “ t
˜

0 0
z 0

¸

: z P ku.

The sub-vector spaces V
i

Ä sl2 are sub-representations of the adjoint representation of h on sl2

defined by

h ˆ V1 Ñ V1, p
˜

a 0
0 ´a

¸

,

˜
x 0
0 ´x

¸

q fiÑ
˜

0 0
0 0

¸

;

h ˆ V2 Ñ V2, p
˜

a 0
0 ´a

¸

,

˜
0 y

0 0

¸

q fiÑ 2a

˜
0 y

0 0

¸

;

h ˆ V3 Ñ V3, p
˜

a 0
0 ´a

¸

,

˜
0 0
z 0

¸

q fiÑ ´2a

˜
0 0
z 0

¸

.

The second and third characters ↵1 “ 2a and ↵2 “ ´2a, which are the nonzero representations,
are the two roots on sl2. The root ↵1 is a simple root. In general, one has r simple roots of sl

r`1.

Dominant integral weights for g at level `

In order to define the level of a weight, we next define the Killing form p | q, and the
normalized Killing form p , q, which both come from an inner product † | ° on g.

Definition 2.5.30. Let g be a Lie algebra and h a Cartan subalgebra. Recall that for A P g, one
has the adjoint representation

adgpAq : g Ñ g, C fiÑ adgpAqpCq “ rA,Cs.
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In particular, a choice of basis for g gives a representation of this linear transformation adgpAq by
a square matrix of dimpgq. We define an inner product † | ° on g by setting, for A and B P g,

† A | B °“ tracepadgpAq ¨ adgpBqq.

One can then define a natural morphism from h to h

˚ by setting

 : h Ñ h

˚ “ Homph,kq, A fiÑ tB fiÑ† A | B °u.

One can check that this is an isomorphism and that this induces an inner product on h

˚:

pf|gq :“†  ´1pfq |  ´1pgq °“ tracepadgp ´1pfqq ¨ adgp ´1pgqqq.

This natural inner product p | q is referred to as the Killing form.

Remark 2.5.31. One can prove that there is a unique positive root ✓ P R` with the property
that p✓|✓q • p↵|↵q for any other root ↵ P R`. This root theta is called the longest root. It is
conventional to normalize the Killing form, writing p , q, so that p✓, ✓q “ 2.

Definition 2.5.32. The level of any weight ↵ is equal to the value p↵, ✓q, where ✓ is the longest
root, and p , q is the normalized Killing form. The level is an integer.

Action Claim

Claim 2.5.33. Equation 2.3 defines an action of gpUqOut on H~
�

.

Proof. Given X b f, and Y b g P gpUq, and v “ v1 b ¨ ¨ ¨ b v
n

P H~
�

, we want to check that

rX b f, Y b gs ¨ v “ pX b fq ¨ `pY b gq ¨ v˘ ´ pY b gq ¨ `pX b fq ¨ v˘
.

The right hand side simplifies as follows:

(2.7) pX b fq ¨ `pY b gq ¨ v˘ ´ pY b gq ¨ `pX b fq ¨ v˘

“ pX b fq ¨
´ nÿ

i“1

v1 b ¨ ¨ ¨ b v
i´1 b pY b g

p

i

q ¨ v
i

b v
i`1 b ¨ ¨ ¨ b v

n

¯

´ pY b gq ¨
´ nÿ

i“1

v1 b ¨ ¨ ¨ b v
i´1 b pX b f

p

i

q ¨ v
i

b v
i`1 b ¨ ¨ ¨ b v

n

¯
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(2.8)

“
´ ÿ

1§i§n

1§j§n

v1 b ¨ ¨ ¨ v
j´1 b pXb f

p

j

q ¨ v
j

b v
j`1 b ¨ ¨ ¨ b v

i´1 b pY b g
p

i

q ¨ v
i

b v
i`1 b ¨ ¨ ¨ b v

n

¯

´
´ ÿ

1§i§n

1§j§n

v1 b ¨ ¨ ¨ v
j´1 b pY b g

p

j

q ¨ v
j

b v
j`1 b ¨ ¨ ¨ b v

i´1 b pX b f
p

i

q ¨ v
i

b v
i`1 b ¨ ¨ ¨ b v

n

¯

“
´ ÿ

1§i§n

v1 b ¨ ¨ ¨ v
j´1 b ¨ ¨ ¨ b v

i´1 b pX b f
p

i

q ¨ `pY b g
p

i

q ¨ v
i

˘ b v
i`1 b ¨ ¨ ¨ b v

n

¯

´
´ ÿ

1§i§n

v1 b ¨ ¨ ¨ v
j´1 b ¨ ¨ ¨ b v

i´1 b pY b g
p

i

q ¨ `pX b f
p

i

q ¨ v
i

˘ b v
i`1 b ¨ ¨ ¨ b v

n

¯

“
´ ÿ

1§i§n

v1 b ¨ ¨ ¨ v
j´1 b ¨ ¨ ¨ b v

i´1 b `rX, Ys ` pfgq
p

i

˘ ¨ v
i

b v
i`1 b ¨ ¨ ¨ b v

n

¯

The left hand side simplifies as follows:

(2.9)
ÿ

1§i§n

v1 b ¨ ¨ ¨ b v
i´1 b

´
rX, Ys b f

p

i

g
p

i

` pX, Yq Res
⇠

i

“0 gp

i

df
p

i

c
¯

¨ v
i

b v
i`1 b ¨ ¨ ¨ b v

n

“
ÿ

1§i§n

v1 b ¨ ¨ ¨ b v
i´1 b

´
rX, Ys b f

p

i

g
p

i

¯
¨ v

i

b v
i`1 b ¨ ¨ ¨ b v

n

`
ÿ

1§i§n

v1 b ¨ ¨ ¨ b v
i´1 b

´
pX, Yq Res

⇠

i

“0 gp

i

df
p

i

c
¯

¨ v
i

b v
i`1 b ¨ ¨ ¨ b v

n

.

Now, c ¨ v
i

“ ` ¨ v
i

for all i, and so we can rewrite the second summand as follows

(2.10)
ÿ

1§i§n

v1 b ¨ ¨ ¨ b v
i´1 b ppX, Yq Res

⇠

i

“0 gp

i

df
p

i

cq ¨ v
i

b v
i`1 b ¨ ¨ ¨ b v

n

“
ÿ

1§i§n

pX, Yq Res
⇠

i

“0 gp

i

df
p

i

´
v1 b ¨ ¨ ¨ b v

i´1 b c ¨ v
i

b v
i`1 b ¨ ¨ ¨ b v

n

¯

“
ÿ

1§i§n

pX, Yq Res
⇠

i

“0 gp

i

df
p

i

´
v1 b ¨ ¨ ¨ b v

i´1 b ` ¨ v
i

b v
i`1 b ¨ ¨ ¨ b v

n

¯

“ `
`

ÿ

1§i§n

pX, Yq Res
⇠

i

“0 gp

i

df
p

i

˘ ´
v1 b ¨ ¨ ¨ b v

n

¯
.

Since
∞

1§i§n

pX, Yq Res
⇠

i

“0 gp

i

df
p

i

“ 0, this contribution is zero. Therefore the left and
right hand sides of the expressions are the same, and we have checked that gpUq acts on
H~
�

as claimed.
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Lecture 3

Beauville’s quotient construction and
global generation in case g “ 0

3.1 Introduction

Vector bundles of covacua are defined on M
g,n for all g and all n. As we will see today,

they are globally generated in case the genus is zero.
Globally generated vector bundles are useful as they give rise to Chern classes with

valuable positivity properties. For instance, the Hodge bundle, defined on M
g

is a glob-
ally generated vector bundle and its Chern classes, called the �

i

classes, first studied by
Mumford, are tautological and fundamental to any description of the Chow and Tauto-
logical rings of the moduli spaces M

g,n.
Global generation of vector bundles of conformal blocks defined at smooth curves of

genus zero can be seen using what is called Beauville’s quotient construction. Beauville’s
Quotient construction is an incredibly useful alternative way to define fibers of vector
bundles of covacua, and it holds in all genera. Before stating the result, and sketching the
proof, I’ll explain how one can use it to prove Propagation of Vacua. I’ll also describe how
Beauville uses it to see that when restricted to M0,n, the bundles Vpg,~�, `q are quotients of
the constant bundle Apg,~�q, introduced in Lecture 2.5.4.

We will prove global generation of the bundles on M0,n following Ueno’s original ap-
proach, which while stated for fibers at smooth curves, as was pointed out by Fakhruddin,
holds for any pointed curve with simple poles.
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3.2 Beauville’s Quotient Construction

Notation

We recall the definition of the fibers of vector bundles of covacua, described in Lec-
ture 2.5.4, and also define evaluation modules, which will be referred to in Beauville’s
Quotient Construction stated in Theorem 3.2.1.

Let C be a possibly nodal curve, p1, p2, . . ., p
n

P C smooth points of C, and let ⇠
i

be a
local parameter of C at the points p

i

. Recall that the affine Lie algebras pg
i

have triangular
decompositions

pg
i

“ g b Cpp⇠
i

qq ‘ Cc “ ppg
i

q†0 ‘ g b Cc ‘ ppg
i

q°0.

To every g-module V
�

i

, one can form the Verma module, a pg
i

-module

V
�

i

“ Upppg
i

q†0q bC V
�

i

“ Uppg
i

q b
Uppp

g

i

q•0q V�
i

,

where we extend the action of g on V
�

i

to an action of ppg
i

q•0 “ g b Cc ‘ ppg
i

q°0 on V
�

i

by
declaring that ppg

i

q°0 act by zero, and the central element c by ` ¨ id
V

�

i

. One has simple
pg
i

-modules H
�

i

“ V
�

i

{Z
�

i

, where Z
�

i

Ä V
�

i

is the unique maximal submodule, and
the Lie algebra p

grns “ `À
n

i“1 g b Cpp⇠
i

qq˘ ‘ Cc acts diagonally on the tensor product
H~
�

“ bn

i“1H�i .
For U “ Cztp1, . . . ,p

s

u, and gpUq “ g b O
C

pUq, recall that one can show there is an
embedding of Lie algebras:

gpUq ãÑ p
grns, pX bfq fiÑ pX bf

p1p⇠1q, . . . , X bf
p

n

p⇠
n

q, 0q,

so that one can restrict the action of p
grns on H~

�

to gpUq:

gpUq ˆH~
�

Ñ H~
�

, ppX bfq, pw1 b ¨ ¨ ¨ bw
n

qq fiÑ
nÿ

i“1

w1 b ¨ ¨ ¨w
i´1 b pX bf

p

i

q ¨w
i

b ¨ ¨ ¨ bw
n

.

The fibers of the bundles of covacua are the vector spaces of coinvariants:

Vpg,~�, `q|pC,~pq – rH~
�

sgpUq “ H~
�

{gpUqH~
�

.

