Generation IV reactor design concepts: brief introduction

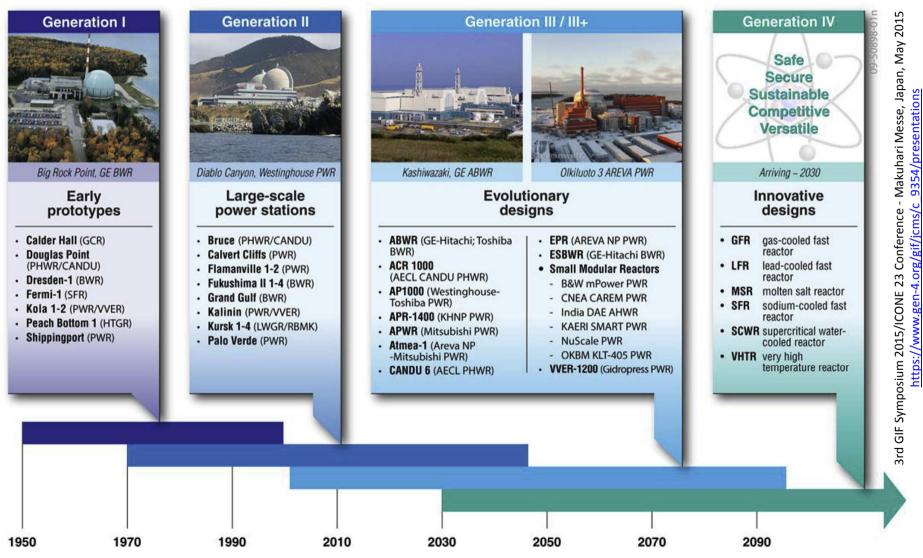
Konstantin Mikityuk Paul Scherrer Institut, Switzerland

Joint IAEA-ICTP Workshop on Physics and Technology of Innovative Nuclear Energy Systems 20-24 August 2018, ICTP, Trieste, Italy

Outlook

Two lectures

- GIF: Gen IV reactor design concepts ~45 min
- Innovative nuclear energy systems: core design and neutronics ~60 min

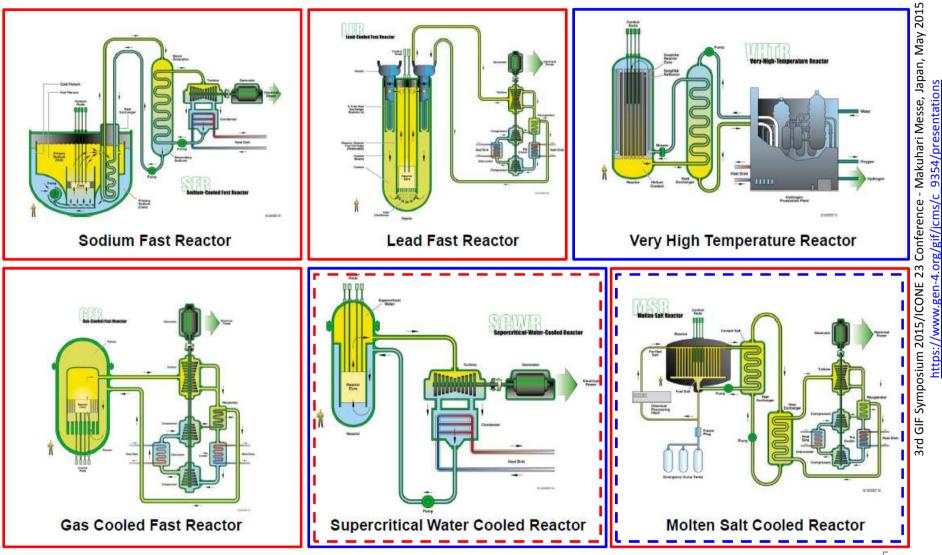

are combined in one as follows:

- Introduction ~5 min
- 6 GIF reactors ~90 min
- Summary ~5 min
- Q&A ~5 min

Other lectures at the school:

- Simulation of neutronics for advanced reactors: Monte-Carlo method ~45 min
- Safety of fast reactors: phenomenology and modeling aspects ~90 min

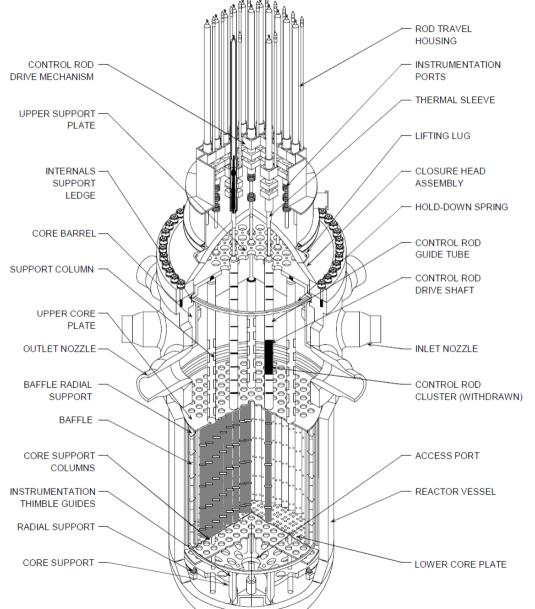
Nuclear reactors: from early prototypes to innovative designs



- The Generation IV International Forum (GIF) is a cooperative international endeavor organized to carry out the R&D needed to establish the feasibility and performance capabilities of the next generation nuclear energy systems.
- Argentina, Brazil, Canada, France, Japan, Korea, South Africa, the UK and the US signed the GIF Charter in July 2001, Switzerland in 2002, Euratom in 2003, China and Russia both in 2006, and Australia in 2016.
- Six nuclear energy systems were selected for further development:

	Fast	Thermal
Sodium-cooled fast reactor (SFR)	Х	
Lead-cooled fast reactor (LFR)	Х	
Gas-cooled fast reactor (GFR)	Х	
Very-high-temperature reactor (VHTR)		Х
Supercritical-water-cooled reactor (SCWR)	Х	Х
Molten salt reactor (MSR)	Х	Х

