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Figure 2. Simple sketch of the method we used to create our

mock data, placing subhaloes and line-of-sight objects in the same

projected position on the plane of the main lens; the gray area

gives an idea of the line-of-sight volume taken into account.

line-of-sight halo should always lie on the same line-of-sight,
as sketched in Figure 2. In particular, we use the factor �
(see Section 3 - equation 14 for a definition) to rescale the
position of the perturber in the background. For each per-
turbed model we only consider the presence of one perturber
at the time: this is justified by the fact that we are inter-
ested in quantifying the relative lensing e↵ect of substruc-
tures and line-of-sight haloes rather than their global e↵ect
on the data.

Below, we remind the reader the main features of the
considered mass profiles and the basic equations used to
calculate their deflection angles.

2.2 NFW profile

The NFW profile

⇢(r) =
⇢s

r

rs

⇣
1 + r

rs

⌘ (1)

is well defined in terms of the halo virial mass Mvir and
a concentration-mass relation, which is needed to compute
the scale radius as rs = rvir/cvir and the density normal-
ization ⇢s. Here, we choose the concentration-mass
relation by Meneghetti et al. (2014) and we ignore
the presence of a scatter, meaning that we assign
a deterministic value of the concentration always to
each combination of mass and redshift. In Appendix
B, we demonstrate that for the main purposes of this
paper, a di↵erent choice for the mass-concentration
relation or allowing some scatter around the mean
value, would introduce only second order e↵ects.

Starting from the adimensional form of the lens
equation, where x = ✓/✓E (with ✓E being the Einstein
radius), the deflection angle can be written as:
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Here ⌃c is the critical surface mass density and
Dl, Ds and Dls are the angular diameter distances
from the observer to the lens, from the observer to
the source and from the lens to the source, respec-
tively.

2.3 PJ profile

The Pseudo-Ja↵e profile is defined as
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and corresponds to a surface mass density
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radius. The profile deflection angle, as a function
of the substructure projected position, and its total
mass are expressed as

↵(R) = 0,sub
rt +R�
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and

Msub = ⇡⌃crt0,sub. (8)

Generally, the truncation radius is assumed to be well ap-
proximated by the substructure tidal radius

rtidal = r
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which for an isothermal host lens reduces to
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Here, rE is the Einstein radius of the host lens
galaxy, � depends on the assumptions made on the
satellite orbit (it is typically set equal to 3 for the
assumption of circular orbits), 0 is the surface mass
density normalizations of the main lens and M(< r)
its mass at the 3D position r of the subhalo. Thus,
the truncation of the profile depends on the redshift
(via ⌃c) and mass of the host lens galaxy, and its 3D
position relative to the centre of the host. However,
in a real situation this distance is not known a priori
and from observations one can only infer the two-
dimensional distance R projected on the plane of the
host. Therefore, one generally assumes that the sub-
structure is located on the plane of the host lens, i.e.
r = R. Throughout this paper, when we refer to a PJ
perturber, we always make use of this assumption.
We discuss this issue and its implications in more
details in the Appendix A.

Finally, as the normalization of the PJ profile for a sub-
halo depends on the mass of the main halo it is embedded
in, it would not be meaningful to define a virial mass or
virial radius for this profile, as for the NFW. In Section 3.5
we investigate how to compare subhaloes with PJ and NFW
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Figure 4. Mass-redshift relation for all the considered variation

of our first considered lens system and for a NFW perturber. All

the blue points stand for di↵erent line-of-sight projected posi-

tions in the SIE model, falling exactly on the Einstein radius of

the main lens or with a certain o↵set. Instead, the red and green

points show the degeneracy-relation for the case of the NFW pro-

file for di↵erent choices of ellipticity and/or external shear in the

main lens.

binations of lens and source redshift, we use the following
rescaled quantities y = log(M/Mref ) (where Mref is the
mass of the substructure in the lens) and

x =

8
><

>:

z

zl
� 1, if(z < zl)

z�zl
zs�zl

, if(z > zl)

0, if(z = zl)

(15)

so that x = �1 corresponds to the observer and x = 1 to the
source redshift, respectively. As can be seen from Figure 5,
this rescaling allows to plot all the redshift combinations in
the same parameter space and thus obtain a general mass-
redshift relation which reads as

y = 0.4x+ 0.688x2 + 1.09x3. (16)

The best fit parameters are obtained by performing a least-
squares fit to the data points coming from the whole sample
of lenses and positions. The main panel of Figure 5 shows
the points corresponding to all the considered positions and
lenses, together with the best fit curve from equation (16).
The smaller panels show the di↵erence between the points
and the best fit curve for each system and the scatter around
the mean as a function of redshift.