Given m other points q1, . . ., q
m

P U, and g-modules V
µ1 , Vµ2 , . . ., V

µ

m

, one can define
an action of gpUq on the V

µ

j

by evaluation:

gpUq ˆ V
µ

j

Ñ V
µ

j

, px b f, vq fiÑ fpq
j

q x ¨ v.

Theorem 3.2.1. [Bea96, Prop 2.3]The inclusions V
µ

j

ãÑ H
µ

j

induce an isomorphism

rH~
�

b V~µsgpUq
„Ñ rH~

�

b H~µsgpUz~qq – Vpg,~�Y ~µ, `q|pC,~pY~qq.
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3.2.1 Application One: Propagation of Vacua

Corollary 3.2.2. Let q P Cz~p. Then Vpg,~�, `q|pC,~pq “ Vpg, ~�Y t0u, `q|pC,~pYtquq.

Proof. By Theorem 3.2.1, and the definition of vector spaces of covacua:

Vpg, ~�Y t0u, `q|pC,~pYtquq “ rH~
�

bC H0sgpCzp~pYtquqq – rH~
�

bC V0sgpCz~pq.

Now since V0 – C, one has

rH~
�

bC V0sgpCz~pq – rH~
�

bC CsgpCz~pq – rH~
�

sgpCz~pq – Vpg,~�, `q|pC,~pq.

We briefly outline the proof of Theorem 3.2.1 in three steps. The full proof is given in
[Bea96, pages 7-8].

3.2.2 Application Two: generic global generation for g “ 0

Corollary 3.2.3. For pC,~pq P M0,n, one has a surjection

Apg,~�q|pC,~pq ⇣ Vpg,~�, `q|pC,~pq.

To prove this, in [Bea96, Proposition 4.1], Beauville shows that there are surjections

Apg,~�q|pC,~pq “ V~
�

{gV~
�

⇣ Vpg,~�, `q|pC,~pq “ V~
�

{`
gV~
�

` Im T ``1˘
,

where

T : V~
�

�Ñ V~
�

, v1 b ¨ ¨ ¨ b v
n

fiÑ
nÿ

i“1

⇠
i

v1 b ¨ ¨ ¨ b v
i´1 b x

✓

¨ v
i

b v
i`1 b ¨ ¨ ¨ b v

n

.

Problem Session 3.2.4. In the problem session, go through the details of the proof for sl2.

We will, in Section 3.3, prove Corollary 3.2.3 with another approach due to Ueno.

We next briefly sketch the proof of Theorem 3.2.1.

Sketch of the proof of Theorem 3.2.1

Proof. (of Theorem 3.2.1) Following the proof in [Bea96], we work by induction: Put q “
q
m

, µ “ µ
m

, U “ Cz~p, and H “ H~
�

b V
µ1 ¨ ¨ ¨ b V

µ

m´1 . It will be enough to show that the
inclusion V

µ

ãÑ H
µ

induces an isomorphism

rH b V
µ

sgpUq
„Ñ rH b H

µ

sgpUzqq.
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Step One.

Show that the inclusion of V
µ

ãÑ H
µ

is equivariant with respect to the action of gpUq
so that it induces a linear map

rH b V
µ

sgpUq Ñ rH b H
µ

sgpUzqq.

Step Two.

We prove the result when we replace H
µ

by the Verma module V
µ

:

Claim 3.2.5.
rH b V

µ

sgpUq
„Ñ rH b V

µ

sgpUzqq.

Proof. (Outline) Choose a local coordinate z at q so that z´1 P O
C

pUzqq, and write

gpUzqq “ g b O
C

pUzqq “ g b ` ÿ

n•1

Cz´n

˘ “ g b O
C

pUq ‘ ` ÿ

n•1

gz´n

˘ “ gpUq ‘ p
g†0,

where we identify the Lie algebra
∞

n•1 gz
´n with its image p

g†0 in p
g. We will see

rH b V
µ

sgpUq
„Ñ rH b V

µ

sgpUq‘pg†0 .

We first prove that
rH b V

µ

spg†0 – H b V~
�

.

After doing so, taking coinvariants by the action of g will give the result.
By definition, rH b V

µ

spg†0 is isomorphic to the tensor product H b
Uppg†0q Vµ

. Now by
definition of V

µ

,

H b
Uppg†0q Vµ

– H b
Uppg†0q Uppg†0q bC V~

�

– H bC V~
�

.

Step Three.

For Z
µ

such that H
µ

“ V
µ

{Z
µ

, one has the exact sequence:

H b Z
µ

Ñ rH b V
µ

sgpUzqq Ñ rH b H
µ

sgpUzqq Ñ 0.

Claim 3.2.6. The image of H b Z
µ

in rH b V
µ

sgpUzqq is zero.
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Proof. (Outline) Using that by definition, rH b V
µ

sgpUzqq is the same as H b
UpgpUzqqq Vµ

,
and that as a Upĝq-module, Z

µ

is generated by the element

pX
✓

b z´1q`´p✓,µq`1 b v
µ

,

where v
µ

is the highest weight vector associated to µ and this vector is annihilated by ĝ°0,
It is enough to show that h b ppX

✓

b z´1q`´p✓,µq`1 ¨ v
µ

q “ 0 for all h P H. This is done in
[Bea96].

Problem Session 3.2.7. Go through the details of the last step for sl2 in the problem session
(tomorrow).

3.3 Ueno’s Quotient Theorem

Theorem 3.3.1. [Uen08, Proposition 6.1] and [Fak12] For pC,~pq P M0,n, the map

Apg,~�q|pC,~pq “ V~
�

{gV~
�

�Ñ Vpg,~�, `q|pC,~pq

is surjective. In particular, Vpg,~�, `q is the quotient of the constant bundle Apg,~�q.

Approach to the proof

To show the map is surjective, we argue that the dual map

j : Vpg,~�, `q|:
pC,~pq “

´
H~
�

{gpUqH~
�

¯:
�Ñ

´
V~
�

{gV~
�

¯:
,

is injective.
We will use a filtration F

k

pH
�

q of H
�

to show that given � P Vpg,~�, `q|:
pC,~pq such that

jp�q “ 0, then �|
F

k

pH
�

q “ 0 for all k. We show this by induction on k.

Two descriptions of the filtration

There are a couple of equivalent ways to describe the filtration. First, for

p
grns “ `

g bC
nà

i“1
Cpp⇠

i

qq˘ ‘ Cc,

let
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F
k

ppg†0q “
#`

g bC
À

n

i“1 Cr⇠´1
i

s⇠´k

i

˘ ‘ Cc if k • 0
g bC

À
n

i“1 Cr⇠´1
i

s⇠´k

i

k † 0.

Then H
�

has a natural filtration induced from that on p
grns. Namely:

F
k

H
�

“ F
k

Uppg†0qV
�

,

where
F
k

Uppg†0q “
ÿ

k1`¨¨¨`k

n

§k

F
k1ppg†0q b ¨ ¨ ¨ F

k

n

ppg†0q.

We can alternatively describe this in terms of a filtration given by the Casimir operator on
V
�

i

. For each g-module V
�

there is an operator

L0 : V� Ñ V
�

, v fiÑ L0pvq “ �
�

v.

To get elements of H
�

we will multiply elements of v with elements of the form xp´dq “
x b ⇠´d, with x P g.

Now L0 satisfies a Liebnitz rule: Namely, if one takes xp´dq “ x b ⇠´d P gpUq, and
v P V

�

, then

L0pxp´dq ¨ vq “ L0pxp´dqq ¨ v` xp´dqL0pvq “ dxp´dq ¨ v` xp´dq�
�

pvq “ pd`�
�

qxp´dq ¨ v.

So it makes sense to define, for each i P t1, . . . ,nu,

H
�

i

pdq “ t! P H
�

i

: L0p!q “ pd ` �
�

i

q!u.

Then
F
k

pH~
�

q “ t!1 b ¨ ¨ ¨ b!
n

P H~
�

: !
i

P H
�

i

pk
i

q,
ÿ

i

k
i

§ ku.

3.3.1 Proof

We know the base case holds:

�|
F0H~

�

“ �|
V~
�

“ 0,

by assumption. We assume for induction that �|
F

k

H~
�

“ 0.
We can express any element in F

k`1H~
�

as a sum of elements of the form

r! “ !1 b ¨ ¨ ¨ b!
j´1 b xp´mq r!

j

b ¨ ¨ ¨ b!
n

,
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with
! “ !1 b ¨ ¨ ¨ b!

j´1 b r!
j

b ¨ ¨ ¨ b!
n

P F
k

H~
�

,

where here we write

xp´mq “ x1p´m1q, rw
j

“ x2p´m2q ¨ ¨ ¨ x
k

p´m
k

qv
j

P F
k

j

´m

pH~
�

q Ä F
k

j

´1pH~
�

q,

and k
i

“ degp!
i

q “ ∞
k

i“1 mi

.
We consider in particular, the element f “ 1

pz´z

i

qn , and write

(3.1)
nÿ

i“1

⇢
i

px b fq! “
nÿ

i“1

!1 b ¨ ¨ ¨ b!
i´1 b px b fq ¨!

i

b!
i`1 b ¨ ¨ ¨ b!

n

P gpUq ¨ H~
�

.

Note that ⇢
j

px b fq! “ r!, and because f is holomorphic at z
i

, for i ‰ j, we have

(3.2) ⇢
i

px b fq! P F
k

pH~
�

q.

Since
� P Vpg,~�, `q|:

pC,~pq “
´
H~
�

{gpUqH~
�

¯:
,

and since � will be zero when evaluated on any element of gpUqH~
�

, we have that
�p∞

j

⇢
j

px b fq!q “ 0. We therefore have that

r! “ �p⇢
j

px b fq!q “ ´
ÿ

i‰j

�p⇢
i

px b fq!q “ 0,

by Eq 3.2.
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Lecture 4

Chern classes: vanishing, identities and
open questions

4.1 Introduction

For g “ 0, the vector bundle Vpg,~�, `q is a quotient of the constant bundle:

Apg,~�q “ rV~
�

sg ˆ M0,n ⇣ Vpg,~�, `q.

So for every point pC,~pq P M0,n, there is a surjective map of vector spaces

rV~
�

sg ⇣ Vpg,~�, `q|pC,~pq.

In other words, for a “ rkpApg,~�qq, and r “ rkpVpg,~�, `qq, there is a composition of mor-
phisms

M0,n
��Ñ GrquoprV~

�

sg, rq p“Plücker�Ñ Ppa

r

q´1, pC,~pq fiÑ r⇤arV~
�

sg ⇣ ⇤rpVpg,~�, `q|pC,~pqqs.

The first Chern class of Vpg,~�, `q, a globally generated divisor class, is the pullback
of O

P

p1q, an effective divisor from the projective space P in which the Grassmannian is
embedded. The analogous notion in higher Chern classes, is not to take the determinant,
but to pull back effective cycle classes from the Grassmann variety instead.

