start ## Defects in MoS₂ monolayers repair, doping and functionalization A. Förster, S. Gemming, G. Seifert, D. Tománek ## MoS₂ electronics - Early studies #### 1960-ies R. Fivaz, E. Mooser ,, Mobility of Charge Carriers in semiconducting layer structures " Phys. Rev. 163 (1967) 743 - •high purity - •mobilities $MoS_2/MoSe_2 \rightarrow 500 \text{ cm}^2/\text{Vs T} \le 200 \text{ K}$ #### 1980-ies - •Solar cells (Kautek, Gehrischer, Tributsch...) - •Heterojunctions (Bucher...) ## **Layered Structure** 2H-MoS₂ Space group: $D_{6h}^4 - P_{63}/mmc$ E_B (van der Waals) ≈ 0.06 eV/atom E_B (van der Waals - Graphite) ≈ 0.01 eV/atom ## **Layered Structure** MoS_2 : formally $Mo^{4+}S^{2-}$ → MoS_6^{8-} #### Cluster ## Triple layer S-Mo-S ### MoS₂ – Semiconductor strong anisotropy in conductivity Charge carrier mobility: 2...500 cm²/Vs nominally ",undoped":n-MoS₂ \leftrightarrow sulfur defects ## **Electronic properties of MoS**₂ ## **Electronic properties of MoS₂** Density of States ## Repair and Functionalization of MoS₂ Monolayers via Thiols - Reactions of Thiols on 2D MoS₂ - Vacancy Repair - Adatom Repair - Functionalization ## Defect states in MoS₂ Qualitatively most efficient method (mechanical exfoliation, ME) too expensive for mass-production Quantitatively most efficient method (Physical/Chemical Vapor Deposition, PVD/ CVD) still includes too many defects for a mass-distribution ## Defect states in MoS₂ ## **Reactions of Thiols on 2D MoS₂** ## Methology - Thiols exemplarily represented by CH₃SH - MoS₂ consists of a 4x4x1 super cell - 15 Å vacuum above MoS₂ monolayer #### Computational details: - Siesta (version 3.1) - functional: PBE - basis: DZP - 4x4x1 *k*-points ## Sulfur vacancy defect (SV) [1] Bertolazzi et al. Advanced Materials 29 (2017) [2] Chen et al. Ang. Chem. Int. Ed. 55 (2016) ## Repair of SV defects **Reaction I** **Reaction II** ## **Disulfide formation** ## **Disulfide formation** ## Adatom repair #### **Condition for disulfide formation?** ## p-doping with thiols p-type doping ## n-doping with thiols - 3 possibilities - again reaction 1 ≡ SV repair and physisorption is dominant reaction **Protonation?** ## n-doping with thiols ## n-doping with thiols n-type doping ## **Conclusions** - thiols are powerful healing agents for several defects in MoS₂ monolayers - → charge transport limiting defects can be quickly and efficiently healed - → use of MoS₂ monolayers that were prepared by fast and cheap methods such as CVD - "functional" thiols for doping MoS₂ monolayers ## **Challenges - Outlook** - Understanding/Tuning Schottky barrier - Influence of edge properties - p- and n-type doping (Nb; Re) - Doping level <-> mobility! - Gate control - "Atomistic" device simulations #### > New devices: - Nanotube based devices no edge effects! - CD waves, superconductivity (NbS₂, TaS₂) #### **Thanks** Anja Förster (Dresden) Sibylle Gemming (Dresden) David Tomanek (E. Lansing) Financial Support cfaed.tu-dresden.de