We see that the analytical fit still approximates the
points reasonably well even if, as expected, more deviations
arise in particular for perturbers located in the background,
where the deflection angle of the perturber depends on that
of the main lens through equation (13). In particular, when
the main lens model includes a large external shear (as in the
case of the first HST lens) the linearity is broken and larger
deviations (up to 10 percent) arise. In practice, we find
that the best-fit mass-redshift relation has a scatter
which changes with redshift. For line-of-sight haloes
in the foreground the scatter is dominated by the
assumptions made on the mass-concentration rela-
tion (see Appendix B), while for haloes in the back-
ground the scatter mainly arises from the ellipticity

Figure 5. Top panel : rescaled mass-redshift relation, fit-
ting all the lens cases, for a NFW line-of-sight perturber.
The black line shows the rescaled fit from equation 16
while the colored points represent all the lenses used
in this work. Middle panel : di↵erence with respect to
the best, calculated as � log(M/Mtrue = log(M/Mtrue �
log(Mfit/Mtrue). Lower panel : � of the distribution of point
from the Middle panel around the mean; the value cal-
culated in each redshift bin is shown by the black dots
and the black line shows the best fit relation, which is
also reported.

and external shear contribution. In particular, we
find that the scatter is well described by the follow-
ing relation:

�(x) = �0.83� 0.74x� x2, (17)

where x is defined from Equation 15.

3.5 Comparison between di↵erent profiles

Contrary to the previous sections and Li et al. (2016), we
now allow the substructures and the line-of-sight haloes to
have di↵erent mass density profiles. It is well known that
isolated dark matter haloes and subhaloes do not have the
same profiles, since the latter have been subjected to tidal
interactions with the main halo after infall and have been
stripped of significant amounts of mass (Hayashi et al. 2003;
Giocoli et al. 2008). In particular, PJ profiles are employed
to model substructure lensing observations since the trun-
cation radius ensures convergence and thus the possibility
to define a total mass. In this section, we model line-of-sight
haloes as NFWs and the substructures as PJs and derive a
relation that allows one to map the NFW virial mass into

c� 2017 RAS, MNRAS 000, 1–??
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Figure 10. The total number of projected line-of-sight structures per unit of arcsec�2, for a lowest detectable mass of 108 M� (left) and 106 M� (middle),
and for each combination of lens (x-axis) and source (y-axis) redshift. The upper panels show the results for the CDM case, while the lower panels show
the WDM case; we consider Mlow = MPJ

tot = 108, 106 M� (left and middle panels) and we apply the redshift-dependent cut from equation (21) in order to
calculate Mlow(z) for the line-of-sight haloes. The location in the zL–zS plane for all of the lenses considered in this paper are marked by the white circles.
The colour-bars display the same range, both for CDM and WDM models, for each column; in the left and middle panels the color scale shows nLOS in
arcsec�2. The fraction of detectable subhaloes with respect to the total number of detectable perturbers nSUB/(nLOS + nSUB) are shown in the right panels for
Mlow = 106 M�.

Figure 11. The ratio of e↵ective perturbers nSUB/nLOS as a function of
Mlow, for the cases of SLACS J0946+1006 (black) and JVAS B1938+666
(blue), both for CDM (solid lines) and WDM (dashed lines) models.

(grey contours), and (iii) a NFW line-of-sight halo, thus optimizing
also for its redshift (red contours). The last three rows of Fig. 13
show the results for the mass and projected position of the per-
turber. The true PJ mass is recovered for case (i), while we infer
a higher mass for cases (ii) and (iii), in agreement with the ex-
pected rescaling between the NFW and PJ mass (see equation 20);
all of the models well recover the true perturber position, with an
uncertainty of 1–2 times the PSF full width half maximum. The

uncertainty is intended as the error with respect to the input posi-
tion at the redshift of the lens, which correspond to the position of
the lensing e↵ect; a line-of-sight halo could cause a lensing e↵ect
in the same position on the image plane, even though its projected
position would be di↵erent (see Figure 2 and equation 13). The
constraints on the mass and redshift for case (iii) are shown in the
inset; here, the redshift of the lens and the NFW virial mass ex-
pected from equation (20) are marked by the dotted lines. We see
that there is e↵ectively a degeneracy between the mass and red-
shift, as expected, but it has a more complicated shape than what
is found by comparing the deflection angles: the black solid line
shows the prediction from equation (21). In particular, the uncer-
tainty on the redshift is �z ' 0.15 at a 1� level and it does not
span the whole redshift space between the observer and the source,
meaning that not all the configurations given by equations (18) and
(21) are equivalent. Nevertheless, if we force a particular z , zL for
the NFW perturber, the relation from equation (18) still approxi-
mates quite well the recovered mass.