Lehmann and Fulger in defined the pliant cone PLkpXq to be the closure of the cone
generated by products Chern classes of globally generated vector bundles (maybe for
different bundles) with total codimension k. We’d like to say as much as we can about
these classes. In tomorrow’s lecture, I’ll try to say a little bit about what we know, and to
give some open problems.
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4.2 Three Families of first Chern classes

Example 4.2.1. In [Fak12], Fakhruddin proved that the set of nonzero level one sl2 bundles

�1 “ tc1pVpsl2,~�, 1qq : rkVpsl2,~�, 1q ° 0u,

gives a basis for PicpM0,nq. In particular, the cone spanned by the elements in �1 forms a full
dimensional subcone of NefpM0,n. Swinarski proved in [Swi] that the elements of � do not cover
the nef cone, at least for n • 6. There are 3190 extremal extremal rays of NefpM0,6q, which Faber
first showed can be classified into 28 orbits, using the symmetric group S6 (these are listed in a
table in [Swi]). On his list, Swinarski finds conformal block descriptions, mainly in terms of sl2
for 11 of these orbits. We have found further descriptions of these, listed in Section 4.7.4. While �
doesn’t fill up the nef cone, it is worth noting that Fakhruddin did remark that the sl3 divisors at
level one seem to form a larger subcone than the sl2 at level one (see [Fak12]).

One can also get full dimensional subcones of nef cones of higher codimension using �1: By
[Kee92], one has that A1pM0,nq generates AkpM0,nq for all k, and so products of the classes de-
termine full dimensional subcones of NefkpM0,nq for all k. Moreover, as the bundles are globally
generated, their products are elements of the Pliant cone. A good reference for positivity in higher
codimension is [FL17]. Given a variety X, the Pliant cone PlmpXq Ä NefmpXq, is the closure of
the cone generated by monomials in Schur classes of globally generated vector bundles on X. So
in fact products of elements in �1 generate full dimensional subcones of the Pliant cone PlkpM0,nq
for all k.

Example 4.2.2. The set of S
n

-invariant, and level one, classes in

�2 “ tc1pVpsl
n

,!n

i

, 1qq | 2 § i § tn
2

uu,

form a basis for Picp rM0,nq, where rM0,n “ M0,n{S
n

. Hence �2 generates a full dimensional
subcone of Nefp rM0,nq. These divisors also span extremal rays in Nefp rM0,nq.

By [Gia13, GG12a] images of maps for bundles of type A at level one parametrize configura-
tions of points lying on Veronese curves. The images are constructed using GIT.

Example 4.2.3. Let n “ 2pg ` 1q. The higher level classes

�3 “ tc1pVpsl2,!n

1 , `qq | 1 § ` § tguu,

which are also S
n

invariant, form a basis for Picp rM0,nq, and the associated divisors are interesting.
For instance For ` “ 1, the divisor defines a morphism from to the Satake compactification of the
moduli space of abelian varieties of dimension g [AGS14, Theorem 7.2], and in general, images
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can be identified with GIT quotients parametrizing “generalized Veronese quotients” studied in
[GJMS13]. These are moduli spaces parametrizing weighted configurations of points and Veronese
curves where the points lie on the Veronese curves.

4.3 Vanishing as the level grows

Conformal blocks divisors are quite often extremal in the nef cone, and the number of curves
they contract increases as the level increases with respect to the pair pg,~�q.

4.3.1 The critical level

Definition 4.3.1. Suppose r ` 1 divides
∞

n

i“1 |�
i

|, and let clpsl
r`1,~�q “ ´1 `

∞
n

i“1 |�
i

|
r`1 , be the

critical level for the pair psl
r`1,~�q. If ` “ clpsl

r`1,~�q, and ~� P P
`

psl
r`1qn, then Vpsl

r`1,~�, `q is
called a critical level bundle, and c1pVpsl

r`1,~�, `qq “ Dpsl
r`1,~�, `q is called a critical level divisor.

Vanishing and identities

Note that if ` “ clpsl
r`1,~�q, then r “ clpsl

``1,~�T q, where ~�T “ p�T1 , . . . , �T
n

q. Here �T
i

is the
weight associated to the transpose of the Young diagram associated to the weight �

i

. In particular,
|�

i

| “ |�T
i

|, and so
nÿ

i“1

|�
i

| “ pr ` 1qp`` 1q “ p`` 1qpr ` 1q “
nÿ

i“1

|�T
i

|.

In particular, critical level bundles come in pairs, and as we shall prove:

Theorem 4.3.2. [BGM15b] If ` “ clpsl
r`1,~�q, then

1. c1pVpsl
r`1,~�, `` cqq “ 0, for c • 1; and

2. c1pVpsl
r`1,~�, `qq “ c1pVpsl

``1,~�T , rqq.

After giving an example and some applications, we will prove part p1q of Theorem 4.3.2.

Example 4.3.3. The bundle Vpsl
r`1,!n

1 , `q is at the critical level for n “ pr ` 1qp` ` 1q. In
[BGM15b] we showed that the first Chern classes are all nonzero, and by Theorem 4.3.2, for
n “ pr ` 1qp`` 1q,

c1pVpsl
r`1,!n

1 , `qq “ c1pVpsl
``1,!n

1 , rqq; and

c1pVpsl
r`1,!n

1 , `` cqq “ c1pVpsl
``1,!n

1 , r ` cqq “ 0 for all c • 1.

More examples are in Section 4.7.2.
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Applications

The main applications of vanishing above the critical level are extremality tests, which can be
used to check that Chern classes of arbitrary codimension lie on various extremal faces of nef or
Pliant cones (see [BGM16], [GM82]). Once we know how to check which F-Curves get contracted,
one can for instance, give criteria for showing that maps given by certain conformal blocks divisors
factor through contraction maps to Hassett spaces [BGM16].

Extremality test

Proposition 4.3.4. Let ~� P P
`

psl
r`1qn, and suppose that N1,N2,N3,N4 is a partition of rns “

t1, . . . ,nu into nonempty subsets ordered so �pN
i

q “ ∞
jPN

i

|�
j

|, then �pN1q § ¨ ¨ ¨ § �pN4q.
If

∞
jPt1,2,3u �pN

j

q § r ` `, then

c1pVpsl
r`1,~�, `qq ¨ F

N1,N2,N3,N4 “ 0,

and in particular, c1pVpsl
r`1,~�, `qq is extremal in the nef cone.

Proof. The intersection c1pVpsl
r`1,~�, `qq ¨ F

N1,N2,N3,N4 takes place in the boundary divisor

�
N1YN2YN3 – M0,|N1YN2YN3|`1 ˆ M0,|N4|`1,

and in particular, in M0,|N1YN2YN3|`1. We can use factorization to examine the first Chern
class of the bundle V at points pC,~pq P �

N1YN2YN3,N4 , we have V|pC,~pq is isomorphic to
à

µ

Vpsl
r`1, �pN1 YN2 YN3q Yµ, `q|pC̃,~ppN1YN2YN3qYq1q bVpsl

r`1, �pN4q Yµ˚, `qq|pC̃,~ppN4qYq2q.

We compute the critical level of Vpsl
r`1, �pN1 Y N2 Y N3q Y µ, `q, which is

(4.1) clpsl
r`1, �pN1 Y N2 Y N3q Y µq “ ´1 `

∞
jPN1YN2YN3

|�
j

| ` |µ|
r ` 1

§ ´1 ` r ` `` r`

r ` 1
† ´1 ` r ` `` r`` 1

r ` 1
“ ´1 ` pr ` 1qp`` 1q

r ` 1
“ `.

In particular, Vpsl
r`1, �pN1 YN2 YN3q Yµ, `q is above the critical level, and so it has trivial

first Chern class.

Sketch of proof of vanishing above the critical level

To prove Part (1) of Theorem 4.3.2, we use the cohomological version of Witten’s Dictionary,
which follows from [Wit95] and the twisting procedure of [Bel08b], see Eq (3.10) from [Bel08b].
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Theorem 4.3.5. Let V “ Vpsl
r`1,~�, `q such that

∞
n

i“1 |�
i

| “ pr ` 1qp`` sq for some integer s.

1. For s ° 0, let � “ `!1. Then RankpVq is the coefficient of qs�
`!

r`1 in the quantum product

�
�1 ‹ �

�2 ‹ ¨ ¨ ¨ ‹ �
�

n

‹ �s
�

P QH˚pGrpr ` 1, r ` 1 ` `qq.

2. For s § 0, then RankpVq is the multiplicity of the class of a point �
k!

r`1 in the product

�
�1 ¨ �

�2 ¨ ¨ ¨ ¨ ¨ �
�

n

P H˚pGrpr ` 1, r ` 1 ` kqq,

where k “ `` s.

Examples of rank computations using Theorem 4.3.5 can be found in [BGM15b, BGM16,
Kaz16, Hob15] and [BGK16].

Proof. Write ˜̀ “ clpsl
r`1,~�q ` 1. We’ll consider the following two cases:

1. ~� P P ˜̀psl
r`1qn so that Vpsl

r`1,~�, ˜̀q makes sense, and there is a surjective map

Apsl
r`1,~�q ⇣ Vpsl

r`1,~�, ˜̀q.

2. ~� R P ˜̀psl
r`1qn.

In case ~� P P ˜̀psl
r`1qn, we know that by Beauville’s quotient construction, as the level

grows, the rank decreases:

rkpVpsl
r`1,~�, ˜̀qq § rkpVpsl

r`1,~�, `q § rkpApsl
r`1,~�qq.

So it is enough to show in this case that

rkpVpsl
r`1,~�, ˜̀qq “ rkpApsl

r`1,~�qq.

In the second case, we’ll argue that rkpApsl
r`1,~�qq “ 0. Both follow from the Cohomolog-

ical form of Witten’s Dictionary, Theorem 4.3.5.
In the first case, since

∞
n

i“1 |�
i

| “ pr ` 1qp˜̀q, we have that s “ 0 in Theorem 4.3.5, and
so rkpVpsl

r`1,~�, ˜̀qq “ rkpApsl
r`1,~�qq, as claimed.

In the second case, we know that |�
i

| § `r for all i but that |�
i

| ° ˜̀r for some i. This
means in particular that �p1q

i

° ˜̀ for some i. We may relable so that k “ �
p1q
1 • ¨ ¨ ¨ �p1q

n

.
Since

∞
n

i“1 |�
i

| † pr ` 1qk, we write
∞

n

i“1 |�
i

| “ pr ` 1qpk ´ pq, for some p ° 0. Setting
µ1 “ µ2 “ ¨ ¨ ¨ “ µ

p

“ !
r`1 – !0, by Propagation of Vacua:

Vpsl
r`1,~�Y ~µ, `q – Vpsl

r`1,~�, `q,

and since
∞

n

i“1 |�
i

| ` ∞
p

j“1 |µ
j

| “ pr ` 1qpk ´ pq ` pr ` 1qp “ pr ` 1qk, we can compute the
rank by computing the intersection

�
�1 ‹ ¨ ¨ ¨ ‹ �

�

n

‹ �p
!

r`1
P Grpr ` 1, r ` 1 ` kq.

