A View of Resource Competition Models: Chemostat, Nutrient Limitations and Self-building Spatial Heterogeneity

Zhiyuan Li ICTP, 2018

Acknowledgment

Ned S. Wingreen

Pierre Ronceray

Sophia Hsin-Jung Li

Christopher G. King

What does theoretician do in biology Assume a spherical cow in a vacuum...

Paradox of the plankton

Competitive exclusion principle:

The number of species stably coexisting cannot exceed the number of resources

Real world Tremendous diversity

A giant *E. coli* in a vacuum: fixed growth rate

E.coli:

mass/cell: ~ 10^{-12} g doubling rate: ~ 20 min after 51 hours: ~ 6 solar mass

"Winner takes all" in a fixed fitness landscape

Strategies

Outline

Species shape their environments.

- 1. Visual framework for resource competition models in general.
- 2. Controllables in chemostat experiment.
- 3. Rule of invasion.
 - 1. Multistability.
 - 2. Mutual invasibility.
 - 3. Oscillation.
- 4. "Super species" and local optimal strategies.
- 5. Emergence of spatial heterogeneity.

The simplest ecosystem: chemostat

Cell growth in a chemostat: species creates the balance point

Nutrient $\vec{c}_{supply} = \{c_{1,supply}, c_{2,supply}, ...\}$ supply Nutrient environment $\vec{c} = \{c_1, c_2, \dots c_P\}$ Cells М Dilution d

Assume:

Growth rate: $g = g(\vec{c})$, non-decreasing with $\forall c_i$. Intake rate per biomass: $I_i = I_i(\vec{c})$, non-decreasing with c_i .

Dynamic Equations:

Cell growth: $\frac{dM}{dt} = M * (g(\vec{c}) - d)$ Nutrient consumption: $\frac{dc_i}{dt} = d * (c_{i,\text{supply}} - c_i) - M * I_i (\vec{c})$

Visualization in the nutrient space: Growth contours

Cell growth :

 $g = g(\vec{c})$

Visualization in the nutrient space: Growth contour

Balance of growth and dilution: $\frac{dM}{dt} = M * (g(\vec{c}) - d) = 0$ $= g(\vec{c}) = d$

Visualization in the nutrient space: Flux balance curve

Visualization in the nutrient space: Species creates its own environment

A diversion to experiments...

Previous Observation:

Linear growth law between RNA-to-Protein ratio and growth rate.

Cell Growth and Gene Expression

Our observation: Ribosome abundance depends on nutrient-limitation

Experiment system: *E. coli* in chemostat

Observation:

Cells under P-limitation have fewer ribosomes

Nutrient supplies in chemostat experiment.

When cell has a fixed composition w_a and w_b :

$$d * (c_{a, \text{supply}} - c_i) = M * (g * w_a)$$

$$d * (c_{b, \text{supply}} - c_i) = M * (g * w_b)$$

Flux balance curve is determined by the relative difference between nutrient supplies:

$$\frac{C_{a, \text{ supply}} - C_{a}}{W_{a}} = \frac{C_{b, \text{ supply}} - C_{b}}{W_{b}}$$

Relative changes in the supply shifts the RNA/Protein ratio-growth rate relationship

Relative changes in the supply shifts the RNA/Protein ratio-growth rate relationship

Brief summary on chemostat controllables

Difficult to experimentally distinguish :

Cells perceive relative changes in nutrient environment by intra-cellular regulations

OR

Cells create same nutrient environment out of different nutrient supplies

Two species competition dynamics

Invasion:

Introducing small amount of species *Orange* to a chemostat occupied by species *Purple* in steady state. If *Orange* can increase its number, we call it a successful invasion; otherwise, unsuccessful.