This happens because, using the image surface brightness, and
modelling the lens and source simultaneously adds an additional
level of information, with respect to the deflection angles alone,
allowing us to restrict the degeneracy range, especially for obser-
vations with a high angular resolution and a complex source surface
brightness distribution. This is demonstrated in Fig. 14, where we
show the parameter posterior probability distributions for the refer-
ence case of the SIS lens at z = 0.2; also in this case, a 109 M� PJ
subhalo has been added to the lens model and it is modeled as in
case (iii). We see that in this simulation the mass and redshift are
completely degenerate, and that, even if the true position is recov-
ered quite well by the peak of the distribution, the uncertainties are
large, spanning almost half of the image plane within 3�. This is

MNRAS 000, 1–19 (2017)
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show the results for the mass and projected position of the per-
turber. The true PJ mass is recovered for case (i), while we infer
a higher mass for cases (ii) and (iii), in agreement with the ex-
pected rescaling between the NFW and PJ mass (see equation 20);
all of the models well recover the true perturber position, with an
uncertainty of 1–2 times the PSF full width half maximum. The

uncertainty is intended as the error with respect to the input posi-
tion at the redshift of the lens, which correspond to the position of
the lensing e↵ect; a line-of-sight halo could cause a lensing e↵ect
in the same position on the image plane, even though its projected
position would be di↵erent (see Figure 2 and equation 13). The
constraints on the mass and redshift for case (iii) are shown in the
inset; here, the redshift of the lens and the NFW virial mass ex-
pected from equation (20) are marked by the dotted lines. We see
that there is e↵ectively a degeneracy between the mass and red-
shift, as expected, but it has a more complicated shape than what
is found by comparing the deflection angles: the black solid line
shows the prediction from equation (21). In particular, the uncer-
tainty on the redshift is �z ' 0.15 at a 1� level and it does not
span the whole redshift space between the observer and the source,
meaning that not all the configurations given by equations (18) and
(21) are equivalent. Nevertheless, if we force a particular z , zL for
the NFW perturber, the relation from equation (18) still approxi-
mates quite well the recovered mass.

This happens because, using the image surface brightness, and
modelling the lens and source simultaneously adds an additional
level of information, with respect to the deflection angles alone,
allowing us to restrict the degeneracy range, especially for obser-
vations with a high angular resolution and a complex source surface
brightness distribution. This is demonstrated in Fig. 14, where we
show the parameter posterior probability distributions for the refer-
ence case of the SIS lens at z = 0.2; also in this case, a 109 M� PJ
subhalo has been added to the lens model and it is modeled as in
case (iii). We see that in this simulation the mass and redshift are
completely degenerate, and that, even if the true position is recov-
ered quite well by the peak of the distribution, the uncertainties are
large, spanning almost half of the image plane within 3�. This is
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Figure 10. The total number of projected line-of-sight structures per unit of arcsec�2, for a lowest detectable mass of 108 M� (left) and 106 M� (middle),
and for each combination of lens (x-axis) and source (y-axis) redshift. The upper panels show the results for the CDM case, while the lower panels show
the WDM case; we consider Mlow = MPJ

tot = 108, 106 M� (left and middle panels) and we apply the redshift-dependent cut from equation (21) in order to
calculate Mlow(z) for the line-of-sight haloes. The location in the zL–zS plane for all of the lenses considered in this paper are marked by the white circles. The
colour-bars display the same range, both for CDM and WDM models, for each column; in the left and middle panels the color scale shows nLOS in arcsec�2.
The fraction of detectable subhaloes with respect to the total number of line-of-sight perturbers (nSUB/nLOS) is shown in the right panels for Mlow = 106 M�.
As can be seen from Figure 11 and from the values reported in Table 3, the distribution of nSUB/nLOS would be very similar for Mlow = 108 M�.