By a calculation, this is zero.

52



4.3.2 The theta level

The theta level (Def 4.3.6), comes from the interpretation of a vector space of conformal blocks
as an explicit quotient [Bea96, Proposition 4.1], and holds in all types.

Definition 4.3.6. [BGM15b] Given a pair pg,~�q, one refers to ✓pg,~�q “ ´1` 1
2

∞
n

i“1p�
i

, ✓q P 1
2Z

as the theta level of the pair pg,~�q.

Remark 4.3.7. As in Lecture 2.5.4, ✓ is the highest root, and p , q is the normalized Killing form.

Vanishing above the theta level

Proposition 4.3.8. [BGM15b] Suppose that ` ° ✓pg,~�q, then c1pVpg,~�, `qq “ 0.

Proposition 4.3.9. [BGM15b] Let ~� P P
`

pgqn, and suppose that N1,N2,N3,N4 is a partition-
partion of rns “ t1, . . . ,nu into four nonempty subsets ordered so that if �pN

i

q “ ∞
jPN

i

|�
j

|,
then �pN1q § ¨ ¨ ¨ § �pN4q. If

∞
jPt1,2,3u �pN

j

q § `` 1, then

c1pVpg,~�, `qq ¨ F
N1,N2,N3 “ 0,

and in particular, c1pVpg,~�, `qq is extremal in the nef cone.

The proof of Proposition 4.3.9 is analogous to that of Proposition 4.3.4, using the stronger
version of Proposition 3.2.1, which holds in g “ 0 [Bea96, Proposition 4.1].

Remark 4.3.10. It looks by comparing the criteria in Proposition 4.3.9 and Proposition 4.3.4 that
the ✓-level is stronger than the critical level, but there are plenty of examples of divisors that have
lower CL than ✓-level and are only known to be zero because of the theorem on CL vanishing. See
the examples in Section 4.7.2 for instance. These propositions are simply not sharp.

4.4 The problem of nonvanishing

Explicit formulas for Chern classes in all genera are known [Fak12, MOP15, MOP`17]. In
case g “ 0, the global generation of the bundles gives non-negativity of the classes, in the sense
that they will nonnegatively intersect effective cycles of complementary codimension1. As we’ve
seen, the classes tend to contract more cycles as the level or the rank of the underlying bundle
grows, and they vanish if the level or the rank is high enough.

Interestingly, there are many cases in which the level and rank are low, but the cycles vanish
anyway. Here is one:

1Incidentally, such classes are spanned by boundary cycles
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Example 4.4.1. The bundle Vpsl4, t!2 `!3,!1,!1 ` 2!2, 2!1 `!3u, 3q is at the critical level,
and it is below the theta level (which is 3.5). The rank of Vpsl4, t!1, p2!1 `!3q3u, 3q is one, while
the dimension of the vector space of coinvariants Apsl4, t!1, p2!1 ` !3q3uq is 2. A calculation
shows that Dpsl4, t!1, p2!1 `!3q3u, 3q “ 0.

It seems natural to want to know exactly when explicitly given, nonnegative classes are nonzero,
and we asked the following in [BGM16]

Question 4.4.2. [BGM16] What are necessary and sufficient conditions for a triple pg,~�, `q that
guarantee that c1pVpg,~�, `qq is nonzero?

We also were able to answer this question for sl2 divisors:

Theorem 4.4.3. [BGM16] c1pVpsl2,~�, `qq ‰ 0 as long as

1 § ` § CLpsl2,~�q “ ✓Lpsl2,~�q, and rkpVpsl2,~�, `qq ° 0.

The result as stated in Theorem 4.4.3 does not hold in general, as we saw for the sl4-divisor in
Example 4.4.1, and as can be seen in many examples2. Recall that clpsl2,~�q “ ✓psl2,~�q for sl2. In
[BGM16], we proved a similar nonvanishing result holds for c1pVpg,~�, `qq in case CLpg,~�, `q “
✓Lpg,~�, `q. One approach, to understand divisors like that given in Example 4.4.1 is to decompose
the vector bundle into simpler ones, whose vanishing may be understood more readily.

4.5 Additive identities dependent on ranks

I will explain the following criteria, given in [BGM16] for decomposing a divisor as an effective
sum of simpler divisors.

Proposition 4.5.1. Let ~µ P P
`

pgqn, and ~⌫ P P
m

pgqn be two n-tuples of dominant weights such
that rkVpg,~µ, `q “ 1, and rkVpg,~µ ` ~⌫, `` mq “ rkVpg,~⌫,mq “ �. Then

c1pVpg,~µ ` ~⌫, `` mqq “ � ¨ c1pVpg,~µ, `qq ` c1pVpg,~⌫,mqq.

Remark 4.5.2. We also have another type of identity in type A, where we decompose the Lie alge-
bra and the weights. This gives a non-vanishing result in case the critical and theta levels coincide,
such as the sl2 result mentioned earlier. To prove the second identity one uses an interpretation of
conformal blocks in terms of generalized theta functions.

Below I give some of the applications of Proposition 4.5.1.
2Fakhruddin showed us a whole list of examples, including the one given in Example 4.4.1.
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Explanation of vanishing

Taking the bundle from Example 4.4.1, we note it can be decomposed into as in Proposition
4.5.1, and we may write

(4.2) c1pVpsl4, t!1, 2!1 `!3, 2!1 `!3, 2!1 `!3u, 3qq
“ c1pVpsl4, t!1, . . . ,!1u, 1qq ` c1pVpsl4, t0,!1 `!3,!1 `!3,!1 `!3u, 2qq.

Both of the divisors on the right hand side turn out to be trivial: the first since it is above the
critical level, and the second, because it is pulled back from M0,3.

Using Proposition 4.5.1 in conjunction with the quantum generalization of a conjecture of
Fulton in invariant theory [Bel07] and [BK16, Remark 8.5], we show in Corollary 4.6.2 that if
rkpVpsl

r`1,N~�,N`q “ 1, then

c1pVpsl
r`1,N~�,N`qq “ N ¨ c1pVpsl

r`1,~�, `qq, @N P N.

As an application of this, one can identify images of the maps �D for D “ Dpsl
r`1, ~̀�, `q “

` Dpsl
r`1,~�, 1q, as the generalized Veronese quotients of [Gia13, GJM13].

Proposition 4.5.1 can be used to show that a divisor is nontrivial, by writing it as an effective
sum of simpler divisors, and then showing one of the summands is nontrivial. One may also
solve questions of mysterious vanishing, seeing for example a divisor as a sum of divisors whose
vanishing can be explained by other means.

4.6 Identities, applications and generalizations

Fulton conjectured that if rkpApsl
r`1,~�qq “ 1 then rkpApsl

r`1,N~�qq “ 1 @ N P Z°0. This
was proved by Knutson, Tao and Woodward [KTW04].

For V “ Vpsl
r`1,~�, `q, set Vrns “ Vpsl

r`1,N~�,N`q,

where N~� “ pN�1, . . . ,N�
n

q, so that if �
i

“
ÿ

j

c
j

!
j

, then we set N�
i

“
ÿ

j

Nc
j

!
j

.

The quantum generalization of Fulton’s conjecture [Bel07, BK16] is the following:

Theorem 4.6.1. Suppose rkpVq “ 1, then rkpVrnsq “ 1 for all positive integers N.

Using Theorem 4.6.1 and Proposition 4.5.1, by induction we obtain:

Corollary 4.6.2. If rkpVq “ 1, then c1pVrnsq “ N c1pVq, @ N P Z°0.
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Corollary 4.6.2 appears in case r “ 1 and ~� “ p!1, . . . ,!1q in [GJMS13, Proposition 5.2],
and an analogous result for g “ so2r`1 appears in the work of Mukhopadhyay. As will be clear
later when we talk about projective rank scaling, and more generally � invariant zero rank scaling,
we will refer to this as horizontal projective rank zero scaling.

There is another similar result, which says, that for Vrns “ Vpsl
Npr`1q,~�N, `q, such that~�

N

“
pp�1q

N

, . . . , p�
n

q
N

q, where for �
i

“ ∞
j

c
j

!
j

, we set p�
i

q
N

“ ∞
j

c
j

!
Nj

:

Proposition 4.6.3. If rkpVq “ 1, then c1pVrnsq “ N c1pVq, @ N P Z°0.

We call Proposition 4.6.3 vertical projective rank zero scaling. A proof of Proposition
4.6.3 can be found in https://arxiv.org/pdf/1605.06184v1.pdf.

Finite generation of cones

In ([Kaz16], Theorem 1.1) this result was used to prove that any S
n

-invariant divisor for sl
n

on M0,n coming from a bundle of rank one was in fact a sum of level one divisors in type A. In
particular, the cone generated by infinitely many such divisors is finitely generated.

In Quantum Kostka and the rank one problem for sl2m, http://arxiv.org/abs/
1508.06952, Hobson considers a family of all rank one bundles for sl2, and for a large class
of bundles for sl2m. She described an infinite generating set of this cone explicitly, and using
these results, also described a subcone of CB1pn, sl2mq generated by an infinite number of rank
one bundles with so-called rectangular weights. She then used the additive identities to decompose
these generators into sums of first Chern classes of bundles of level one. It follows from work of
[GG12a] showing the cone generated by level one bundles is finitely generated, that her cone is
polyhedral.

In Conformal blocks in type C at level one, https://arxiv.org/pdf/1605.
06184v1.pdf, Hobson used an identity between first Chern classes of bundles In type A at
level ` and for sp2` at level 1 together with additive identities to show finite generation of the cone
spanned by such conformal blocks divisors in type C.

Projective rank scaling

We’ll see in Lecture 5 a generalization of the rank one horizontal scaling identity to what we
call projective rank scaling (which as we shall see, generalizes further to what we call �-invariant
zero rank scaling).

Definition 4.6.4. We say that V has

• horizontal projective rank d scaling if rankpVrmsq “ `
d`m

m

˘
; and
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• vertical projective rank d scaling if rankpVrmsq “ `
d`m

m

˘
.

Remark 4.6.5. Note that rank one bundles have both horizontal and vertical projective rank 0
scaling.

It turns out that if V has horizontal projective rank d scaling, and if V has other good geometric
properties that hold for bundles of rank one, then

c1pVrmsq “
ˆ
d ` m

d ` 1

˙
c1pVq.

Note that if you specialize to the case d “ 0, this is the statement of Corollary 4.6.2.

Problem Session 4.6.6. There should be a vertical analogue to this (see Section 4.7.3).