- Goal 1: Sustainability
 - Long term fuel supply
 - Minimize waste and long term stewardship burden
- Goal 2: Safety & Reliability
 - Very low likelihood and degree of core damage
 - Eliminate need for offsite emergency response
- Goal 3: Economics
 - Life cycle cost advantage over other energy sources
 - Financial risk comparable to other energy projects
- Goal 4: Proliferation Resistance & Physical Protection
 - Unattractive materials diversion pathway
 - Enhanced physical protection against terrorism


Template for presenting the Gen-IV reactor systems

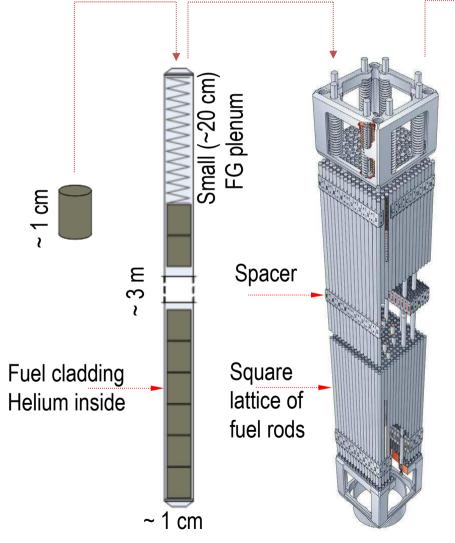
• General concept

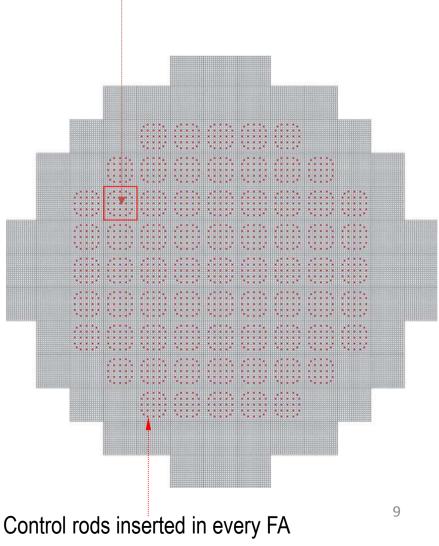
- Image and main features
- Fact sheet (advantages, challenges, designs under development, reactors under operation)

• Specific example

- Main parameters, reactor, fuel, core, BoP
- Problems from viewpoint of GIF goals

Concept	PWR
Specific design*	EPR
Thermal power (MW)	4300
Efficiency (%)	37
Primary coolant	H ₂ O
Pressure (MPa)	~16
Inlet/outlet temp. (C)	296 / 327
Moderator	H ₂ O
Neutron spectrum	Thermal
Breeding gain	<< 0
Reference	[1]
G1: Sustainability	Poor
G2: Safety & reliability	Good
G3: Economics	Good


Pressurized Water Reactor: Generation-III concept to compare


*Specific designs chosen by lecturer

Reactor Concept Manual. Pressurized Water Reactor. US NRC Technical Training Center, https://www.nrc.gov/docs/ML1427/ML14274A090.pdf

Gen-III PWR fuel rod, fuel assembly and core

- Fuel: enriched uranium dioxide
- Cladding: Zry (zircaloy)
- Open assembly (no duct=wrapper) → cross flow between assemblies

Pressurized Water Reactor: fact sheet

• Advantages

- Operational experience and established technologies (economics)
- Light water as a coolant (transparent, easy to handle, boron control, ...)

Challenges

...

- High coolant pressure (safety issues of depressurization)
- Low breeding (sustainability)

— ...

• Designs under development

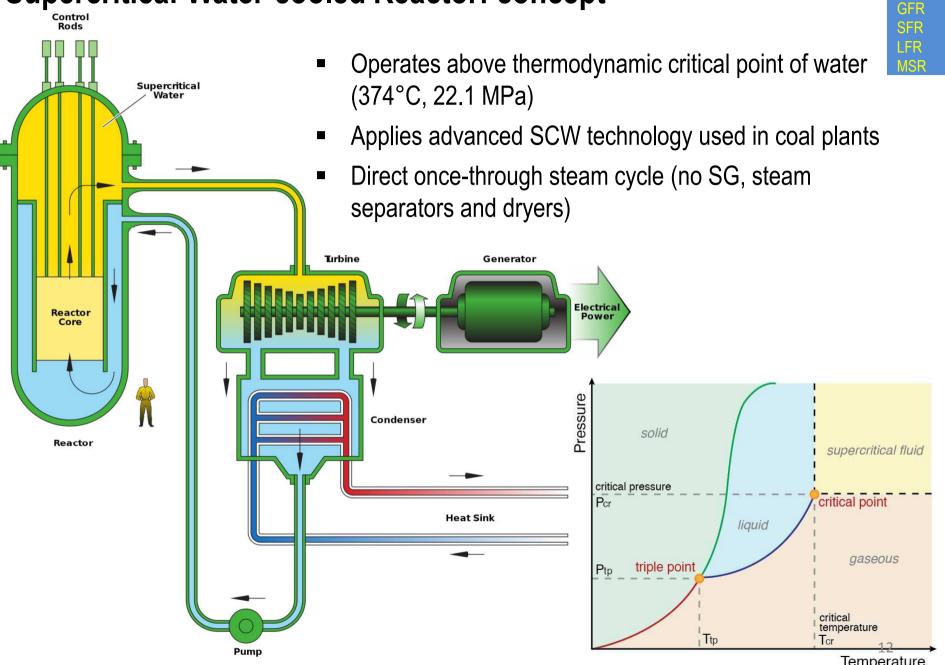
— EPR

. . .

