

Arianna Di Cintio Marie Curie IF @IAC

Challenges to the LCDM paradigm: the internal structure of DM haloes. Can we distinguish CDM from non standard DM models ?

ICTP-Trieste

DIGESTIVO Project

DIffuse Galaxy Expansion SignaTures In Various Observables project: understanding the emergence of diffuse, low surface brightness galaxies and the link to their dark matter haloes

Why is the inner structure of DM haloes so important?

- The distribution of matter within galaxies AKA their density profile - is a key prediction of galaxy formation within a cosmological framework
- It must agree with observations, and it can potentially provide constraints about the nature of DM itself

Dark matter haloes in N-body (DM only) simulations

28.62	Credit: A.Kravtsov, A.
ALC: NOT	
A Carlo Charles	
P	
and the second second	
States Series	and the second
	a strand a st

$$M_{\rm halo} = \frac{4}{3} \pi R_{vir}^3 \Delta \rho_{crit}$$

DM halo mass, Mvir=Mhalo, is the mass within a sphere of radius Rvir containing Δ times the critical density of the Universe

• ICTP-Trieste

The nature of Dark Matter

Cold Dark Matter (Slow moving) m~ GeV-TeV Small structures form first, then merge

Warm Dark Matter (Fast moving) m~ keV Small structures are erased Self-Interacting Dark Matter Strongly interact with itself Large scale similar to CDM, Small galaxies are different

The ACDM small scale crisis

Missing satellite problem

Diversity of RC in dwarf galaxies

RAR relation

Cusp-core discrepancy in rotation curves of galaxies

Large size of Ultra-Diffuse galaxies

Velocity function of galaxies

Kinematic of satellite galaxies (TBTF problem)

Density profile of DM haloes

Navarro, Frenk & White 1997 CDM haloes in simulations have a universal density profile

 $ho(r) = rac{
ho_0}{rac{r}{R_s} \Big(1 \ + \ rac{r}{R_s}\Big)^2}$

ICTP-Trieste

The `cusp-core' discrepancy

Simulations find 'CUSPY' profiles Inner slope $\gamma \leq -1$ NFW

Observations of dwarfs and LSB show 'CORED' profiles Inner slope 0> γ > -1

• ICTP-Trieste

Solution #1: CDM + baryonic physics

Making Galaxies in a Cosmological Context MaGICC (PIs Stinson-Brook)

&

Numerical Investigation of Hundred Astrophysical Objects (PIs Maccio'-Dutton)

(Brook+12b, Maccio'+12, Penzo+14, Herpich+14, Kannan+14, Obreja+14.Wang+15, Dutton+17,Di Cintio+17 etc)

Hydrodynamical simulations of galaxies including dark matter, gas, stars and baryonic feedback

- Gasoline 2.0
- Planck Cosmology
- I 25 high resolution (zoomed) galaxies
- more than **10**⁶ particles in each halo
- 10⁵ 10¹¹ M_☉ stellar mass range (5×10⁸ - 5×10¹² M_☉)
- 100 times better resolution than ILLUSTRIS
- 50 times better resolution than EAGLE volume
- 10 times more galaxies than FIRE (13 vs. 120)
- 5 galaxies with 3x10⁷ elements

Halo mass-Stellar mass relation

- Smoothed Particle Hydrodynamics (SPH) (Wadsley+06)
- New low temperature and Metal Cooling (Shen+ 2010)
- UV heating (Haardt & Madau 2011)
- Metal Diffusion (Wadsley+ 2010)
- Star Formation and SN feedback (Stinson+ 2006)
- Chabrier IMF & Early Stellar feedback (Stinson, Brook, AM+ 2013)
- Dynamical Dark Energy and WDM (Penzo, AM+2014)

• ICTP-TriestNew SPH implementation (Wadsley+2017)

Role of baryons SNae feedback and outflows

• KEY ingredients:

high initial density for star forming gas, similar to molecular cloud formation in our Galaxy n=10-100 mhcm⁻³

• RESULT:

stars form efficiently in small, isolated regions, energy is dumped into the gas which heats to much higher temperatures, gas is overpressurized and expands rapidlly: galactic scales outflows are launched at speeds greater than local circular velocity

• FEATURE: the process is cumulative

0.00 Gyr

Core creation

NIHAO project - NYUAD / MPIA

From gas outflows to DM 'cores'

