

Atomistic modeling of point defects

Hannu-Pekka Komsa

(Tutorial at Conference on Physics of Defects in Solids, ICTP 9-13.7.2018)

9.7.2018

Outline

- Brief introduction to DFT
 - Underlying ideas
 - What it can/can't do
- Defect calculations
 - Supercell models
 - Formation energy
 - Chemical potentials
 - Defect levels

First-principles calculations and density functional theory

Schrödinger equation

$$\hat{H}|\Psi_{m}\rangle = E|\Psi\rangle$$

$$\hat{H} = -\frac{\hbar^{2}}{2m_{e}}\sum_{i}\nabla_{i}^{2} + \sum_{i,I}\frac{Z_{I}e^{2}}{|\mathbf{r}_{i} - \mathbf{R}_{I}|} + \frac{1}{2}\sum_{i\neq j}\frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

$$-\sum_{I}\frac{\hbar^{2}}{2M_{I}}\nabla_{I}^{2} + \frac{1}{2}\sum_{I\neq J}\frac{Z_{I}Z_{J}e^{2}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|},$$

$$\Psi(\{\mathbf{r}_{i}\}; t) \equiv \Psi(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{N}; t)$$

- Input: Nuclei positions, # of electrons
- Output: Energy, many-body wavefunction, everything

= First Principles

Empirical potential calculations

- Total energy "exactly" given as $E(\{R\downarrow I\})$
- Expand as:

 $E = \sum I, J \uparrow^{*} = E \downarrow pair(R \downarrow I, R \downarrow J) + \sum I, J, K \uparrow^{*} = E \downarrow 3 body(R \downarrow I, R \downarrow J, R \downarrow K) + \cdots$

- Atomic energy: $E = \sum I \uparrow = E \downarrow atom (R \downarrow I, \{R \downarrow J \neq \downarrow 0\}$) ossible in DFT!
- Not calculated from the Schrödinger eq., but parametrized.
- E.g.
- Lennard-Jones, repulsive core + van der Waals attraction:

 $E\downarrow pair(r) = 4\varepsilon[(\sigma/r)\uparrow 12 - (\sigma/r)\uparrow 6]$

• Or Coulomb interaction: $E \downarrow Coulomb$ $(r) = 1/4\pi\epsilon q \downarrow I q \downarrow J /r$

Total energy methods, why is it enough?

- Optimized geometry, lattice parameters
- Forces: $F \downarrow i = -\partial E / \partial R \downarrow i$
 - Molecular dynamics
- Energy differences
 - Formation energies, reaction barriers
- Perturbations
 - Vibrations

Density functional theory

- Efficient method for calculating ground state total energy
- Hohenberg-Kohn: Mathematical basis
- Kohn-Sham: Practically working approach
- 50 years of fine-tuning the approximations

Hohenberg-Kohn 1

$$\hat{H} = -\frac{\hbar^2}{2m_e} \sum_i \nabla_i^2 + \sum_i V_{\text{ext}}(\mathbf{r}_i) + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$$

Theorem I: For any system of interacting particles in an external potential $V_{\text{ext}}(\mathbf{r})$, the potential $V_{\text{ext}}(\mathbf{r})$ is determined uniquely, except for a constant, by the ground state particle density $n_0(\mathbf{r})$.

Corollary I: Since the hamiltonian is thus fully determined, except for a constant shift of the energy, it follows that the many-body wavefunctions for all states (ground and excited) are determined. *Therefore all properties of the system are completely determined given only the ground state density* $n_0(\mathbf{r})$.

$$V_{\text{ext}}(\mathbf{r}) \quad \stackrel{\text{HK}}{\longleftarrow} \quad n_0(\mathbf{r})$$

$$\downarrow \qquad \uparrow$$

$$\Psi_i(\{\mathbf{r}\}) \quad \Rightarrow \quad \Psi_0(\{\mathbf{r}\})$$

Aalto University School of Science

9.7.2018

Hohenberg-Kohn 2

Theorem II: A *universal functional* for the energy E[n] in terms of the density $n(\mathbf{r})$ can be defined, valid for any external potential $V_{\text{ext}}(\mathbf{r})$. For any particular $V_{\text{ext}}(\mathbf{r})$, the exact ground state energy of the system is the global minimum value of this functional, and the density $n(\mathbf{r})$ that minimizes the functional is the exact ground state density $n_0(\mathbf{r})$. **Corollary II:** The functional E[n] alone is sufficient to determine the exact ground state energy and density. In general, excited states of the electrons must be determined by other means.