• Reactors under operation

— As of January 2018, 292 operable reactors (275 GWe)

http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/nuclear-power-reactors.aspx


From Gen-III to Gen-IV: improvements to reach the goal(s)

Concept	PWR
Specific design*	EPR
Thermal power (MW)	4300
Efficiency (%)	37
Primary coolant	H ₂ O
Pressure (MPa)	~16
Inlet/outlet temp. (C)	296 / 327
Moderator	H ₂ O
Neutron spectrum	Thermal
Breeding gain	<< 0
Reference	[1]
G1: Sustainability	Poor
G2: Safety & reliability	Good
G3: Economics	Good

- How to increase efficiency (improve G3)?
- \rightarrow Increase the water pressure and temperature

^{*}Specific designs chosen by lecturer

Supercritical-Water-cooled Reactor: concept

(V)H

Temperature

Supercritical-Water-cooled Reactor: fact sheet

• Advantages

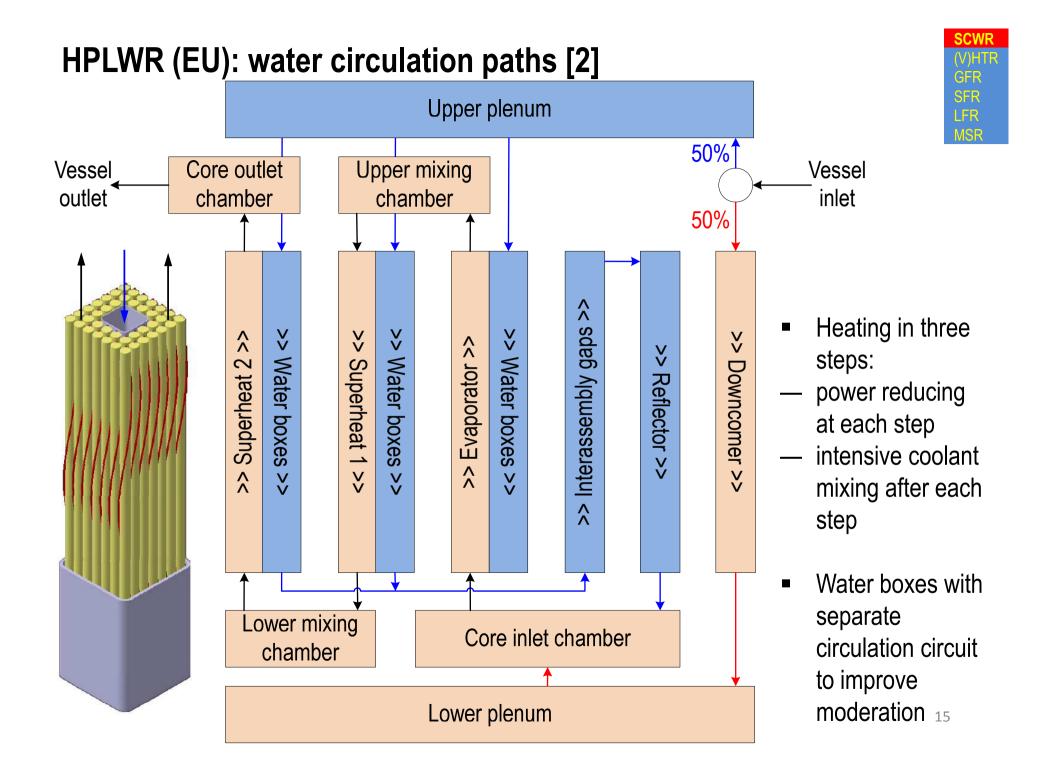
- Based on Gen-III+ reactor technology
- Merges it with advanced SCW technology used in coal plants
- Higher efficiency than Gen-III+
- Both thermal and fast spectrum possible

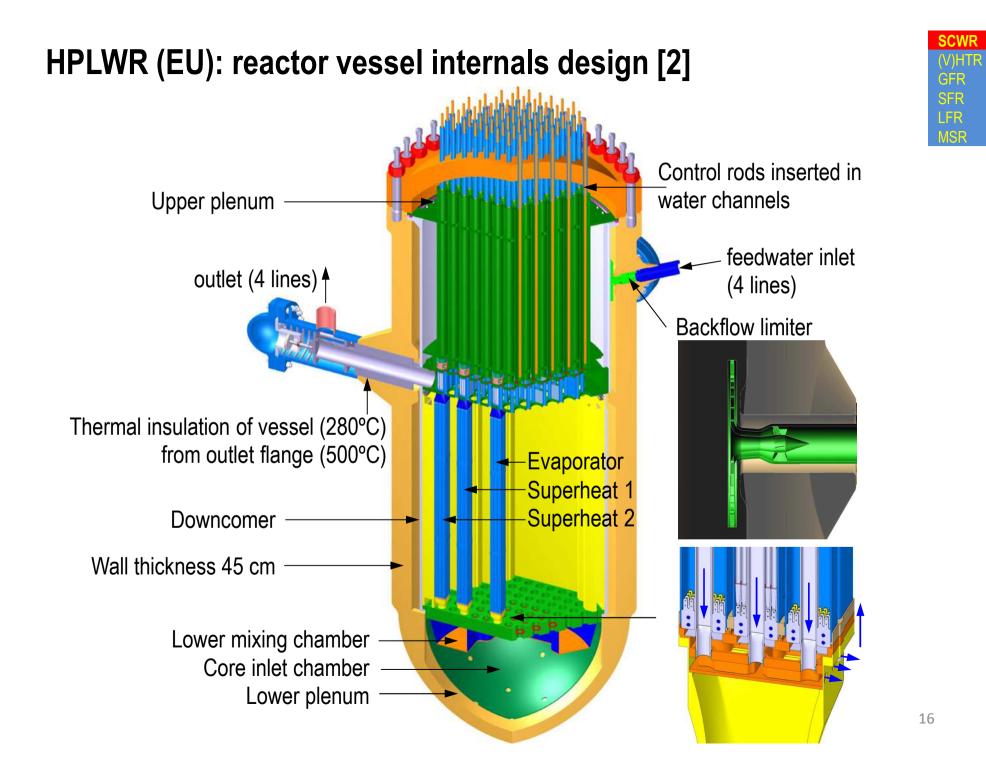
• Challenges

- Materials, water chemistry, and radiolysis
- Thermal hydraulics to fill gaps in SCW heat transfer and critical flow databases
- Safety demonstration (positive void effect for fast spectrum option)
- Fuel qualification
- Designs under development
 - HPLWR (EU), ...
- Reactors under operation
 - None