Figure 11. The ratio of e↵ective perturbers nSUB/nLOS as a function of
Mlow, for the cases of SLACS J0946+1006 (black) and JVAS B1938+666
(blue), both for CDM (solid lines) and WDM (dashed lines) models.

(21) are equivalent. Nevertheless, if we force a particular z , zL for
the NFW perturber, the relation from equation (18) still approxi-
mates quite well the recovered mass.

This happens because, using the image surface brightness, and
modelling the lens and source simultaneously adds an additional
level of information, with respect to the deflection angles alone,
allowing us to restrict the degeneracy range, especially for obser-
vations with a high angular resolution and a complex source surface

brightness distribution. This is demonstrated in Fig. 14, where we
show the parameter posterior probability distributions for the refer-
ence case of the SIS lens at z = 0.2; also in this case, a 109 M� PJ
subhalo has been added to the lens model and it is modeled as in
case (iii). We see that in this simulation the mass and redshift are
highly correlated and that the 1� contours span two order of
magnitude in mass; moreover, even if the true position is recov-
ered quite well by the peak of the distribution, the uncertainties are
large, spanning almost half of the image plane within 3�. This is
due to the fact that the Einstein ring is perfectly symmetrical and
the surface brightness distribution is smooth. The width and the
rounder shape of the contours also explains why for this configu-
ration of lens and source, the results for di↵erent positions of the
perturber are equivalent (see Fig. 4).

Thus in general, the uncertainty on the mass and redshift de-
pends on the chosen position of the perturber and in particular the
inferred quantities may be less precise for perturbers located where
the surface brightness or its gradient is lower: in Fig. 15 we show
the constraints derived by inserting a 109 M� PJ subhalo at two
di↵erent positions (1 and 2 from Figure 1) again for the case of
J1110+3649, where the data signal-to-noise ratio and thus the sen-
sitivity to substructures is lower in position 1.

Finally, Fig. 16 shows the probability contours for di↵erent
subhalo masses, all located in the same point, for a system based on
SLACS J0946+1006. The sensitivity function in the chosen pixel
sets the minimum detectable mass to be 4 ⇥ 108 M�; we see how
the contours are larger when the inserted PJ subhalo is only slightly
more massive than this limit (5⇥108 M�; grey contours), but shrink
for higher mass values, becoming more and more precise.

Even though we ran our lensing code on mock images for all
lenses, we only show a representative subset of contour plots. In
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SIMULATIONS

STERILE NEUTRINO DM
- 4 ETG-analogues selected from the Eagle simulation  

- re-simulated with 2 models of 7.1 keV sterile neutrino: L6 = 8, 11.2    
- DMO and hydro versions  

2 x 1013 M⦿  

1 x 6 1012 M⦿  

1x 4 1012 M⦿

APOSTLE with sterile neutrinos 3

simulation containing pairs of haloes that approximately
replicate the masses of the M31 and Milky Way (hereafter
abbreviated as MW) dark matter haloes as well as the dis-
tance between them and their relative radial and tangential
velocities. The maximum softening length for all six runs is
ε = 307 pc; the softening is implemented in proper parsecs
at z < 2.8 and comoving parsecs at z > 2.8. The initial gas
particle mass is ∼ 105M⊙; see Table 1 for the mass in each
individual run.

The cosmological parameters are consistent with the
WMAP-7 cosmic microwave background measurements
(Komatsu et al. 2011), and take the following values: Hub-
ble parameter H0 = 70.4 kms−1, matter density parameter
ΩM = 0.272, baryon density parameter Ωb = 0.0455, dark
energy density parameter ΩΛ = 0.728, linear power spec-
trum amplitude σ8 = 0.81, and power-law spectral index
ns= 0.967. It has been suggested that the choice of cosmolog-
ical parameters has a non-negligible effect on the abundance
and structure of satellites in dark matter-only simulations
(Springel et al. 2008; Polisensky & Ricotti 2014). However,
the magnitude of these effects is much smaller than the un-
certainty in the galaxy formation model parameters. There-
fore we do not consider what impact choosing an alterna-
tive cosmology, such as Planck (Planck Collaboration et al.
2014), would have on our results.