4.7 Second problem session

4.7.1 Background Reading: Chow rings using Chern classes

Definition 4.7.1. Let A
k

pXq be the group of algebraic cycles of dimension k on X.

In his book on Intersection theory, Fulton defines a Chern class as a linear operator:

Definition 4.7.2. Let X be a proper variety, and E a vector bundle on X. The r-th Chern class of
E is a linear operator

c
r

pEq : A
k

pXq Ñ A
k´r

pXq.

Definition 4.7.3. Two cycles Z1 and Z2 on X are numerically equivalent if for every weight k
monomial p in Chern classes of vector bundles, one has

degpP ¨ Z1q “ degpP ¨ Z2q.

This defines a pairing between weight k-Chern classes and cycles of dimension k.

Definition 4.7.4. N
k

pXqZ “ A
k

pXq{ numerical equivalence .

Definition 4.7.5. The finitely generated Abelian group N
k

pXqZ is a lattice in the vector space
N

k

pXq “ N
k

pXqZ b R.

Definition 4.7.6. The pseudo effective cone Eff
k

pXq Ä N
k

pXq is defined to be the closure of the
cone generated by cycles with nonnegative coefficients.

The cone Eff
k

pXq is full dimensional, spanning the vector space N
k

pXq. It is pointed (contain-
ing no lines), closed, and convex.
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Definition 4.7.7. Its dual of the vector space N
k

pXq is:

NkpXq “ tR polynomials in weight k-Chern classes u{ ”,

where equivalence ” is given by intersection with cycles.

Definition 4.7.8. The Nef Cone NefkpXq Ä NkpXq is the cone dual to Eff
k

pXq.

As the dual of Eff
k

pXq, the nef cone has all of the nice properties that Eff
k

pXq does.

Example 4.7.9. By the definition given above, N1pXq “ t first Chern classes u{ ”, where ” is
defined by intersection with 1-cycles. This is the same as what you are used to seeing because if E
is any vector bundle, then c1pEq “ c1pdetpEqq, and detpEq is a line bundle.

The cones Eff
k

pXq, and Eff
kpXq are full dimensional, spanning the vector spaces N

k

pXq, and
NkpXq. They are pointed (containing no lines), closed, and convex. Cones of positive cycles are
combinatorial devices that encode geometric data about proper varieties. Such cones of divisors and
curves are the customary, time-honored, long established, and even familiar tools of the minimal
model program. As we’re starting to learn, their higher codimension analogues can behave very
differently. For instance, one has that for any proper variety X, cone of nef divisors Nef1pXq is
contained in the pseudo-effective Eff

1pXq. But, as was proved in DELV, if E is an elliptic curve
with complex multiplication, then Eff

kpErq à NefkpErq for 1 † k † r ´ 1. In [Ott], an example
was given of a variety X of lines on a very general cubic fourfold where Eff

2pXq à Nef
2pXq. Nef

cycles of higher codimension fail to satisfy other nice properties of nef divisors: For instance, the
product of two nef cycles is not necessarily nef.

To more accurately capture the properties of cycles of higher codimension, Fulger and Lehmann
have introduced three sub-cones: the Pliant cone, the base-point free cone, and the universally
pseud-oeffective cone. A lot of work, and many open problems are emerging [FL17], [CC14],
[Ott], [CC15], [LO16], [CLO16].

4.7.2 Exercises and Problems

4.7.3 Boundary Divisor Calculation Exercises

One of the open problems about the bundles of coinvariants is to give necessary and sufficient
conditions that their Chern classes are nontrivial. On M0,n, first Chern classes of the vector
bundles of covacua are nef divisors: They nonnegatively intersect all curves. The problems I have
chosen below are aimed at helping students to get used to working with divisor classes on M0,n

with the ultimate goal of identifying nontrivial nef divisors there.
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For S Ä t1, . . . ,nu, set �0,S “ �
S

. Using facts from the lectures, and that for

�
S

X �
T

‰ H ñ S Ä T , T Ä S, T X S “ H, or T Y S “ t1, . . . ,nu,

try the following exercises:

1. Since PicpP1q – Z, one has that on M0,4, all boundary divisor classes are equivalent. So in
particular,

�
ij

” �
ik

” �
i`

, for ti, j,k, `u “ t1, 2, 3, 4u.

Show using the point dropping maps that for n • 4, on M0,n,
ÿ

IÄtijk`uc
�
ijYI

”
ÿ

IÄtijk`uc
�
ikYI

”
ÿ

IÄtijk`uc
�
i`YI

, for any four indices ti, j,k, `u Ä t1, . . . ,nu.

2. Consider the curve/divisor

D1 “ �12 ` �13 ` �123 “ �12 ` �13 ` �45,

on M0,5. Find which the four boundary curves/divisors that it intersects in degree zero, and
the remaining 6 that it positively intersects. Assuming this divisor is base-point free, can
you make guesses about what the image of the map that it gives?

3. Fix three distinct indices ti, j,ku Ä t1, . . . ,nu, and consider the divisor

D
i

“
ÿ

IÄtijkuc
�
iYI

on M0,n. What boundary curves does D
i

contract?

4. Assuming that there is a basis for PicpM0,5q given by the classes tD
i

: 1 § i § 5u, so that one
can write D “ ∞

1§i§5 bi

D
i

, use the 10 boundary curves to come up with inequalities that
must be satisfied by the coefficients b

i

in order for D to nonnegatively intersect all effective
curves (ie. to be nef). What further assumption(s) would guarantee that D is nontrivial?

5. More generally, assuming that there is a basis for PicpM0,nq given by the classes tD
i

: 1 §
i § nu, together with boundary divisors t�

J

: 3 § |J| § tn2 uu, use the boundary curves to
come up with necessary combinatorial conditions for D to be nontrivial and nef. Can you
identify any sufficient conditions?

CB Divisor Exercises

1. Check that the bundle V “ Vpsl3,!6
1, 1q on M0,6 is at the critical level and so by Theorem

4.3.2, we have
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(a) c1Vpsl3,!6
1, 1q “ c1Vpsl2,!6

1, 2q; and

(b) c1Vpsl3,!6
1, 1 ` cq “ c1Vpsl2,!6

1, 2 ` cq “ 0
for all c • 1.

Check that the critical and theta levels for these sl2 bundles are equal. What is the theta level
for the bundle V?. In this case, which is stronger CL-vanishing or ✓-level vanishing?

2. Check that the bundle V “ Vpsl3, t2!1`!2,!2, 2!1, 2!2, 3!2u, 5q on M0,5 is at the critical
level and so by Theorem 4.3.2, we have

(a) c1pVq “ c1pVpsl6, t!1 `!3, 2!1,!2, 2!2, 2!3u, 2qq; and

(b)

(4.3) forallc• 1: c1Vpsl3, t2!1 `!2,!2, 2!1, 2!2, 3!2u, 5 ` cq
“ c1Vpsl6, t!1 `!3, 2!1,!2, 2!2, 2!3u, 2 ` cq “ 0

In this case, for the sl3 bundle V, what is the theta level? Which is stronger in this case:
✓-level vanishing or CL vanishing?

3. One can check that all the divisors in the table of extremal rays for NefpM0,6q below have
at least one representative that is either at the critical level, or one below the critical level.
Thinking back on the lecture, how does it make sense from the point of view of Beauville’s
quotient theorem to expect to see such divisors on this list?

4. In case g “ sl

r`1 you can solve to show CLpsl
r`1,~�q ` CLpsl

r`1,~�˚q “ 2✓Lpsl
r`1,~�q,

and then show that ✓-level vanishing follows from CL-vanishing. Note in particular that if
~� “ ~�˚, then the critical and theta levels agree.

Problems

Problem 4.7.10. Products of elements of �2 and �3 give elements of Plkp rM0,nq for all k, but don’t
necessarily generate full dimensional subcones of Plkp rM0,nq since A1p rM0,nq does not generate
Akp rM0,nq. Can you find full dimensional subcones of Plkp rM0,nq?

Problem 4.7.11. Are the first Chern classes of bundles of level 2 and rank 2 indecomposable?
This question comes from looking at the table of extremal rays of the nef cone for M0,6 in

[Swi] (see also Section 4.7.4). The most interesting of those examples in the table that are known
to be spanned by conformal blocks divisors seems to be the 18th ray R18 which is spanned by a
level 2 rank 2 bundle with projective scaling (it has the largest equivalence class, and the smallest
symmetry group in the list). The threshold r ` 1 “ 8, ` “ 2 seems to be where Swinarski’s M2
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program takes an unreasonable amount of time to finish, and so he may have missed other examples
of rays spanned by conformal blocks divisors.

Problem 4.7.12. (Vertical Stretching) If V “ Vpsl
r

,~�, `q is a vector bundle of rank R, we say that
Vpsl

r

,~�, `q has vertical projective rank scaling if

rkpVrmsq “
ˆ
m ` R ´ 1

R ´ 1

˙
,

for all positive integers m.
Can you find conditions P for which if V “ Vpsl

r

,~�, `q is a vector bundle of rank R with
vertical projective rank scaling and satisfies property P, then there is a weight decomposition

~� “ ~µ ` ~⌫, with ` “ `
µ

` `
⌫

,

such that rkpVpsl
rm

,~µrms, `µqq “ 1, and rkpVpsl
rm

,~⌫rms, `⌫qq “ rkpVrmsq “ `
m`R´1
R´1

˘
.

If this is true, then using [BGM16, Proposition 19] one can prove the following identity.

Proposition 4.7.13. Suppose that V “ Vpsl
r

,~�, `q is a vector bundle of rank R with vertical
projective rank scaling down and satisfies property P. Then

ˆ
m ` R ´ 1

R

˙
c1pVq “ c1pVrmsq.

Proof. We prove the identity by induction on the level `with base case ` “ 1. This identity
was proved for level one bundles in [GG12b]. Now let V “ Vpsl

r

,~�, `q be a bundle of rank
R with projective rank scaling down such that ` ° 1 and suppose the result holds for all
bundles of k † `, and rank R with projective rank scaling down. By Problem 4.7.12, there
is a weight decomposition

~� “ ~µ ` ~⌫, with ` “ `
µ

` `
⌫

,

such that rkpVpsl
rm

,~µrms, `µqq “ 1, and rkpVpsl
rm

,~⌫rms, `⌫qq “ rkpVrmsq “ `
m`R´1
R´1

˘
. So by

the inductive hypothese, we have that
(4.4)ˆ
m ` R ´ 1

R

˙
c1Vpsl

r

,⌫, `
⌫

q “ c1Vpsl
rm

,~⌫rms, `⌫q, and mc1Vpsl
r

,~µ, `
µ

q “ c1Vpsl
rm

,~µrms, `µq.
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By [BGM16, Proposition 19]

(4.5) c1pVrmsq “
ˆ
m ` R ´ 1

R ´ 1

˙
c1Vpsl

rm

,~µrms, `µq ` c1Vpsl
rm

,~⌫rms, `⌫q
ˆ
m ` R ´ 1

R ´ 1

˙
m c1Vpsl

r

,~µ, `
µ

q `
ˆ
m ` R ´ 1

R

˙
c1Vpsl

r

,⌫, `
⌫

q

“
ˆ
m ` R ´ 1

R

˙ ´
R ¨ c1Vpsl

r

,~µ, `
µ

q ` c1Vpsl
r

,~⌫, `
⌫

q
¯

.

where the last line follows from the identity

m

ˆ
m ` R ´ 1

R ´ 1

˙
“ R

ˆ
m ` R ´ 1

R

˙
.