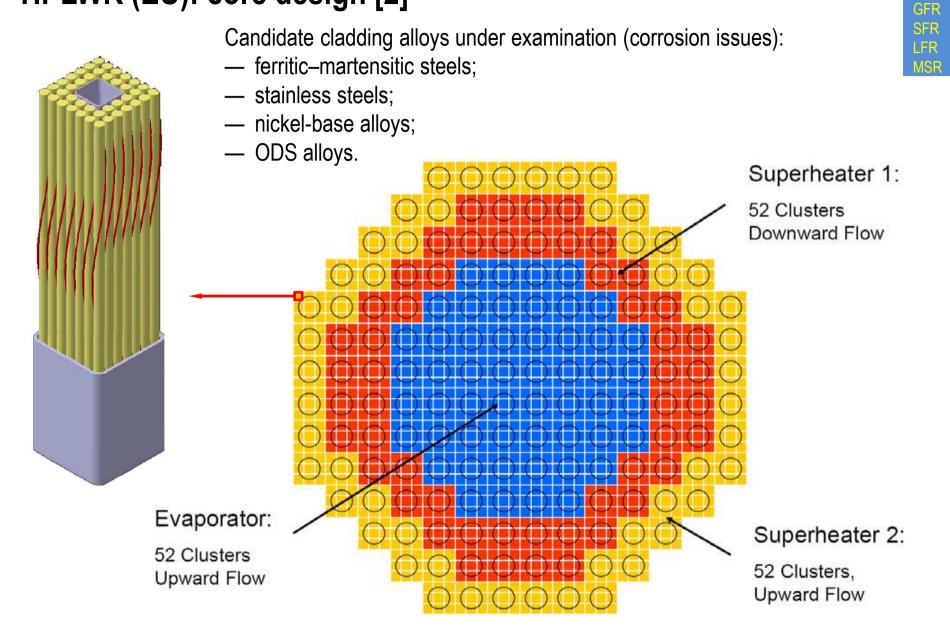
SCWR (V)HTR GFR SFR LFR MSR

HPLWR (EU): High Performance LWR

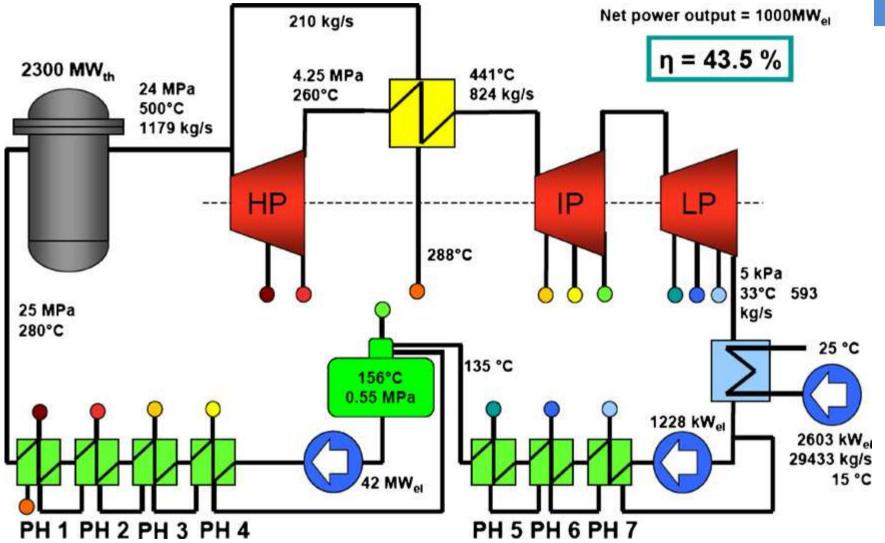

Concept	P۷	VR	SCWR		
Specific design*	EPR		HPLWR		
Thermal power (MW)	43	00	23	00	
Efficiency (%)	3	7	~/	14	
Primary coolant	H ₂	20	H ₂ O		
Inlet/outlet temp. (°C)	296	327	280	500-	
Pressure (MPa)	Pa) ~16		~25		
Moderator	H ₂ O		H_2	0	
Neutron spectrum	Thermal		The	rmal	
Breeding gain	<<	< 0	<<	: 0	
Reference	[1]	[2	2]	
G1: Sustainability	Poor		÷	→	
G2: Safety & reliability	Good				
G3: Economics	Go	od			


SCWR (V)HTR GFR SFR LFR MSR

 Δ T increased from 31°C (PWR) to 220°C (HPLWR) – issue for peak cladding temperature (target 630°C).


Possible solution:

 \rightarrow Heating in three steps

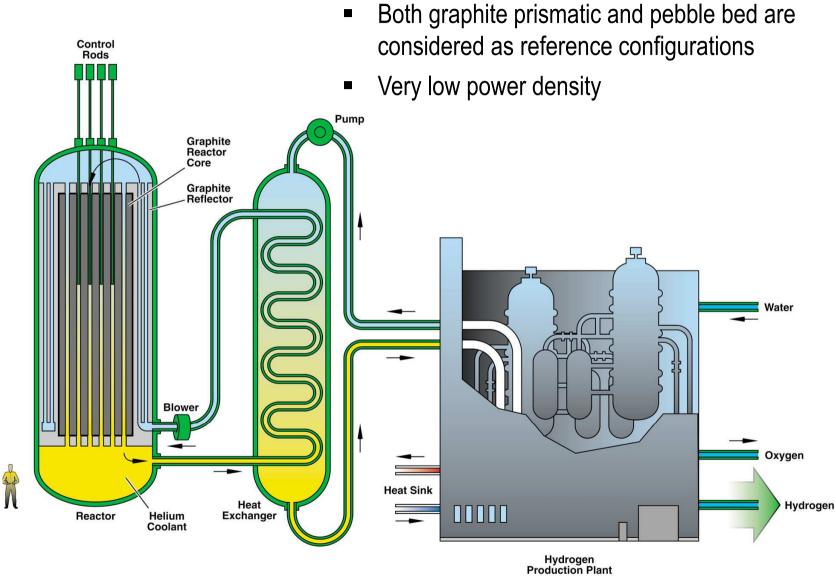


HPLWR (EU): core design [2]