Core formation mechanism -> outflows driven by SNae feedback Core created during starburst events that launch powerful gas outflows

ICTP-Trieste

Cores are created in a particular M*/Mhalo range

Peak of core formation at log(M*/Mhalo)~-2.4 → M*~10^{8.5} Msun Dark matter profiles determined by two opposite effects: energy from Sne vs Increasing gravitational potential (see also Governato+12,Read+16,Onorbe+15,Brooks&Zolotov12) • ICTP-Trieste 4/7/2018 •

Sweet spot of core formation

Small dwarfs not enough energy from stellar feedback to modify NFW halo Intermediate dwarfs/LSBs correct amount of energy from Snae Large spirals can not 'win' the large grav potential of 10¹² halo with SNae alone

ICTP-Trieste

Energetic of core formation

Energy balance between SNe energy and potential energy of NFW halo. Flattest profiles expected at $M_* \sim 10^{8.5} M_{\odot}$.

Brook & Di Cintio2015a (see also Penarrubia +2012)

A mass dependent profile

A mass dependent density profile that takes into account the impact of baryons on DM haloes (Di Cintio, Brook +14a,b)

$$\rho_{\rm DC14}(r) = \frac{\rho_{\rm s}}{\left(\frac{r}{r_{\rm s}}\right)^{\gamma} \left[1 + \left(\frac{r}{r_{\rm s}}\right)^{\alpha}\right]^{(\beta - \gamma)/\alpha}}$$

 γ inner slope

 β outer slope

lpha sharpness of transition

constrained via X=log₁₀(M_{*}/M_{halo})

From cusps to cores to cusps

Testing ACDM with observed RCs of galaxies

SPARC dataset (Lelli+16)

MCMC fitting V(r)= $(V_{dm}^{2}(r)+V_{gas}^{2}(r)+V_{star}^{2}(r))^{1/2}$ with different profiles for the DM – including or not the effects of baryons

Derive M_{halo} and c and compare it with LCDM expectations

Katz, Lelli, McGaugh, Di Cintio, Brook, Schombert 2017

Testing ACDM with observed RCs of galaxies

We want to reproduce both observational relations and theoretical predictions :

Rotation curves

c-Mhalo

Mhalo-M*

Diversity of RC shapes explained by cores

Diversity of RC shapes explained by cores

For DM cores not be "real", there must be some conspiracy for which observational errors mimic the presence of a DM core exactly in the range where we expect DM cores from theoretical models.

LV Velocity Function

Ultra diffuse galaxies: outcome of core formation

Solution #2: Alternative DM model

TBTF in Warm Dark Matter

We need to create cores of ~Kpc size to explain the central density of dSphs: in WDM, this requires a thermal candidate with a mass below 0.1 keV, ruled out by all large scale structure constraints (see Schneider+15, Maccio'+15)

Solution #2: Alternative DM model

TBTF in Self Interacting Dark Matter

Self-interactions lower the central density alleviating the problem The cross section must be larger than 0.1 cm²/gr Vogelsberger+12, Zavala+13, Rocha+12 • ICTP-Trieste

Diversity of RC shapes in SIDM Creasey +17

Solution #3: Alternative DM model + baryonic physics

SF and resulting feedback dominates over SI and WDM physics: dm inner slope, Vcirc SFH, star and gas content are indistinguishable between CDM – WDM – SIDM + baryons in DWARF GALAXIES

Bastidas-Fry, Governato +15 4/7/2018 •

We have too many solutions to the inner DM problem!

- Baryonic physic affects dark matter profiles in galaxies: CDM has a peak in core formation efficiency at $M_* \approx 10^{8.5} M_{\odot}$
- Once the effect of baryonic physics is included, it is hard to distinguish between WDM/SIDM/CDM
- How can we disentangle between different DM models?

Role of ELTs

We should be looking at "cores" in faint, small dwarf galaxies with M*<10⁶ M_{sun} => if central "cores" are found, they can not be due to baryonic physics

- Future ELTs useful for this task: they will resolve stellar populations which allows for a better modelization of the inner density in dwarfs
- If kpc size cores are found in faint dwarfs, that would set a minimum cross section on SIDM of σ ~ 2 cm^2/gr