Extremely Large Clusters in the Era of Extremely Large Telescopes (Cosmology, not Galaxy Evolutionism*)

MARUŠA BRADAČ

Looking at the DM from many directions

LHC

Fermi, Early Universe

Direct detection

Xenon, CDMS, Dama, etc.

adapted from Peter et al. 2012

Gas

The Bullet Cluster IE0657-56

Total Matter

...

WENEAKEERCHEG

Dark Matter Self-(non)Interaction

BulletA520Baby BulletMusket BallPandora'sSIDM $\sigma/m < 0.7 \text{ cm}^2\text{g}^{-1}$ $\sigma/m < 4 \text{ cm}^2\text{g}^{-1}$ $\sigma/m < 3 \text{ cm}^2\text{g}^{-1}$ Randall et al. 2008Bradač et al. 2008Merten et al. 2011 $\sigma/m < 3 \text{ cm}^2\text{g}^{-1}$ $\sigma/m < 7 \text{ cm}^2\text{g}^{-1}$ Clowe et al. 2012Dawson et al. 2012

 σ/m < 0.05 cm²g⁻¹ will be effectively the same as CDM in terms of observables of structure (halo profiles, shapes, substructure fraction)

Self-interaction

Kaplinghat et al. 2015

- Merging Cluster Collaboration-MC²
- UC Davis UC Irvine collaboration led by PI Dawson
- Radio Relics: 29 clusters; 8 in the GOLD sample (Golovich, incl. MB et al. 2018)

RA (J2000)

Golovich et al. 2018a,b

• Golovich, incl. MB et al. 2018

- Gravitational lensing measurement (HST, WFIRST, ELTs)
- Radio, Xray observations
- Dynamical analysis (ELTs)
- Simulations!! (DM properties, but also systematics)

Systematics

- Brightest cluster galaxies (BCG) oscillate around the centre of the merger remnant on stable orbits of 100 kpc (SIDM simulations 1cm²/g, Kim et al 2017)
- But also in LCDM things move (Ng et al. 2017; Ilustris):
 - BCG \leq 4 kpc offsets and the luminosity peak \leq 32 kpc
 - Shrinking aperture, number density and centroid give a large offset scatter of about 50-100 kpc
 - Sloshing, geometry, etc.
- Also need accurate lens models...

Spectroscopic redshifts are key! MARUŠA BRADAČ

Lagattuta et al. 2017 MUSE; also see CLASH-VLT, GLASS

Systematics

f*=0.008±0.003 A370 Strait et al. 2018

S.Caroll

And now for something completely different...

And now for something completely different....

• When did reionization occur and how?

 What are the sources of first light? Can they sustain reionization?

• What are the properties of first galaxies?

settort MLA BROSITA SEPICA

...to see the first light in the Universe...

VS

Some big open questions....

- When did reionization occur?
- What are the sources of first light? Can they sustain reionization?
 - Galaxies: steep LF ?, older stellar population ?, large ξ_{ion} ?, f_{esc}=0.2 ?
 - Quasars: f_{esc}=1.0 **?**, faint-end LF ×
- What are the properties of first galaxies?

A LF extending to 0.001L*?

Stark et al. 2015

Luminosity function → lensed version

Livermore et al. 2016

MARUŠA BRADAČ

Hoag et al (incl MB). 2016 MACS0416

LENS MODELS ARE REQUIRED Wang, Hoag et al (incl MB). 2015 A2744

https://archive.stsci.edu/prepds/frontier/lensmodels/

PROPERTIES OF FIRST GALAXIES

A spectrum is worth 10,000 pictures...

First galaxies are small

Bouwens et al. 2017

Resolution+lensing FTW!

Re~10mas

Wright et al. 2016

LAEs as a probe of reionization

MARUŠA BRADAČ

Keck Follow–Up

DEIMOS (1.5n/cluster) MOSFIRE (0.5n/cluster)

10 clusters 28 nights with MOSFIRE and DEIMOS 200LBGs at z~6 150LBGs at z~7 50LBGs at z~8 Hoag et al. in prep; Fuller et al. in prep.

LAEs as a probe of reionization

GLASS - PI Treu

MARUŠA BRADAČ

ya @ z = 6.32

Lya @ z = 6.79

Lya @ z = 6.35

Schmidt et al. (incl MB) 2016

Keck Follow–Up z>7

W. M. KECK OBSERVATORY On the summit of Mauna Kea

Island of Hawai'i

Keck Follow–Up z>7

RCS2327

MACS2214

MACS0454

W. M. KECK OBSERVATORY

On the summit of Mauna Kea, Island of Hawai'i

Meanwhile in Hawaii

MARUŠA BRADAČ

Keck Follow-up MOSFIRE

• Targeted 63 galaxies in Y-band (7 < $z_{Ly\alpha}$ < 8.2)

LAEs From A Large Sample of Galaxies

5

6

z

4

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

3

 x_{Lya}

MARUŠA BRADAČ

7

8

g

NOT completeness corrected!!!

NOT a good statistic to infer neutral fraction!!!!

Hoag et al. in prep.

The other 61 galaxies...

Hoag et al. in prep.

How do we connect $Ly\alpha$ observations to the neutral fraction, x_{HI} ?

Mason et al.

Velocity offset as a probe of neutral gas MARUŠA BRADAČ

R~100 JWST/ NIRISS

R~2700 JWST/ NIRSPEC

R~5000 for IRMS

Mason et al. 2018

Conclusion

 Mergers are important probe of DM physics → need good data and simulations to interpret.

JWST won't do everything at the Epoch of Reionization

 → need ground based follow up – for resolution; both
 spectral (velocity offsets, Lyα shape) as well as imaging
 (first galaxies are small)