 $(V)H^{-}$

HPLWR (EU): BoP concept

SCWR (V)HTR GFR SFR LFR MSR


From Gen-III to Gen-IV: improvements to reach the goal(s)

Concept	PV	VR	SCWR		
Specific design*	EF	PR	HPLWR		
Thermal power (MW)	43	00	23	00	
Efficiency (%)	3	7	~4	14	
Primary coolant	H	<u>0</u>	H ₂ O		
Inlet/outlet temp. (°C)	296	327	280	500	
Pressure (MPa)	~`	16	~25		
Moderator	H ₂ O		H ₂ O		
Neutron spectrum	Thermal		Thermal		
Breeding gain	<< 0		<< 0		
Reference	[1]		[2]		
G1: Sustainability	Poor		+	→	
G2: Safety & reliability	Go	od			
G3: Economics	Go	od			

- How to keep high efficiency (improve G3) but at the same time avoid problems related to water at high pressure and temperature (improve G2)?
- \rightarrow Use inert gas instead of water

Very-High-Temperature Reactor: concept

02-GA50807-01

(V)HT

GFR SFR LFR

MSR

Very-High-Temperature Reactor: fact sheet

• Advantages

- High temperature enables non-electric applications
- "Walk-away" safe
- Inert gas coolant
- High efficiency

• Challenges

- Reach temperature of ~1000°C (for hydrogen production)
- Coupling with process heat applications
- Graphite as a waste
- Designs under development
 - Chinese HTR-PM

— ...

- Reactors under operation
 - Japanese HTTR

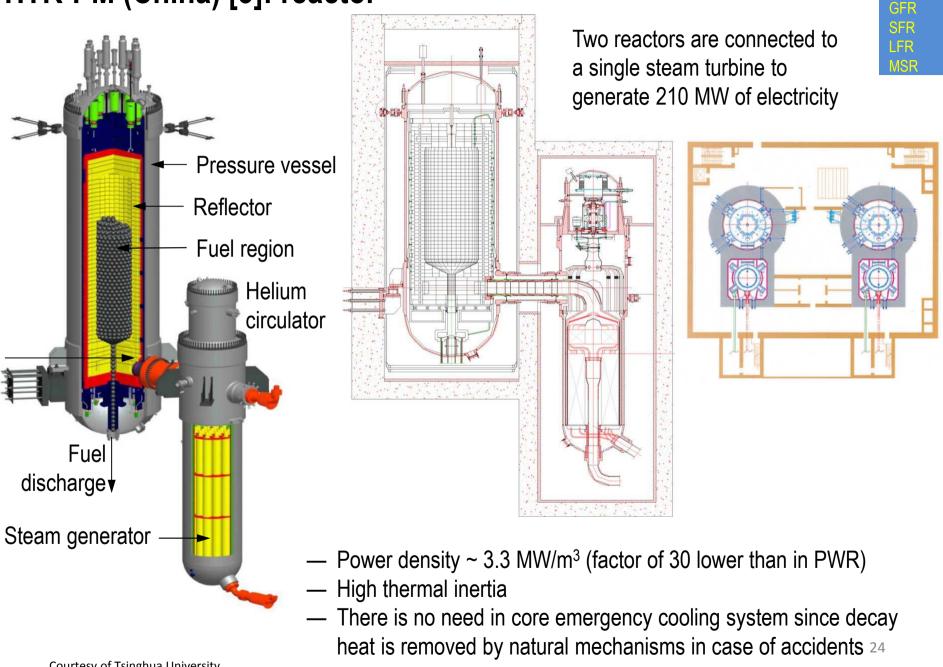
HTR-PM (China)

Concept	PWR		SC	SCWR		ITR	
Specific design*	EPR		HPLWR		HTR-PM		
Thermal power (MW)	43	4300		2300		458	
Efficiency (%)	3	7	~44		~45		
Primary coolant	H	20	H	20	He		
Inlet/outlet temp. (C)	296 327		280	500	250	750	
Pressure (MPa)	~16 ~25 ~7		7				
Moderator	H ₂ O		H ₂ O		С		
Neutron spectrum	Thermal		Thermal		Thermal		
Breeding gain	<< 0		<< 0		<< 0		
Reference	[1]	[2]		[3]		
G1: Sustainability	Poor		\leftrightarrow		· ·	~	
G2: Safety & reliability	Good		↓		1		
G3: Economics	Go	od	1		1		

SCWR (V)HTR GFR SFR LFR MSR

Large amount of activated
graphite produced (radwaste)

HTR-PM (China): fuel



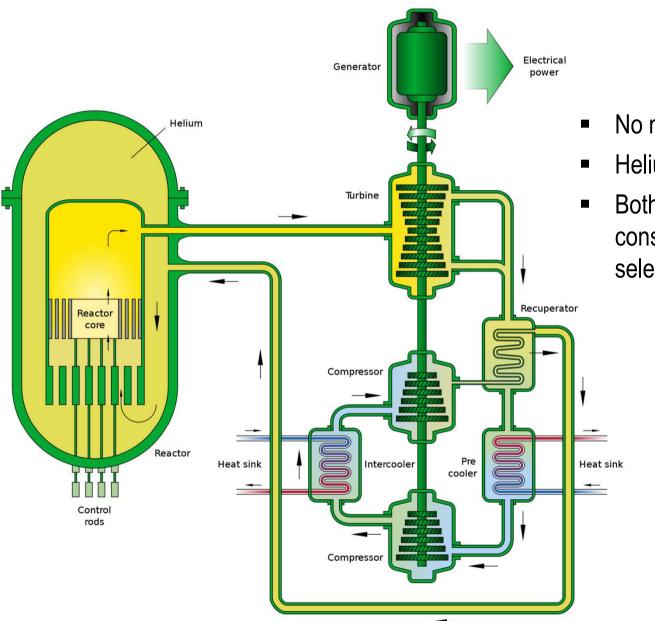
Fuel

Number of pebbles in the core Heavy metal per pebble Number of coated particles in each pebble Fuel loading scheme Average discharge burnup UO₂ 420'000 ~7 g ~ 11'660 Multi-pass (six times) 90 MWd/kgU (V)HT GFR SFR LFR MSR