- Tells us how to solve and fast: from 3N dimensions to 3
- All we need is E[n]. Maybe:

 $E \downarrow HK[n] = T[n] + E \downarrow int[n] + \int f = df 3 rV \downarrow ext(r)n(r)$ unknown

Kohn-Sham ansatz

 1. The exact ground state density can be represented by the ground state density of an auxiliary system of noninteracting particles

 $n = \sum_{i=1}^{n} \frac{1}{N} \frac{|\varphi_i(r)|}{2}$

$$\rightarrow \{\varphi \downarrow i(r)\}, i=1\cdots N \text{ and }$$

 2. The auxiliary Hamiltonian is chosen to have the usual kinetic operator and an effective local potential Vleff (r) acting on electron at point r.

Kohn-Sham energy

 $n = \sum_{i=1}^{n} \frac{1}{N} / \varphi_{i}(r)$

 $\{\varphi \downarrow i(r)\}, i=1\cdots N$ and

• Total energy:

 $E \downarrow KS[n] = T \downarrow s + E \downarrow Hartree[n] + E \downarrow XC[n] + \int \uparrow m d \uparrow 3 rV \downarrow ext(r) \qquad \forall II$

• Kinetic energy of non-interacting particles: $\int \sqrt{2}S = -1/2 \sum_{i=1}^{i} \int N \otimes \varphi \downarrow_i \nabla f 2 \varphi \downarrow_i$

- Hartree energy: $E \downarrow Hartree [n] = 1/2 \int f dt 3 r dt 3 r' n(r) n(rt')/|r-r'|$
- All the rest (e-e interactions and $T[n] T \downarrow s[n]$): $E \downarrow XC = ?$

Exchange-Correlation

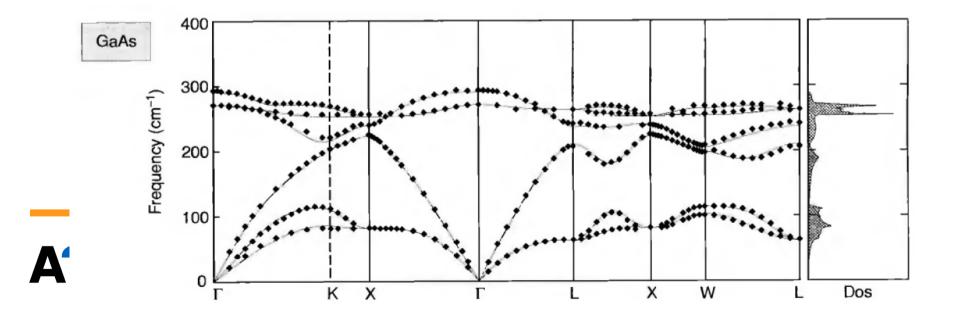
- No exact form known
- Approximations approximations, hundreds of them
- Classified by the amount of input information:
 - LDA, GGA, meta-GGA, hybrid, double hybrid
 - $E \downarrow XC[n(r), \nabla n(r), \tau, \varphi \downarrow \nu, \varphi \downarrow c]$
- Benchmark: atomization energy, ionization potential, bond length/lattice constants, bulk modulus
- Attempts to improve on KS energies
 - Infamous band gap error
 - Does it make any sense?