Finally, applying [BGM16, Proposition 19] again, which says in this case that:

(4.6)
ˆ
m ` R ´ 1

R

˙ ´
R ¨ c1Vpsl

r

,~µ, `
µ

q ` c1Vpsl
r

,~⌫, `
⌫

q
¯

“
ˆ
m ` R ´ 1

R

˙
c1Vpsl

r

,~�, `q,

we obtain the assertion.

Problems 4.7.14. 1. Is there a general principal underlying these families that form basis for
Pic (and hence collections of generators of full dimensional subcones of the nef cone)?

2. Are there geometric interpretations of the full dimensional subcones of the nef cone?

Problem 4.7.15. From patterns found in the tables in Section 4.7.4, one might be able to prove
the following divisors span extremal rays of the S

n

-invariant nef cone, and perhaps there is some
underlying patterns you can see that will produce more.

1. For n “ 2g ` 1:

(a) tDpsl2m, t!2g
m

, 0u, 1q : m • 1u, Dpsl2, t!2g´1
2 ,!2

1u, 2q,
tDpslp2g´1qm, t!2g

im

!
jm

u, 1q : ti, ju “ tg,g ´ 1u,m • 1u,
tDpsl6m, t!3

2m!
2pg´1q
3m u, 1q : m • 1u.

(b) Dpsl2, t!2g
1 , 0u,g ´ 1q, Dpsl2, t!2g

1 ,!2u,gq, tDpsl
gm

, t!2g
m

, 0u, 1q : m • 1u,
tDpslp2g`1qm, t!2g

2m, 0u, 1q : m • 1u, tDpsl
gm

, t!2g
pg´1qm, 0u, 1q : m • 1u.

(c) ttDpsl
nm

, t!n

im

u, 1q : i P tj,n ´ ju,m • 1u : j P t2, . . . ,n ´ 2u
(d) tDpslp2g´1qm, t!2g

im

,!
j

u, 1q : ti, ju “ tg ´ 1,gu,m • 1u,

(e) Dpsl2, t!2g`1
2 u, 2g ´ 1q,

2. n “ 2pg ` 1q,

(a) tDpsl2m; 1;!2pg`1q
m

q : m • 1u,
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(b) Dpsl2; 2;!2pg`1q
1 q, rank 2g

(c) Dpsl2;g ´ 1;!2pg`1q
1 q,

(d) tDpsl2;g;!2pg`1q
1 q, tDpslpg`1qm; 1;!2pg`1q

m

q : m • 1u
(e) tDpsl

km

; 1;!2pg`1q
m

q : m • 1u,

(f) tDpslpg`1qm; 1;!2pg`1q
2m q : m • 1u,

(g) tDpsl
nm

; 1;!n

im

q : i P tj,n ´ ju,m • 1u : j P t2, . . . ,n ´ 2u
(h) Dpsl3;g ` 1;!pg`1q

1 !
pg`1q
2 q,

(i) Dpsl2; 2g ` 1;!2pg`1q
2m q,

63



4.7.4 Tables of extremal rays

Extremal rays of NefpM0,6q spanned by CB divisors

Ray Vpsl
r`1,~�, `q constraint

R1 V2m “ Vpsl2m, t!6
m

u, 1q m • 1
R2 V3m “ Vpsl3m, t!6

m

u, 1q m • 1

R2 Vr

i

“ Vpsl
r`1, t!3

i

,!3
r`1´i

u, 2q
r•1

i † r`1
2

4pr“1q
5pr • 2q

R2 Vpsl
r`1, t!2

1,!
i

,!
r`1´i

,!2
r

u, 2q 1 § i § pr`1q
2

R3 Vpsl
r`1, t!3

1, `!1,!
r´2, `!

r

u, `q r•3
` • 1

R3 Vpsl
r`1, t!2

1, p`´ 1q!1,!2,!
r´2, `!

r

u, `q r•2
` • 2

R5 V
i

“ Vpsl
r`1, t!3

i

,!3
r`1´i

u, 1q
r•2

i † r`1
2

R6 Vm

`

“ Vpsl
r`1, t`!1,m!1, `!

r

,m!
r

, 0, 0u, `q r • 1

R7 Vpsl
r`1, t!4

1,!2
r´1u, 1q r • 2

R9 Vpsl
r`1, t!3

1, p`´ 2q!1 `!
r

, `!
r

, 0u, `q ` • 3

R9 Vpsl
r`1, t!3

1,!2, 2!
r

, 3!
r

u, 3q r • 2

R10 Vpsl
r`1, t!2

1,!
i

,!
r`1´i

,!2
r

u, 1q 1 † i § pr`1q
2

MR11 V
pm

“ Vpsl
pm

, t!3
m

,!2
qm

,!pp´2qmu, 1q p“2q`1
m • 1

R11 Vpsl
r`1, t!2

1, p`´ 1q!1, `!1, `!
r´1,!

r

u, `q r•2
` • 2

R11 Vpsl
r`1, t!2

1,!2, 2!
r

,!2
r

u, 2q r • 2

R12 Vpsl
r`1, t!2

1,!
i`j`1,!

r´i

,!
r´j

,!
r

u, 1q r•2i`j`1
i • j • 1

R18 Vpsl
r`1, t!2

1,!2
2, 2!

r´1, 2!
r

u, 2q r • 2
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Data on extremal rays in S
n

invariant case

n “ 6 g “ 2 m P Z•1

2,1 Dpsl6m; 1;!6
3mq, Dpsl2m; 1;!6

m

q
1,3 tDpsl6m; 1;!6

im

q : i P t2, 4uu, tDpsl3m; 1;!6
im

q : i P t1, 2uu
Dpsl2; 2;!6

1q, Dpsl2; 5;!6
2q.

n “ 7 g “ 3 m P Z•1

1,1 tDpsl7m; 1;!7
im

q : i P t3, 4uu
1,3 tDpsl7m; 1;!7

i

q : i P t2, 5uu, Dpsl2; 5;!7
2q

n “ 8 g “ 3 m P Z•1

3,2,4 Dpsl8m; 1;!8
4q “ tDpsl2; 1;!8

i

q : i P t1, 3uu,Dpsl4; 1;!8
2q

2,6,5 Dpsl2; 2;!8
1q, rank 2g

1,3,6 tDpsl8; 1;!8
i

q : i P t2, 6uu, tDpsl4; 1;!8
i

q : i P t1, 3uu, Dpsl2; 3;!8
1q, Dpsl; 7;!8

2q
6,11,8 tDpsl8m; 1;!7

im

q : i P t3, 5uu

n “ 9 g “ 4 m P Z•1

3,3,4 tDpsl9m; 1;!9
im

q : i P t4, 5u,m • 1u
1,3,6 tDpsl9m; 1;!9

im

q : i P t2, 7u,m • 1u, Dpsl2m; 7;!9
2mq, Dpsl3m; 2;!9

m

q
1,3,2 tDpsl9m; 1;!9

im

q : i P t3, 6u,m • 1u “ tDpsl3m; 1;!9
im

q : i P t1, 2u,m • 1u
1,1,2 ???

n “ 10 g “ 4 m P Z•1

4,3,6,4 Dpsl10m; 1;!10
5mq “ Dpsl2m; 1;!10

m

q
1,3,3,4 Dpsl2; 2;!10

1 q, rank 2g

2,6,12,11 Dpsl2; 3;!10
1 q, rank 34 “ 2 ¨ 17

1,3,6,10 tDpsl10; 1;!10
i

q : i P t2, 8uu “ tDpsl5; 1;!10
i

q : i P t1, 4uu, Dpsl2m; 4;!10
m

q,

Dpsl2m; 7;!8
2mqu

2,6,6,5 tDpsl10m; 1;!10
im

q : i P t3, 7uu
2,3,3,5 tDpsl10; 1;!10

i

q : i P t4, 6uu “ tDpsl5; 1;!10
i

q : i P t2, 3uu
4,6,6,7 ???
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n “ 11 g “ 5 m P Z•1

2,2,3,3 tDpsl11m; 1;!11
im

q : i P t5, 6u,m • 1u
1,3,6,10 tDpsl11m; 1;!11

im

q : i P t2, 9uu
9,12,14,15 Vp1{9, 11q
3,9,13,10 tDpsl11m; 1;!11

im

q : i P t3, 8uu
6,13,11,15 tDpsl11m; 1;!11

im

q : i P t4, 7uu
6,8,11,10

3,9,8,10

1,1,2,2

1,3,6,5

4,7,9,15

n “ 12 g “ 5 m P Z•1

5,4,8,6,9 Dpsl12m; 1;!12
6mq “ Dpsl2m; 1;!12

m

q
4,12,13,18,16 Dpsl2; 2;!12

1 q, rank 2g

2,6,12,20,19 Dpsl2; 4;!12
1 q,

1,3,6,10,15 tDpsl12; 1;!12
i

q : i P t2, 10uutDpsl6; 1;!12
i

q : i P t1, 5uu, Dpsl2; 5;!12
1 q

20,27,32,35,36 Dpsl2; 9;!11
1 !1q or Vp1{10, 12q

3,9,7,8,12 tDpsl12; 1;!12
i

q : i P t4, 8uu, tDpsl3; 1;!12
i

q : i P t2, 4uu
20,27,32,46,36 tDpsl12m; 1;!12

im

q : i P t5, 7uu
8,13,15,25,21

6,7,14,16,13

2,6,12,9,8 tDpsl12m; 1;!12
im

q : i P t3, 9uu, tDpsl4m; 1;!12
im

q : i P t1, 3uu
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Lecture 5

Geometric interpretations

5.1 Introduction

Today I will start by discussing two related questions, quite historical, about moduli spaces. In
the last part of the lecture, I’ll tie them to geometric interpretations of conformal blocks.

5.2 Two related problems about moduli spaces

Setup for Problem 1

Informally speaking, there is a family

U
g

pr,dq �Ñ M
g

, U
C

pr,dq fiÑ C,

whose fiber1 over a smooth curve C is U
C

pr,dq, the moduli space of semi-stable vector bundles on
C of rank r and degree d. A vector bundle ⇠ of rank r on C has degree d if ⇤r⇠ has numerical
degree d.