HTR-PM (China) [3]: reactor

(V)HT

Courtesy of Tsinghua University


From Gen-III to Gen-IV: improvements to reach the goal(s)

Concept	PWR		SC	SCWR		ITR
Specific design*	EF	EPR		HPLWR		-PM
Thermal power (MW)	43	4300		2300		58
Efficiency (%)	3	7	~44		~45	
Primary coolant	H ₂	H ₂ O		H ₂ O		е
Inlet/outlet temp. (C)	296 327		280	500	250	750
Pressure (MPa)	~16		~25		~7	
Moderator	H ₂ O		H ₂ O		С	
Neutron spectrum	Thermal		Thermal		Thermal	
Breeding gain	<< 0		<< 0		<< 0	
Reference	[1]		[2]		[3]	
G1: Sustainability	Poor		\leftrightarrow		?	
G2: Safety & reliability	Good		\downarrow		1	
G3: Economics	Go	bod	1		1	

- The weakness of SCWR and (V)HTR is low breeding gain and difficulty to reach G1. How to reach G1 and in particular improved fuel utilization?
- → Change the design to obtain the fast neutron spectrum

Gas-cooled Fast Reactor: concept

SCWR (V)HTR GFR SFR LFR MSR

- No moderator
- Helium coolant
- Both direct and indirect cycle considered (indirect cycle selected)

Gas-cooled Fast Reactor: fact sheet

• Advantages

- Potential for new fissile breeding due to fast neutron spectrum
- Transparent and inert coolant
- High efficiency

• Challenges

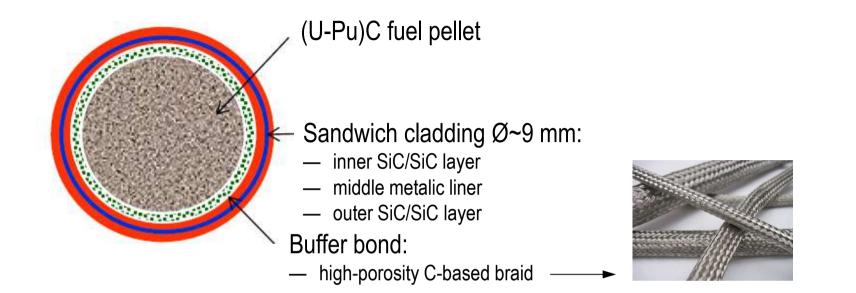
- Safety demonstration and in particular decay heat removal in case of loss of flow and depressurization accidents
- High-temperature materials and fuel qualification

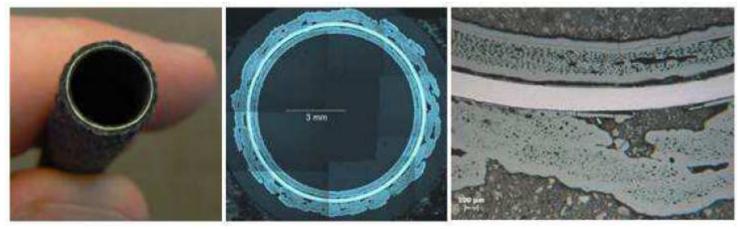
• Designs under development

- ALLEGRO 75 MWth
- GCFR 2400 MWth

• Reactors under operation

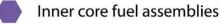
— None


GCFR (EU): main parameters


Concept	PV	VR	SC	WR	(V)ł	HTR	Gł	FR													
Specific design*	EF	PR	HPL	WR	HTR	R-PM	GC	FR													
Thermal power (MW)	4300 37		4300		4300		4300		4300		4300		4300		4300		23	2300 458 2400		2300	
Efficiency (%)			~4	~44 ~45 ~45		~44															
Primary coolant	H ₂	20	H ₂	2 0	H	le	Н	е													
Inlet/outlet temp. (C)	296	327	280	500	250	750	400	780													
Pressure (MPa)	~1	~16 ~25		~16 ~25 ~7 ~7		~25		7 ◄													
Moderator	H ₂ O		H ₂ O		(C	No	ne ◄													
Neutron spectrum	The	rmal	The	rmal	The	rmal	Fa	ast													
Breeding gain	<<	< 0	<<	< 0	<<	< 0	~	0													
Reference	[1	1]	[2	2]	[、	3]	[4	1]													
G1: Sustainability	Po	or	÷	→	•	?															
G2: Safety & reliability	Go	bod				1															
G3: Economics	Go	bod	1		,	1		?													