The modification applied to the APOSTLE initial con-
ditions for this study is that the wave amplitudes are
rescaled to a sterile neutrino dark matter power spec-
trum. The properties of this power spectrum are set by
two particle physics properties: the sterile neutrino mass
and the lepton asymmetry with which the sterile neutri-
nos are generated (Shi & Fuller 1999; Laine & Shaposhnikov
2008; Venumadhav et al. 2015). We denote the lepton asym-
metry using the parameter L6, which is defined as L6 ≡
106(nνe − n̄νe)/s, where nνe is the lepton number density, n̄νe
the anti-lepton number density, and s the entropy density.
This parameter space is bounded on all sides due to consid-
erations of X-ray non-detections, structure formation, and
dark matter abundance (Boyarsky et al. 2009; Lovell et al.
2016; Schneider 2016). However, attempting to scan the al-
lowed range is prohibitive for high-resolution hydrodynami-
cal simulations. We therefore motivate our choice from the
interpretation of the detected 3.55 keV line as the decay of
a 7.1 keV sterile neutrino. If a sterile neutrino of this mass
constitutes the entirety of the dark matter, the allowed range
of L6 is [9,11.2] based on the combination of detections and
limits from Boyarsky et al. (2014b,a); Bulbul et al. (2014);
Iakubovskyi et al. (2015) and Ruchayskiy et al. (2015); this
corresponds to a range in mixing angle, sin2 2θ of [2.1,8.1]×
10−11.

In this paper we use a 7.0 keV sterile neutrino with
two values of the lepton asymmetry: L6 =10 (sin2 2θ =3.7×
10−11), which marks the centre of the 3.5 keV line expected
region, and L6 =120 (sin2 2θ =8.0×10−13) which is close to
the spectrum with the lowest wavenumber cutoff attainable
for any 7 keV sterile neutrino, although this mixing angle
is too small to be responsible for the measured flux of the
3.5 keV line. We expect that the difference between 7.0 and
7.1 keV is negligible for our results.

We plot the dimensionless linear theory matter power
spectra for these values of L6, along with four others, in Fig-
ure 1. We also plot CDM, the 7 keV spectra whose amplitude
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Figure 1. The z = 0 linear theory matter power spectrum for
a series of dark matter models. The solid black line represents
CDM. Five 7 keV sterile neutrino models are shown with different
values of the lepton asymmetry. The blue, cyan, green, orange,
and red lines denote lepton asymmetry L6 = 8, 9, 10, 11.2, and
120 respectively. The cyan and orange lines mark the limits for
the family of sterile neutrino models that are consistent with the
3.5 keV line and are thus shown as dashed lines. We indicate the
mixing angle, sin2(2θ ), that corresponds to each of the models in
the legend. For reference we include the power spectrum for a
2 keV thermal relic as the dot-dashed, black line.

peaks at the highest wavenumber of any 7 keV sterile neu-
trino (L6 =8.0), and those that mark the upper (L6 =9.0) and
lower (L6 =11.2) ranges expected from the published detec-
tions and exclusion limits from M31, Perseus, the Galactic
Centre, and the Draco dSph. On the upper x-axis we show
the mass scale associated with these wavenumbers, as calcu-
lated using a sharp k-space filter (Benson et al. 2013).

2.2 Simulation code and halo identification

In all respects apart from the choice of matter power
spectra, these simulations are performed in the same way
as the original APOSTLE runs. The code used is the
modified version of p-gadget3 developed for the EAGLE
project (Schaye et al. 2015; Crain et al. 2015). This setup
features the anarchy implementation of SPH (Dalla Vec-
chia et al., in prep., see also Schaller et al. 2015b), ra-
diative cooling in the presence of a UV ionising back-
ground that is spatially uniform and evolves with redshift
(Haardt & Madau 2001; Wiersma et al. 2009), black hole
growth (Springel et al. 2005; Rosas-Guevara et al. 2015),
star formation (Schaye & Dalla Vecchia 2008), and the feed-
back associated with the formation of stars and black
hole growth (Booth & Schaye 2009; Dalla Vecchia & Schaye
2012). The effects of these processes often cannot be calcu-
lated from first principles, and therefore must be modelled
using so-called ‘subgrid physics’. In particular, the values of
the parameters that control the stellar and AGN feedback
must be fixed by calibration against a set of observations,
and may have to be re-calibrated if runs are performed at
other resolutions. Predictive power of the model then derives
from comparison against other observables. In the EAGLE