Question 5.2.1. Does this extend to a family over M
g

?

Work on Problem 1, for r ´ 1:

Many people2 have worked on this problem:

• Igusa [Igu56],
1We really should restrict to automorphism free curves to describe this family
2The list below is not complete.
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• D’Souza, in his PhD Thesis [D’S79], considered a projective flat family X of irreducible and
reduced curves parametrized by S “ SpecpAq, for A a Noetherian, Henselian local ring with
separably closed residue field. He showed that the Picard scheme P “ Pic0pX{Sq is quasi-
projective, parametrizing families of invertible sheaves of degree zero on the fibers of X over S.
He constructed a projective scheme over S containing P as an open set and which parametrizes
families of torsion-free rank one sheaves of degree zero on the fibers of X over S. He shows if
geometric fibers of X over S have at worst nodes or ordinary cusps as singularities, then the
geometric fibers of this compactification are reduced, irreducible, and equi-dimensional. Hence
the family is flat over S if S is reduced. Later work of Altman and Kleiman shows that in case
singularities of the fibers of X over S are worse, these properties may fail to hold. His work
uses GIT after Seshadri.

• In [OS79], Oda and Seshadri construct compactifications of the generalized Jacobian variety
for connected (but possibly reducible) nodal curves, using GIT to give a number of different
compactifications of the union of finitely many copies of the generalized Jacobian variety of
a connected reduced but possibly reducible curve X over an algebraically closed field with at
worst nodes as singularities. In particular, they show the compactified Picard scheme fails to
be unique over families of curves with reducible fibers.

• M.-N. Ishida in [Ish78] generalizes the work of [OS79] to families.

• Altman and Kleiman in [AK80], and [AK79] generalized methods of Chow, Matsusaka and
Grothendieck to construct the compactification of the Picard scheme of a family of higher-
dimensional reduced irreducible varieties.

• Caporaso in [Cap93] considers for the universal Picard variety P
d,g over M0

g

, the set of
smooth, automorphism free curves, whose fibre over a point C can be identified with the Pi-
card variety of line bundles of degree d on C. She constructs a projective variety P

d,g and a
surjective morphism � : P

d,g �Ñ M
g

, such that �´1pM0
g

q “ P
d,g. She studies many aspects

of the construction including showing:

– For any stable curve C, there is a bound µpCq, depending only on the dual graph of C, so
that �´1pCq, a connected scheme has at most µpCq irreducible components.

– If C has no automorphisms then �´1pCq is reduced, and its smooth locus is the disjoint
union of a finite number of copies of the generalized Jacobian of the curve C.

Her construction was proposed by Gieseker and Morrison [GM84] for general r (she follows
their approach for r “ 1).
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Work on Problem 1, for r ° 1:

• Seshadri, in [Ses82], defined U
C

pe, rq, for C a reduced curve by using torsion free sheaves of
uniform rank plus a semi-stability condition, depending on a parametrization of the curve.

• In [Pan96], Pandharipande generalizes this and forms a family U
g

pe, rq �Ñ M
g

.

– Like Caporaso, Pandharipande uses Gieseker’s construction of M
g

as a GIT quotient;

– He shows fibers are irreducible for r • 1, normal for r “ 1, and

– He shows his family is isomorphic to Caporaso’s3 for r “ 1.

Simpson’s Approach

In [Sim94b] and [Sim94a], Simpson generalized all of the work above. He introduced a notion
of stability for pure dimensional coherent sheaves on any projective variety.

Definition 5.2.2. The support of a sheaf E on a Noetherian scheme X is the closed set
SupppEq “ tx P X : E

x

‰ 0u.

Definition 5.2.3. The dimension of a sheaf E is the dimension of the support of E and is denoted
dimpEq.

Definition 5.2.4. A coherent sheaf E is pure of dimension d if dimpFq “ d for all non-trivial
coherent subsheaves F of E.

Definition 5.2.5. A coherent sheaf E on an integral scheme X is torsion free if for each x P X, and
s P O

X,xzt0u, multiplication by s is an injective homomorphism E
x

�Ñ E
x

.

Remark 5.2.6. Pure dimensional coherent sheaves on a curve are torsion free sheaves. So the
pureness property is a generalization of the torsion freeness property.

Simpson shows how to form a projective variety (using GIT) which is a moduli space of semi-
stable torsion free sheaves on X. To embed the set of sheaves in a projective space (to form the
GIT quotient), he uses that every torsion free sheaf on a projective variety can be expressed as a
quotient (described below), and then uses Grothendieck’s embedding to map the set he considers
into a Grassmannian of quotients.

3Abramovich considers the more general family proposed by Gieseker and Morrison, and proves that it
is not the same as Pandharipande’s for larger r.
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The second Problem

We consider the family
SUprq �Ñ M

g

, SU
C

prq fiÑ C,

whose fibers SU
C

prq are moduli spaces of semistable vector bundles on C with trivializable deter-
minant.

Definition 5.2.7. A vector bundle ⇠ on C of rank r has trivializable determinant if ⇤r⇠ – O
C

.
So detp⇠q is linearly equivalent to zero.

Remark 5.2.8. Linear equivalence implies numerical equivalence, this family SUprq is a sublocus
of U

g

pr, 0q.

One can ask the question:

Problem 5.2.9. Is there an extension of SUprq Ñ M
g

over M
g

?

Work on Problem 2

• Nagaraj and Seshadri gave a conjectural description of the closure of a 1-parameter family in
this locus in Pandharipande’s solution;

• Sun proved Nagaraj and Seshadri’s Conjecture, finding that the central fiber over a such a
1-parameter family would sometimes be reducible and not normal.

• There is a new solution [BG16], stated below in Theorem 5.2.10.

Theorem 5.2.10. [BG16] There is a flat family p : Xprq Ñ M
g

, with Xprq relatively projective
over M

g

, such that
1. X

C

prq is integral, normal, and irreducible, for rCs P M
g

; and
2. X

C

prq – SU
C

prq, for rCs P M
g

.

This family is constructed by setting

Xprq “ Projp à

`PZ°0

Vpsl
r

, `q˚q,

where Vpsl
r

, `q˚ is the sheaf of conformal blocks on M
g

. It is a sheaf of OM
g

-algebras, and as taking
fibers commutes with taking Proj:

X
C

prq “ Projp à

`PZ°0

Vpsl
r

, `q|˚
C

q.

To take Proj, this ring should be finitely generated.
Finite generation is next described.
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5.3 The section ring of the determinant bundle

Let G be a simple, simply connected, complex linear algebraic group, C a stable curve of arith-
metic genus g • 2, and BunGpCq the smooth algebraic stack whose fiber over a scheme T is the
groupoid of principal G-bundles on CˆT (Def 2.5.2). Recall that the Determinant of Cohomology
line bundle was defined in Section 2.2.2 for G “ SLprq. The following result, was proved in case
of smooth curves in [BL94], and [Fal94], and for stable curves with singularities in [BG16].

Theorem 5.3.1. For G “ SLprq, and the standard representation SLprq Ñ GlpVq,

AC

‚ “ à

`PZ•0

H0pBunSLprqpCq,DpVqb`q

is finitely generated.

To make the connection between Theorem 5.3.1 and conformal blocks, we recall the following
results, mentioned in Lecture 2:

Theorem 5.3.2.
À

mPZ•0
Vpsl

r

, `mq|˚
pC;~pq – À

mPZ•0
H0pBunSLprqpCq,Db`mq.

The following generalization holds for pointed curves:

Theorem 5.3.3. Vpg,~�, `q|˚
pC;~pq – H0pParbunGpC,~pq,LGpC,~p,~�qq.

The moduli stack ParbunGpC,~pq maps to BunGpCq and the line bundle LGpC,~p,~�q on
ParbunGpC,~pq is constructed from DpVq on BunGpCq. Theorem 5.3.3 was proved for smooth
curves by Laszlo and Sorger [LS97]. The result holds for families of stable curves by [BF15].

5.4 Geometric interpretations at smooth curves

If C is smooth, even more is true: stated in the case we are using now:

Theorem 5.4.1. For G “ SLprq, and SLprq Ñ GlpVq,the standard representation,
à

mPZ•0

H0pBunGpCq,DpVqb`mq – à

mPZ•0

H0pX,Ab`mq,

where pX,Aq “ pM
C

prq, ✓q is the projective polarized pair:

• X “ M
C

prq is the moduli space parametrizing semi-stable vector bundles on C

of rank r with trivializable determinant; and

• A “ ✓ “ tE P M
C

prq | E b L has a nonzero sectionu,
for L a fixed line bundle on C of rank g ´ 1.
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Putting Theorems 5.3.1, 5.3.2, and 5.4.1 together, we say that for a point rCs P M
g

, corre-
sponding to a smooth curve C, there is a projective polarized pair pM

C

prq, ✓q such that

à

mPZ•0

Vpsl
r

, `mq|˚
rCs – à

mPZ•0

H0pM
C

prq, ✓`mq,

and so
Projp à

mPZ•0

Vpsl
r

, `mq|˚
rCsq – M

C

prq.

In other words, there are geometric interpretations for conformal blocks at smooth curves.
The same is true for conformal blocks at smooth pointed curves.

Example 5.4.2. For rCs P M2, one has, that

Vpsl2, 1q|˚
C

– H0pBunSLp2qpCq,DpVqq – H0pM
C

p2q, ✓q – H0pP3,Op1qq,

where the third isomorphism was proved in a 1960’s Annals paper by Narasimhan and Ramanan.
More generally, we write

à

m

Vpsl2,mq|˚
C

– à

m

H0pP3,Opmqq,

and
Projpà

m

Vpsl2,mq|˚
C

q – P3.

What can we say at stable curves of genus 2 with nodes?

5.5 Interpretations at stable curves with singularities

We consider whether such geometric interpretations for Vpg,~�, `q exist at points pC;~pq P
M

g,n, where C has singularities. We state this problem in the simplest case:

Question 5.5.1. Given a point rCs P M
g

, corresponding to a curve C with singularities, is there
is a projective polarized pair pX,Aq such that

à

mPZ•0

Vpsl
r

, `mq|˚
rCs – à

mPZ•0

H0pX,Abmq,

and so
Projp à

mPZ•0

Vpsl
r

, `mq|˚
rCsq – X?

We showed in [BGK16] that for this question, and the analogous more general question for
conformal blocks on pointed curves, while sometimes yes, the answer is no, not necessarily! Or
said more correctly, one has to move to a weighted projective space.
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5.5.1 How things can change for singular curves

Example 5.5.2. [BGK16] Let C be a stable curve of genus 2 with a separating node. There is no
projective polarized pair pX,Aq such that

à

mPZ
Vpsl2,mq|˚

rCs – à

mPZ
H0pX,Amq.