*Specific designs chosen by lecturer

GCFR-2400 (EU): fuel

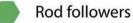


CEA manufactured "Sandwich" cladding

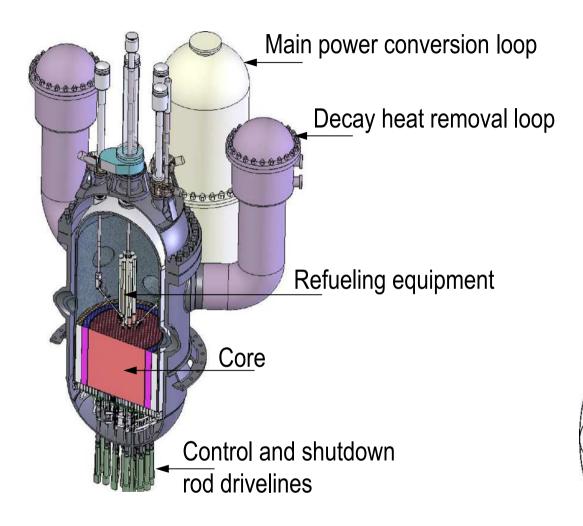
GCFR-2400 (EU): core

Outer core fuel assemblies

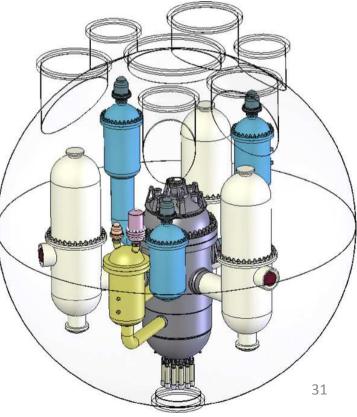
Fission gas plenums


Axial reflectors

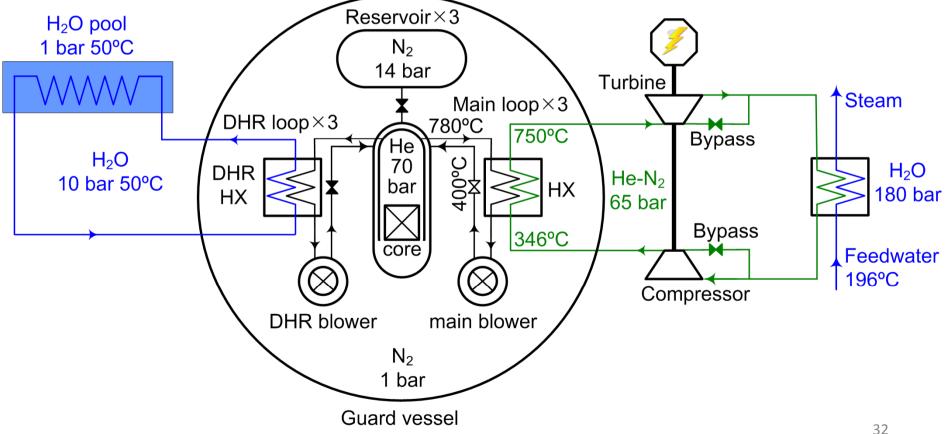
Diverse and shutdown devices



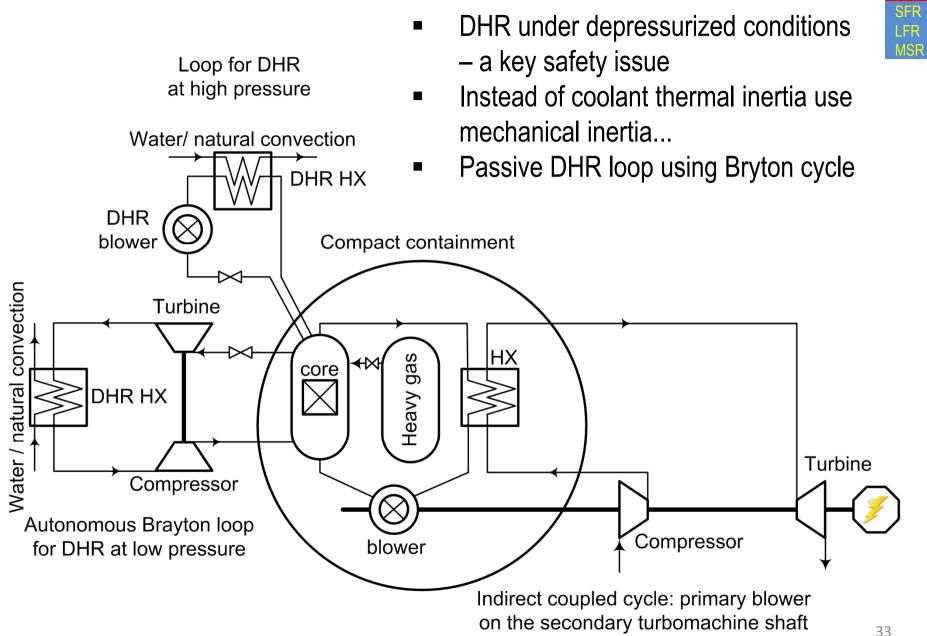
Control and safety devices


Radial reflectors

GCFR-2400 (EU): reactor


Spherical guard vessel

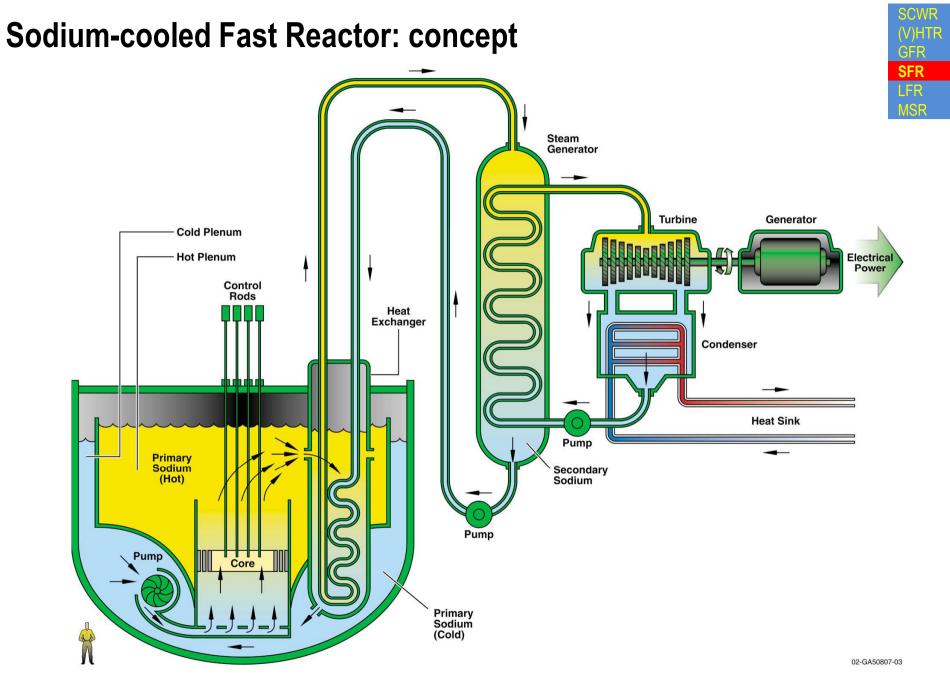
GCFR (EU): BoP concept


Power: 2400 MWth Fuel: (U-Pu)C Clad: SiC-SiC_f

- Guard vessel for backup pressure
- Heavy gas injection in accidents with depressurization
- DHR loops with forced convection