MNRAS 000, ??–?? (2016)
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Figure 2. Example of the projected distribution of subhaloes, in the x � y plane. The top panels show the projected distribution of all
the subhaloes within r200 (dashed circle), while the lower panels are restricted to 0.1r200 (dashed circle). Subhaloes of di↵erent masses
are represented by di↵erent colours, following the colour-scale (in units of log(msub [M�/h]); the black empty circles mark the subhaloes
classified as ’luminous’ (M⇤ > 106Modot /h). The dotted circle in the lower panels marks the region within 10 kpc, which corresponds
to '2.5 arcsec at z = 0.2 and is comparable to the average width of the lensing data at this redshift. This Figure shows the subhalo
distributions for only one halo and one projection and so by no means can provide reliable statistical information.

mass dark matter haloes is suppressed due to the cut-o↵ in
the initial power-spectrum and the subhalo number density
may experience an additional reduction due to the interac-
tion with the host halo, which might vary from one model
to the other. Nevertheless, previous work have assumed that
(to the first order approximation) the degree of suppression
is the same or similar for for isolated haloes and subhaloes.
In particular, Schneider et al. (2012) parametrised the ra-
tio between the WDM and CDM halo number density as a
function of mass as

nSN
nCDM

=

✓
1 + Mhm

M

◆�
, (1)

where Mhm is the half-mode mass scale and �=-1.16. For
the case of subhaloes, Lovell et al. (2014) found a better
fit with �=-1.3 or with a slightly di↵erent parametrisation
(with �=0.99 and � = 2.7):

nSN
nCDM

=

✓
1 + � Mhm

Msub

◆�
. (2)

We fit the subhalo mass functions in our simulations
with this last functional form. Figure 3 shows the subhalo
mass function from our hydro runs. Each system is repre-
sented by a di↵erent colour, while solid (dashed) lines stand

for the L8 (L11) run. The two black curves show the best fit
to the mean subhalo mass function (normalised to the main
halo mass in order to eliminate the di↵erences between the
haloes). We assumed � = �1.3 and the best fit values for
� are 0.37 for L8 and 0.25 for L11. Sterile neutrino models
are intrinsecally more complicated than thermal relics WDM
models, since their power spectrum is characterised both by
Mhm and L6; for this reason and because Equation 2 only
include the first, � has to change with the sterile neutrino
model in order to obtain a good fit. The black dotted line
shows the predicted CDM mass function with the same nor-
malisation (and with slope ↵ = 0.85, as derived in (Despali
& Vegetti 2017) for the Eagle hydro simulation. In the ster-
ile neutrino models, the number of small-mass subhaloes is
suppressed by di↵erent amounts: the lower panel of Figure
3 shows the ratio with respect to the CDM scenario. In the
same panel, the grey circles and triangles show the subhalo
mass function predicted according to the mass function fit
by Schneider et al. (2012), which appears to underestimate
the number of subhaloes for our models.

The resolution of our simulations allows us to probe
the subhalo mass function only down to M ' 108M�h�1,
where it is lower than the CDM one but still mostly flat.
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Figure 2. Example of the projected distribution of subhaloes, in the x � y plane. The top panels show the projected distribution of all
the subhaloes within r200 (dashed circle), while the lower panels are restricted to 0.1r200 (dashed circle). Subhaloes of di↵erent masses
are represented by di↵erent colours, following the colour-scale (in units of log(msub [M�/h]); the black empty circles mark the subhaloes
classified as ’luminous’ (M⇤ > 106Modot /h). The dotted circle in the lower panels marks the region within 10 kpc, which corresponds
to '2.5 arcsec at z = 0.2 and is comparable to the average width of the lensing data at this redshift. This Figure shows the subhalo
distributions for only one halo and one projection and so by no means can provide reliable statistical information.

mass dark matter haloes is suppressed due to the cut-o↵ in
the initial power-spectrum and the subhalo number density
may experience an additional reduction due to the interac-
tion with the host halo, which might vary from one model
to the other. Nevertheless, previous work have assumed that
(to the first order approximation) the degree of suppression
is the same or similar for for isolated haloes and subhaloes.
In particular, Schneider et al. (2012) parametrised the ra-
tio between the WDM and CDM halo number density as a
function of mass as
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where Mhm is the half-mode mass scale and �=-1.16. For
the case of subhaloes, Lovell et al. (2014) found a better
fit with �=-1.3 or with a slightly di↵erent parametrisation
(with �=0.99 and � = 2.7):
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We fit the subhalo mass functions in our simulations
with this last functional form. Figure 3 shows the subhalo
mass function from our hydro runs. Each system is repre-
sented by a di↵erent colour, while solid (dashed) lines stand