Numerical "approximations"

- Basis sets for describing potential, density, and wave functions:
 - Plane waves, localized atomic orbitals, real-space grid
- Brillouin zone sampling in solids:
 - k-point meshes
- Nuclei and core states:
 - All-electron approaches, pseudopotentials
- Level of theory: spin-polarization, non-collinear magnetism, DF perturbation theory, time-dependence

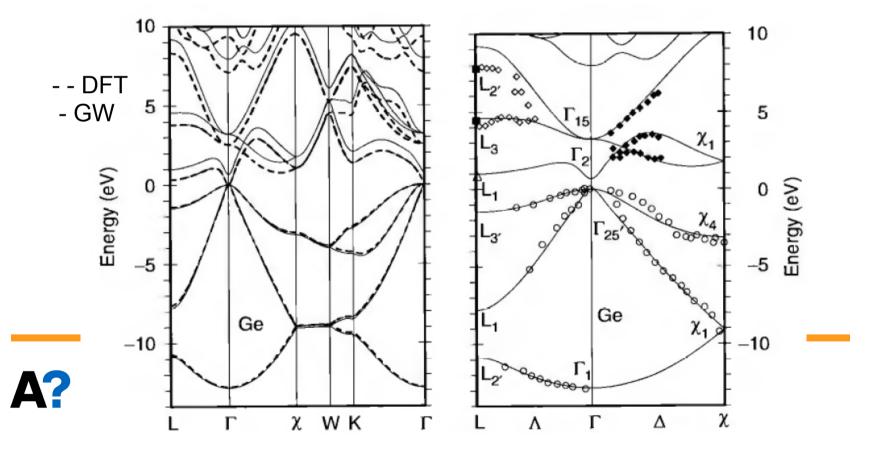
What is easy? What DFT gets right?

- Anything related to total energy and density (in ground state)
 - Geometry, formation energies
 - Reaction barriers, vibrations (\rightarrow finite T)



What is difficult? What DFT gets wrong?

- Anything related to excitations
 - Band structure, absorption/PL spectra, finite T effects
 - Electron scattering, electron dynamics
 - Interpretation, KS energies vs. quasiparticle energies



What is difficult? What DFT gets wrong?

- Fractional charges
 - E.g. dissociation of $H_2^+ \rightarrow H^{0.5+} + H^{0.5+}$
- Electron self-interaction due to mean-free description
 - Tendency to delocalize charge in many semilocal XC functionals

Defect calculations

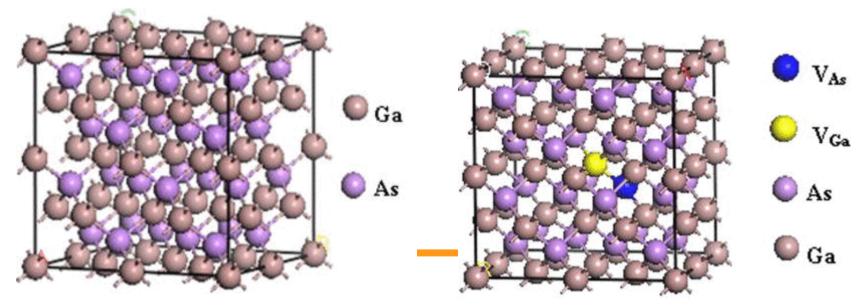
9.7.2018

Calculation of point defects

- Modeling with supercells
- Formation energies
- Chemical potentials
- Charged defects
- Defect levels

Supercell approach

- Provides good description of host
- Defects interact with each other, concentration too high?
- What to do with total energy?
 - Minimize energy \rightarrow defect geometry



Formation energy

$$E_f = E_{def} - E_{host} - \sum_i n_i \mu_i + q E_{Fermi}$$

- $E \downarrow def$: Energy of supercell with defect
- $E \downarrow host$: Energy of pristine supercell

Or rather Gibbs free energy

- $n\downarrow i$: Number of missing/added elements
- $\mu \downarrow i$: Chemical potentials of these elements (parameter)
- q: Defect charge
- *E*↓*Fermi* : Fermi-level (free parameter)

Free energy of formation

$$G_f = F(\text{def}) - F(\text{host}) + pV_f$$
$$-\sum_i n_i \mu_i + q(E_v + E_F) + E_{\text{corr}}$$

• F Helmholtz free energy of system

 $F = F^{\rm el} + F^{\rm qh} + F^{\rm ah}$

- Electronic (internal+el. Temperature), quasiharmonic, anharmonic effects (vibrations)
- Energy correction due to supercell (charged defects)