Rule of invasion

Orange contour **below** *Purple* environment

Orange contour above Purple environment

Metabolic trade-offs and regulatory strategy

Regulatory strategy $\vec{\alpha} = \{\alpha_1, \alpha_2 \dots\}$: allocation of resources into different cellular functions

 α_i : the fraction of proteins/energies that is allocated to the *j*-th cellular function

Examples of bistability

How to achieve bistability: Species creates an environment that favors itself

Examples of mutual invasion

How to obtain achieve mutual invasion: Species creates an environment that favors the other

Metabolic Trade-Offs Promote Diversity in a Model Ecosystem

PRL 118, 028103 (2017)

Anna Posfai,¹ Thibaud Taillefumier,² and Ned S. Wingreen^{1,3}

Trade-offs:

Result:

Unlimited number of species can co-exist under this model setting, if there are "keystone species" to maintain the ecosystem.

How metabolic trade-offs permit unlimited coexistence

Biodiversity of plankton by species oscillations and chaos

Jef Huisman*†‡ & Franz J. Weissing§

$$\frac{\mathrm{d}N_i}{\mathrm{d}t} = N_i(\mu_i(R_1, ..., R_k) - m_i) \quad i = 1, ..., n \tag{1}$$

$$\frac{\mathrm{d}R_j}{\mathrm{d}t} = D(S_j - R_j) - \sum_{i=1}^n c_{ji}\mu_i(R_1, \dots, R_k)N_i \quad j = 1, \dots, k \quad (2)$$

$$\mu_i(R_1, ..., R_k) = \min\left(\frac{r_i R_1}{K_{1i} + R_1}, ..., \frac{r_i R_k}{K_{ki} + R_k}\right)$$
(3)

letters to nature

Rock-paper-scissors invasion loop

Rock-paper-scissors invasion loop

Brief summary on the rule of invasion and intransitivity of fitness

- Regardless of model details, the outcome of species Orange invading species Purple only depends on the relative position of Orange contour and Purple environment
- Cross of two growth contours allows intransitivity of fitness, leading to rich population dynamics

The "superspecies" resistant to any invasion

Superspecies: the hypothetic speices with the most inclusive growth contour that no any other species could create an environment below it. It is equivalent to:

 $Max(g|\vec{c}).$

Fixed strategy, "local optimal", and nontransitivity of fitness

Superspecies:

Variable \vec{f}_{opt} to ensure $g(\vec{c}, \vec{f}_{opt}) \ge g(\vec{c}, \forall \vec{f})$ under any supply condition

"Local optimized species":

- Fixed $\vec{f} = \vec{f}_{opt}(\vec{c}_{supply})$, for the \vec{c}_{supply} it encounters most frequently
- Partially overlaps with the growth contour of the superspecies

Microbial consortia at steady supply

Thibaud Taillefumier^{1,2,3}, Anna Posfai¹, Yigal Meir⁴, Ned S Wingreen^{1,5*}

Result:

Under certain nutrient supply condition, species with distinct metabolic strategies can co-exist as the non-invadeable consortia

Optimal growth rate for a import/conversion model

Three sectors of optimal strategies for an import/conversion model

0.2

0.4

0.6

C_a

0.8

Joint locally optimal strategies and cartels

One solution for plankton paradox: Spatial heterogeneity

Spatial heterogeneity can emerge out of homogeneous external condition

Spatial heterogeneity can emerge out of homogeneous external condition

Formation of spatial gradient by chain of chemostats

Summary

- By growth and consumption, species create their **own environment**.
- The environment shaped by one species may be inviting or prohibiting to another species, leading to the non-transitivity of fitness.
- This none-transitivity of fitness can lead to rich ecosystem dynamics.
- We constructed an **intuitive and generalizable** mathematical framework that clarifies the relationship of previous resource-competition models, and provides insight into the stability of spontaneously spatially structured communities.

Thanks!

"Fitness Trampoline"

What are ribosomes doing

Different Elongation Rates

What are ribosomes doing

Different fraction of working ribosomes

Model the ribosome dynamics

Predicted and experimental growth rate upon nutrient upshift

Summary: Diverse ribosomal behaviors achieve the same growth rate