for the L8 (L11) run. The two black curves show the best fit
to the mean subhalo mass function (normalised to the main
halo mass in order to eliminate the di↵erences between the
haloes). We assumed � = �1.3 and the best fit values for
� are 0.37 for L8 and 0.25 for L11. Sterile neutrino models
are intrinsecally more complicated than thermal relics WDM
models, since their power spectrum is characterised both by
Mhm and L6; for this reason and because Equation 2 only
include the first, � has to change with the sterile neutrino
model in order to obtain a good fit. The black dotted line
shows the predicted CDM mass function with the same nor-
malisation (and with slope ↵ = 0.85, as derived in (Despali
& Vegetti 2017) for the Eagle hydro simulation. In the ster-
ile neutrino models, the number of small-mass subhaloes is
suppressed by di↵erent amounts: the lower panel of Figure
3 shows the ratio with respect to the CDM scenario. In the
same panel, the grey circles and triangles show the subhalo
mass function predicted according to the mass function fit
by Schneider et al. (2012), which appears to underestimate
the number of subhaloes for our models.

The resolution of our simulations allows us to probe
the subhalo mass function only down to M ' 108M�h�1,
where it is lower than the CDM one but still mostly flat.
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Figure 4. Radial profiles for halo dA. We show from top left to bottom right: DM density, DM velocity dispersion, DM velocity anisotropy, stellar density,
stellar velocity dispersion, stellar velocity anisotropy, gas density, gas temperature, and in the last panel the DM density profile for the CDM and SIDM10
models with and without baryons. Most profiles of halo dB look similar with respect to the difference between the different DM models. However, the dB
halo is less relaxed due to its environment. This affects, for example, the anisotropy (�) profile, which for dB is not monotonically decreasing towards the halo
center. The dotted vertical lines mark 2.8 times the softening length and the mean virial radius.

models behave similar to the findings of the DM and stellar pro-
files; i.e. a significant reduction of the gas density in the center.
vdSIDMa, on the other hand, shows an increased gas density at the
center. Also, the central temperature of vdSIDMa is higher than all
other models. For SIDM1, the temperature is only 50% of the gas
temperature in the CDM gas. However, it seems that the changes in
the gas are less correlated with the actual cross section than those in
the DM and stellar component. For example, the largest differences
in the gas density and temperature can be seen for SIDM1 and not
for the more extreme model SIDM10. Also vdSIDMa shows the
opposite behaviour compared to the other SIDM models.

The lower right panel of Figure 4 demonstrates that the feed-
back associated with SNe does not alter the DM density distribu-
tion in our model. This is not surprising since we do not employ a
very bursty star formation model, but a rather smooth star forma-
tion prescription. As a consequence, the DM density profile is not
affected at all by the formation of the baryonic galaxy and the re-
lated feedback processes for the CDM case. The SIDM models lead
to core formation due to self-interactions of DM particles. Such
core makes it easier for SNe feedback to drive gas outwards, which

should cause some effect on the DM distribution. In fact, the lower
right panel of Figure 4 demonstrates that the DM density is slightly
reduced in the cored region even with a smooth feedback model like
ours. However, this effect is rather small and at maximum ⇠ 40%
relative to the SIDM10 simulation without baryons. This effect is
therefore small compared to the effect of self-interactions, which
reduce the central DM density much more significantly.

So far we have discussed the relative differences between the
different profiles. To quantify the spatial distribution of the DM and
the baryons, gas and stars, in more detail, we now find analytical
fits to the spherically averaged density distributions. We have found
that the different DM models require different density profiles pro-
files to achieve a reasonable quality of the fits.

We start with the DM profile for the CDM case. It is well-
known that CDM haloes have spherically averaged density profiles
that are well described by NFW (Navarro et al. 1996) or Einasto
profiles (Springel et al. 2008). We therefore fit the DM profile of
the CDM model with the two-parameter NFW profile:

⇢CDM(r) = ⇢0
r3s

r(r + rs)2
. (1)

© 2014 RAS, MNRAS 000, 1–16

Vogelsberger et al. 2014

- 10  ETG-analogues selected from the Illustris simulation 

- resimulated with SIDM + baryons

(Despali et al. in prep.)
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Figure 7. Example of ray tracing results (convergence maps)

for halo 5 which has an important disk components in both runs

(CDM-left, SIDM-right).

