start

Defects in MoS₂ monolayers

repair, doping and functionalization

A. Förster, S. Gemming, G. Seifert, D. Tománek

MoS₂ electronics - Early studies

1960-ies

R. Fivaz, E. Mooser ,, Mobility of Charge Carriers in semiconducting layer structures "

Phys. Rev. 163 (1967) 743

- •high purity
- •mobilities $MoS_2/MoSe_2 \rightarrow 500 \text{ cm}^2/\text{Vs T} \le 200 \text{ K}$

1980-ies

- •Solar cells (Kautek, Gehrischer, Tributsch...)
- •Heterojunctions (Bucher...)

Layered Structure

2H-MoS₂

Space group: $D_{6h}^4 - P_{63}/mmc$

 E_B (van der Waals) ≈ 0.06 eV/atom E_B (van der Waals - Graphite) ≈ 0.01 eV/atom

Layered Structure

 MoS_2 : formally $Mo^{4+}S^{2-}$ → MoS_6^{8-}

Cluster

Triple layer S-Mo-S

MoS₂ – Semiconductor strong anisotropy in conductivity

Charge carrier mobility: 2...500 cm²/Vs

nominally ",undoped":n-MoS₂ \leftrightarrow sulfur defects

Electronic properties of MoS₂

Electronic properties of MoS₂

Density of States

Repair and Functionalization of MoS₂ Monolayers via Thiols

- Reactions of Thiols on 2D MoS₂
 - Vacancy Repair
 - Adatom Repair
- Functionalization

Defect states in MoS₂

Qualitatively most efficient method
 (mechanical exfoliation, ME) too expensive
 for mass-production

Quantitatively most efficient method
 (Physical/Chemical Vapor Deposition, PVD/
 CVD) still includes too many defects for a mass-distribution

Defect states in MoS₂

Reactions of Thiols on 2D MoS₂

Methology

- Thiols exemplarily represented by CH₃SH
- MoS₂ consists of a 4x4x1 super cell
- 15 Å vacuum above MoS₂ monolayer

Computational details:

- Siesta (version 3.1)
- functional: PBE
- basis: DZP
- 4x4x1 *k*-points

Sulfur vacancy defect (SV)

[1] Bertolazzi et al. Advanced Materials 29 (2017)

[2] Chen et al. Ang. Chem. Int. Ed. 55 (2016)

Repair of SV defects

Reaction I

Reaction II

Disulfide formation

Disulfide formation

Adatom repair

Condition for disulfide formation?

p-doping with thiols

p-type doping

n-doping with thiols

- 3 possibilities
- again reaction 1 ≡ SV repair and physisorption is dominant reaction

Protonation?

n-doping with thiols

n-doping with thiols

n-type doping

Conclusions

- thiols are powerful healing agents for several defects in MoS₂ monolayers
 - → charge transport limiting defects can be quickly and efficiently healed
 - → use of MoS₂ monolayers that were prepared by fast and cheap methods such as CVD
- "functional" thiols for doping MoS₂ monolayers

Challenges - Outlook

- Understanding/Tuning Schottky barrier
- Influence of edge properties
- p- and n-type doping (Nb; Re)
- Doping level <-> mobility!
- Gate control
- "Atomistic" device simulations

> New devices:

- Nanotube based devices no edge effects!
- CD waves, superconductivity (NbS₂, TaS₂)

Thanks

Anja Förster (Dresden)

Sibylle Gemming (Dresden)

David Tomanek (E. Lansing)

Financial Support

cfaed.tu-dresden.de