Concentration

- Formation energies always positive
- Can still form, overcome by configuration entropy
- Concentration of defects:

$$c = N_0 N_c \exp\left(-\frac{G_f}{k_B T}\right)$$

- $N \downarrow 0$ number (or concentration) of defect sites
- $N\downarrow c$ number of configurations

Chemical potential = tendency of a system to give particles

- Equilibrium → chemical potentials equal in host and reservoirs
- Limited by the elemental phases

 $\mu \downarrow Ga \leq \mu \downarrow Ga (Ga metal)$ $\mu \downarrow N \leq \mu \downarrow N (N \downarrow 2, P, T)$

• Energy of the host know $\mu \downarrow Ga + \mu \downarrow N = \mu \downarrow GaN$

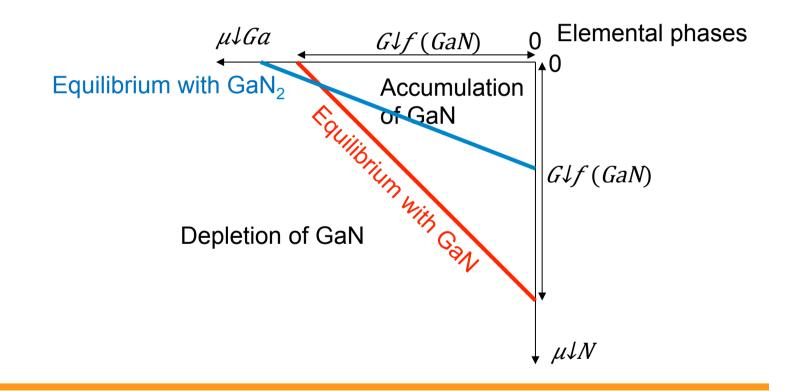
 $\mu \downarrow Ga \ge \mu \downarrow GaN - \mu \downarrow N(N \downarrow 2, P, T) = \mu \downarrow Ga (Ga metal) + \Delta G \downarrow f$

• Therefore:

 $\mu \downarrow N \ge \mu \downarrow GaN - \mu \downarrow Ga (Ga metal) = \mu \downarrow N (N \downarrow 2, P,T) + \Delta G \downarrow f$

• Range given by heat of formation: $\Delta G \downarrow f = \mu \downarrow GaN - \mu \downarrow Ga (Ga metal) - \mu \downarrow N (N \downarrow 2, P, T)$

Stability diagram



Aalto University School of Science

9.7.2018

Charged defects

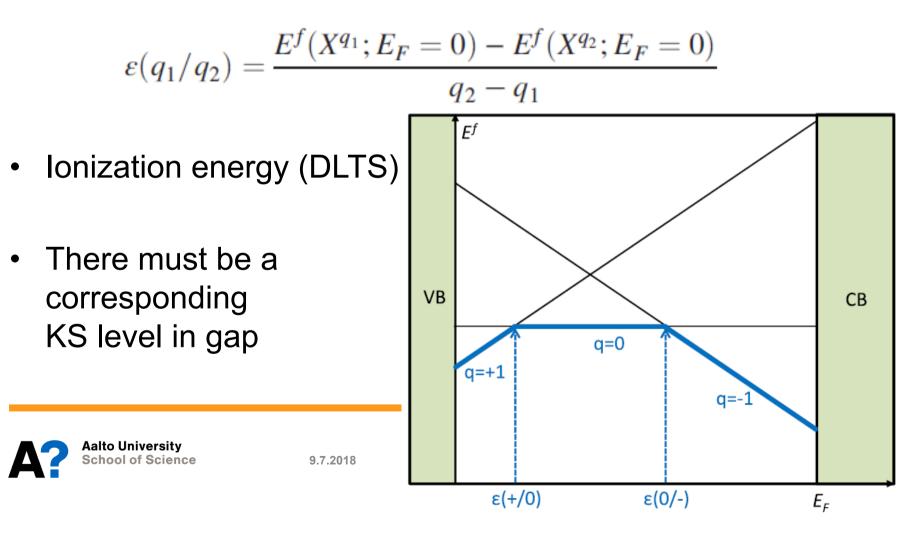
• Dependence on the free parameter $E\downarrow Fermi$