Figure 8. Subhalo mass function. In the top panle we show the

subhalo mass function of the simulated haloes, both in the CDM

(solid lines) and SIDM scenarios (dashed lines). The ratio between

the number counts in the two runs is shown in the bottom panel:

on average, there is no significant di↵erence in the subhalo number

counts, as can be seen from the mean ratio (solid black line)
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Figure 9. Ratio of the subhalo density profiles. The median ratio

for each halo is shown by a di↵erent color, while the median ratio

for the whole sample is represented by the black dashed line.
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similar subhalo population

subhaloes have on average more cored profiles(Despali et al. in prep.)

might be degenerate  
with WDM abundances
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SIMULATIONS

BARYONIC EFFECTS
(Despali & Vegetti 2017)

6 Despali et al. 2016

Figure 2. Subhalo mass function for three bins in halo mass in
our sample (m/M = m(subhalo)/M200). The colour scheme is
the same as in Figure 1. Main panels: circles and triangles show
our measurements for the dark and hydro simulations, fitted by
the curves coming from Equation 1 (again solid and dashed lines).
Inset panels: fraction of haloes or subhaloes found in the hydro
run, with respect to the dark matter only one - with poissonian
errors. While the points stand for the fractions calculated from
the data, the solid black line shows the ratio between the fitting
functions: as they scale only with redshift for a given mass bin,
this is the same for all the three considered redshifts. The ratio
between measurements taken inside the whole FOF group - in-
stead of r200 - is represented by the dot-dashed black line. The
gray region correspond to subhaloes with less than 100 particles.

Figure 3. Number of subhaloes as a function of radius. As in
Springel et al. (2008), the radial distribution of subhaloes can be
well fitted by an Einasto profile. Di↵erent point types indicate
three bins of subhalo masses - 108 (circles), 109 (squares) and
1010M�h�1 (triangles): all these subhaloes lie on the same curve,
when the number is normalized by the mean number density of
subhaloes of that specific mass bin within r200. Solid lines show
the best fit Einasto profile to the z = 0.2 points, while the same
fit for z = 0.5 (for which we do not show the points) are given
by the dashed lines. Other mass bins give similar results, and we
provide the parameters of the Einasto fits in Table 2.

number density of subhaloes

sim 1013 1013.5 1014

z = 0.2

DMO (1.79 , 309) (2.12 , 436) (1.12 , 881)
EAGLE (1.62 , 330) (1.92 , 447) (1.04 , 895)
Illustris (0.732 , 438) (1.04 , 488) (1.11 , 760)

z = 0.5

DMO (2.74 , 291) (3.23 , 388) (1.17 , 381)
EAGLE (2.4 , 306) (4.38 , 360) (1.61 , 514)
Illustris (0.732 , 438) (2.02 , 733) (2.02 , 677)

Table 2. Best fit parameters of the Einasto fit to the number
density of subhaloes as a function of radius. For each redshift-
mass-simulation combination, we give the best fitting values of
(⇢, rs) of the fit; we find that in all cases ↵ = 1.1 works well. Some
of the fitting functions are shown in Figure 3, together with the
points.

note that for high halo masses, the three profiles have more
similar shapes, indicating that the e↵ect of baryons is less
important in this mass range.

Figure 4 shows the average subhalo counts in units of
(kpc/h)�3, (kpc/h)�2 and arcsec�2. as a function of dis-
tance from the centre in three and two dimensions, for haloes
of mass M200 ' 1013M�h

�1 at redshift 0.2 and 0.5; the

c� 2010 RAS, MNRAS 000, 1–??

• Haloes from the Illustris   and EAGLE main runs

• M ~ 1013 M⦿/h

• z = 0.2, 0.5, 1



PREDICTIONS & NUMERICAL SIMULATIONS

LINE-OF-SIGHT  
CONTRIBUTION

STERILE  
NEUTRINOS

SIDM
the LOS population dominates 
and provides cleaner constrains 
with better sensitivities we’ll be  
able to discriminate CDM/WDM 
we need to be careful with mass 
         definitions 

SUMMARY

the properties of the main lens 
 remain similar 

slightly colder than the equivalent 
thermal relic models 
fewer subhaloes 

similar subhalo population 
but more cored sub profiles 
stronger effect on the main lens 
properties 
..depending on morphological  
type? ..accretion history? 
possible different Einstein  
radii distribution 

…we need to be careful  
the baryonic physics  

effects! 