To show this we prove that if V “ Vpsl2, 1q has geometric interpretations at such a curve C,
then

(5.1) c1pVpsl2,mqq “
ˆ
m ` 3

4

˙
c1pVpsl2, 1qq

which one can show fails by intersecting with F-curves. There are two types of F-curves on M2.
The first is the image of a clutching map from M0,4 for which points are identified in pairs. The
second is the image of a map from M1,1 given by attaching a point pE,pq P M1,1, gluing the curves
at the marked points. One obtains a contradiction when we intersect with either type of F-curve,
even just at m “ 2.

Example 5.5.3. [BGK16] For pC,~pq P M2,n, for n “ 2k ° 0, such that C has a single separating
node, then here is no polarized pair pX,Aq such that

à

mPZ
Vpsl2,!n

1 ,mq|˚
rCs – à

mPZ
H0pX,Amq.

So that Vpsl2,!n

1 , 1q does not have geometric interpretations at such points pC,~pq P M2,n.

We do know that sometimes there are geometric interpretations.

Example 5.5.4. By Theorem 5.5.5, the bundle Vpsl2, 1q has geometric interpretations at a point
rCs P M2 with only nonseparating nodes, even though it does not have if C has a separating node,
while Vpsl2, 2q has geometric interpretations at all points rCs P M2.

Here are two types of results that generalize this example:
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5.5.2 Positive results

Positive results for positive genus and sl

r

Theorem 5.5.5. [BG16]Given rCs P M
g

, and a positive integer r, there exists a positive integer
`, and a projective polarized pair pX

C

pr, `q,L
C

pr, `qq, such that

(5.2)
à

mPZ•0

Vpsl
r

,m`q|˚
rCs – à

mPZ•0

H0pX
C

pr, `q,L
C

pr, `qbmq.

We can be more precise about ` in some cases:

1. For general r if C has only nonseparating nodes, ` • 1;

2. For r “ 2, ` divisible by 2;

3. For general r, and C with separating nodes, we know such an ` exists.

To prove Theorem 5.5.5

We use Theorems 5.3.1, and 5.3.2, together with the stratification of M
g

to prove that

A‚ “ à

mPZ•0

Vpsl
r

, `mq˚,

is finitely generated.
The sheaves of conformal blocks Vpsl

r

, `mq˚ are locally free of finite rank. This sum forms the
so-called algebra of conformal blocks, mentioned in Falting’s work, and studied by Chris Manon
mainly for SLp2q and SLp3q. In these cases, Manon shows the algebra is finitely generated. Manon
also takes ProjpA‚q in more general circumstances, without knowing or checking finite generation.

For A‚ to be finitely generated, it means that the algebra is generated over A0 – OM
g

by finitely
many elements tf

d

i

un
i“1, with f

d

i

P A
d

i

“ Vpsl
r

,d
i

q˚.
For d “ ⇧n

i“1di

, we let S‚ “ À
m

S
m

, where S
m

“ A
dm

, be the d-th Veronese subring of A‚.
Then S‚ is generated in degree 1 over S0, and

X :“ ProjpA‚q – ProjpS‚q p�Ñ M
g

is a flat family.
Moreover, by definition, for k °° 0,

Vpsl
r

,kdq˚ “ S
k

�Ñ p˚OX

pkq,

are isomorphisms. Since taking fibers commutes with taking Proj,

p´1prCsq “ X
C

– Projpà

m

Vpsl
r

, `mq|˚
C

q “ ProjpAC,`
‚ q,
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where AC,1
‚ “ AC

‚ .
By definition of pushforward,

S
k

|rCs “ Vpsl
r

,kdq|˚
rC “ pp|X

C

q˚pOXpkdq|X
C

q – H0pX
C

,O
X

C

pkdqq.

In other words, for ` “ kd, and k °° 0, there is a projective polarized pair pX
C

,OX
C

p`qq such
that Vpsl

r

, `q|˚
rCs – H0pX

C

,OX
C

p`qq, and
à

mPZ•0

Vpsl
r

, `mq|˚
rCs – à

mPZ•0

H0pX
C

,OX
C

p`mqq.

So Vpsl
r

, `q has geometric interpretations at C if ` “ kd, and k °° 0.

Remark 5.5.6. The flat family X :“ ProjpA‚q – ProjpS‚q p�Ñ M
g

is one way to complete the
family X0 p�Ñ M

g

whose fibers over points rCs are the moduli spaces M
C

prq described earlier.
There are other ways to complete this family and this problem is an old one with an interesting
history.

Positive result for bundles of rank one

Theorem 5.5.7. [BGK16] Geometric interpretations hold at all points if Vpsl
r

,~�, `q has rank one.

More general results hold for bundles with restriction behavior that is similar to that for rank
one bundles. We avoid stating these results here because they are involved.

While I don’t know of any vector bundle of conformal blocks of rank one on M
g,n for positive

genus g, every bundle on M0,n of the form Vpsl
r

,~�, 1q has rank one, and by Theorem 5.5.7, all
such bundles have geometric interpretations at all points of M0,n.

Example 5.5.8. For contrast with Example 5.5.3, Vpsl2,!2k
1 , 1q has rank one on M0,2k, and by

Theorem 5.5.7, geometric interpretations at all points of M0,2k, whereas by [BGK16] the same
bundle on M2,2k will not have geometric interpretations at a point pC,~pq if C has a separating
node.

5.6 Appendix for Lecture five

5.6.1 Idea of proof of Theorem 5.3.1

The proof of Theorem 5.3.1 can be outlined in four steps:
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1. Define projective polarized pairs pXp~aq,LpGqq, where Xp~aq is a compactification of a moduli
space of ~a-semistable vector bundles of rank r on C with trivializable determinant. The com-
pactification is obtained as a GIT quotient of torsion free sheaves. The semi-stability condition
is new; a generalization based on Seshadri and Simpson.

2. Show there are injections H0pXp~aq,LpGqq ãÑ H0pBunSLprqpCq,DpVqmq giving rise to a map

F :

à

p~a,Gq
H0pXp~aq,LpGqq �Ñ à

mPZ
H0pBunSLprqpCq,DpVqmq.

3. Using conformal blocks, show that F is surjective. For this we use Theorem 5.3.3 and Fac-
torization. This involves a technical argument showing that certain sections extend across
poles.

4. Show that the part of left hand side necessary for the surjection of F is finitely generated. This
is achieved by noticing that the varieties Xp~aq which are involved are all Geometric Invariant
Theory (GIT) quotients of the same (master) space, and so one can use a variation of GIT
argument to get the claim.

5.6.2 �-invariant zero

In [BGK16] we prove the following:

Theorem 5.6.1. There are points pC,~pq P M
g,n and vector bundles of conformal blocks Vpg,~�, `q

on M
g,n for which there is no projective polarized pair for which

(5.3)
à

mPZ•0

Vpg,m~�,m`q|˚
pC,~pq – à

mPZ
H0pX,Amq

holds.

To prove Theorem 5.6.1, we give obstructions to geometric interpretations for those bundles
where geometric interpretations at smooth curves are known to be varieties of minimal degree.

Given a projective polarized pair pX,Aq, there is a quantity called the �-invariant or �-genus,
which is defined to be

�pX,Aq “ dimpXq ` AdimpXq ´ h0pX,Aq.

Fujita (1990, Chapter 1 [Fuj90]) proved that �pX,Aq • 0, and if �pX,Aq “ 0, the section ring of
A,

À
mPZ•0

H0pX,Abmq is generated by its global sections H0pX,Aq, and so A is very ample.
In this case, when A is very ample, it gives an embedding of X into projective space

X ãÑ ProjpB‚q “ PN, B‚ “ à

mPZ•0

SymmpH0pX,Aqq.
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The image of X is a non-degenerate variety of degree

AdimX “ 1 ` codimpXq.

A non-degenerate variety X ãÑ PN is of minimal degree if degpXq “ 1 ` codimpXq.
So if pX,Aq is a projective polarized pair with �pX,Aq “ 0, then the image of the variety X

embedded by A is a variety of minimal degree.
Varieties of minimal degree are classified. For instance pX,Aq – pPd,Op1qq if and only if

Ad “ 1.
What is crucial to our line of reasoning is that the �-invariant is upper semi-continuous: If

V is a vector bundle of conformal blocks on M
g,n that has geometric interpretation at some point

pC,~pq P M
g,n such that the corresponding projective polarized pair has �-invariant zero, then

if it has geometric interpretations at any other points, those corresponding pairs will also have
�-invariant zero.

We use this to prove the following result (paraphrased):

Theorem 5.6.2. Suppose that Vpg,m~�,m`q has �-invariant zero rank scaling, and geometric
interpretations exist for V at all points, then for all m, c1pVpg,m~�,m`qq can be expressed in
terms of c1pVpg,k~�,k`qq, for k † m.

There is an explicit statement for Theorem 5.6.2, which is rather long and technical. In Example
5.6.3, Theorem 5.6.2 is stated for the stronger case of projective rank scaling, where there is an if
and only if result.

Example 5.6.3. RankpVpg,m~�,m`qq “ `
m`d

d

˘
, and geometric interpretations exist for Vpg,~�, `q

at all points pC,~pq P M
g,n, iff c1pVpg,m~�,m`qq “ `

m`d

d`1

˘
c1Vpg,~�, `q. In particular, if d “ 0, so

that the rank is one, we know by [GG12b] for sl
r

and ` “ 1, and by [BGK16] for the general case,

c1Vpg,m~�,m`q “ mc1Vpg,~�, `q.

Therefore for rank one bundles, geometric interpretations exist at all points.

We can outline the proof of Theorem 5.6.2 in two steps:

1. Suppose that for every point x P M
g,n, there is a projective polarized pair pX

x

,A
x

q of �-
invariant zero so that there is a canonical embedding as described above. One can then take
the canonical resolution of the ideal sheaf I

X

x

for X
x

.

2. By “glueing” the resolutions, we show there is an exact sequence

0 Ñ W
D

bSymm´DpVq Ñ ¨ ¨ ¨ Ñ WbSymm´1pVq Ñ SymmpVq Ñ Vpg,m~�,m`q˚ Ñ 0,
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(5.4)

where the W
i

are vector bundles on M
g,n.
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525, 1997. 2.2, 2.2, 5.3

[MOP15] Alina Marian, Dragos Oprea, and Rahul Pandharipande. The first Chern class of
the Verlinde bundles. In String-Math 2012, volume 90 of Proc. Sympos. Pure
Math., pages 87–111. Amer. Math. Soc., Providence, RI, 2015. 4.4

83



[MOP`17] Alina Marian, Dragos Oprea, Rahul Pandharipande, Aaron Pixton, and Dimitri
Zvonkine. The Chern character of the Verlinde bundle over M

g,n. J. Reine Angew.
Math., 732:147–163, 2017. 4.4

[Mum83] David Mumford. Towards an enumerative geometry of the moduli space of curves.
In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pages 271–328.
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