$$E_{f} = E_{def} - E_{host} - \sum_{i} n_{i}\mu_{i} + q(E_{v} + E_{Fermi})$$

Defect levels

$$E_f = E_{def} - E_{host} - \sum_i n_i \mu_i + q(E_v + E_{Fermi})$$

Thermodynamic charge transition level



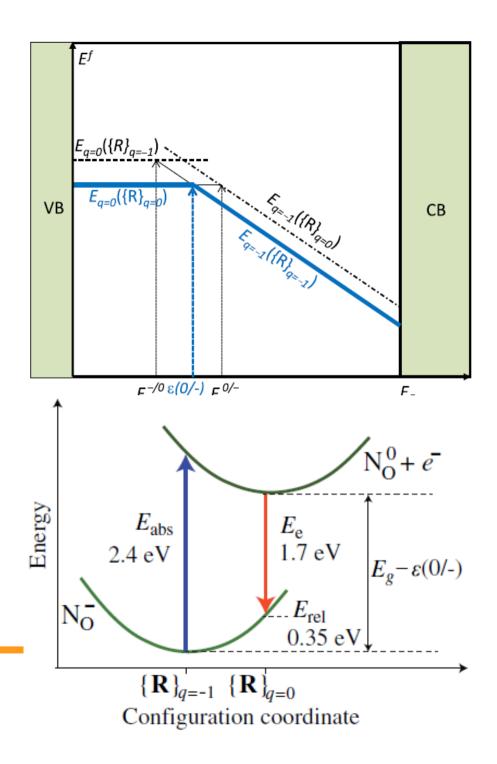
Defect levels

- Optical charge transition levels
 - Without ionic relaxation
 - Rate/cross section from matrix element
- Excitation or not?

Aalto University School of Science

 Description of e/h in VBM/ CBM

9.7.2018



Charged defects in supercells

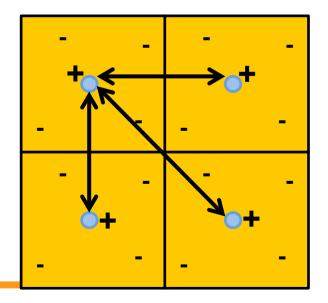
- The sum of interactions diverge for any periodicity
 - Harmonic series:

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

- Get rid of periodicity or go to neutral system
- The former not possible in first principles
 - And periodicity good for host states
- The latter leads to unwanted contributions and leaves the periodic images
 - We can try to correct them afterwards

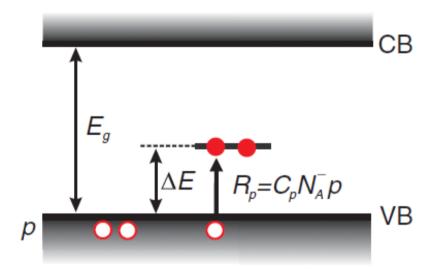
Charged defects in bulk

- These errors can be treated in bulk
- Remove interactions with periodic images
 - Point-charges in homogeneous neutralizing background => analytic treatment (Madelung, MP)
 - Don't touch the self-interaction (handled better by DFT)
- E_{corr} to add to E_{f}



Other defect properties

- Magnetism (EPR)
- Vibrations (Raman, linewidths)
- Positron trapping (PAS)
- Excitation probability, capture cross section



$$r = \frac{2\pi}{\hbar}g\sum_{m}w_{m}\sum_{n}|\Delta H_{im;fn}^{e-ph}|^{2}\delta(E_{im}-E_{fn})$$

$$\Delta H_{im;fn}^{e-ph} = \sum_{k}\underbrace{\langle\Psi_{i}|\partial\hat{H}/\partial Q_{k}|\Psi_{f}\rangle}_{W_{if}^{k}}\langle\chi_{im}|Q_{k}-Q_{0;k}|\chi_{fn}\rangle \underbrace{\text{Spec}}_{W_{if}^{k}}$$