(V)HT GFR SFR

GCFR (EU): How to improve safety?


GFR

From Gen-III to Gen-IV: improvements to reach the goal(s)

Concept	PWR		SCWR		(V)HTR		GFR		
Specific design*	EPR		HPLWR		HTR-PM		GCFR		
Thermal power (MW)	4300		2300		458		2400		
Efficiency (%)	37		~44		~45		~45		
Primary coolant	H ₂ O		H ₂	H ₂ O		He		е	
Inlet/outlet temp. (C)	296 327		280	500	250	750	400	780	
Pressure (MPa)	~16		~25		~7		~7		
Moderator	H ₂	H ₂ O		H ₂ O		С		None	
Neutron spectrum	The	rmal	Thermal		Thermal		Fast		
Breeding gain	<<	< 0	<< 0		<< 0		~ 0		
Reference	[1]		[2]		[3]		[4]		
G1: Sustainability	Poor		\leftrightarrow		?		1		
G2: Safety & reliability	Good		\downarrow		1		\downarrow		
G3: Economics	Go	od	\uparrow		1		?		

SCWR (V)HTR GFR SFR LFR MSR

- The weakness of GFR is low thermal inertia of the core requiring special safety measures against core meltdown in case of depressurization events. How to improve G2?
- \rightarrow Use liquid metal instead of gas

Sodium-cooled Fast Reactor: fact sheet

• Advantages

- Potential for new fissile breeding due to fast neutron spectrum
- Excellent thermal conductivity of sodium \rightarrow VERY efficient cooling
- Large margin to boiling \rightarrow no pressurization required
- Significant operational experience (300+ reactor-years)

• Challenges

- Chemically active in contact with water or air \rightarrow intermediate circuit needed
- Significant scattering cross section \rightarrow spectrum hardening when removed
 - \rightarrow positive reactivity effect \rightarrow special safety measures needed

• Designs under development

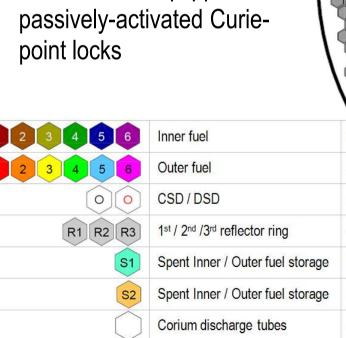
- PFBR (India), BN-1200 (Russia), ASTRID (France), ESFR (EU), ...

• Reactors under operation

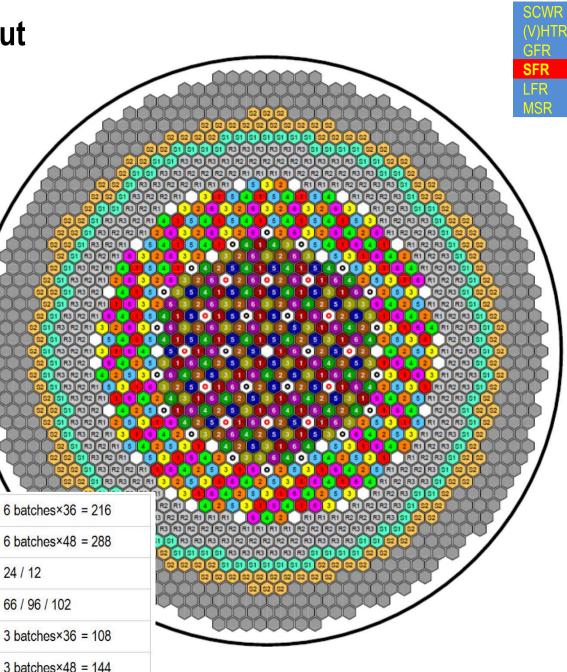
- BOR-60, BN-600, BN-800 (all Russia)
- CEFR (China)

ESFR (EU): main parameters

Concept	PV	VR	SC	WR	(V)H	ITR	Gł	R	SF	R
Specific design*	EF	PR	HPL	WR	HTR-PM		GCFR		ES	FR
Thermal power (MW)	43	00	23	00	45	58	24	00	36	00
Efficiency (%)	3	7	~	44	~4	45	~4	45	~4	12
Primary coolant	H ₂	0	H	20	Н	е	Н	е	N	a ┥
Inlet/outlet temp. (C)	296	327	280	500	250	750	400	780	395	545
Pressure (MPa)	~`	16	~2	25	~	7	~	7	~0	.2
Moderator	H ₂	0	H	20	()	No	ne	No	ne
Neutron spectrum	The	rmal	The	rmal	The	rmal	Fa	st	Fa	ast
Breeding gain	<<	: 0	<	< 0	<<	: 0	~	0	~	0
Reference	[´]	[2]		[3]		[4]		[5]	
G1: Sustainability	Pc	or	+	\rightarrow		?				
G2: Safety & reliability	Go	od		l					Ļ	1
G3: Economics	Go	od	,	↑			-	?		

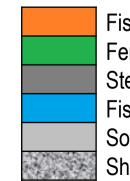

Exothermic sodium-water and sodium-air reaction

SFR fuel rod and fuel subassembly

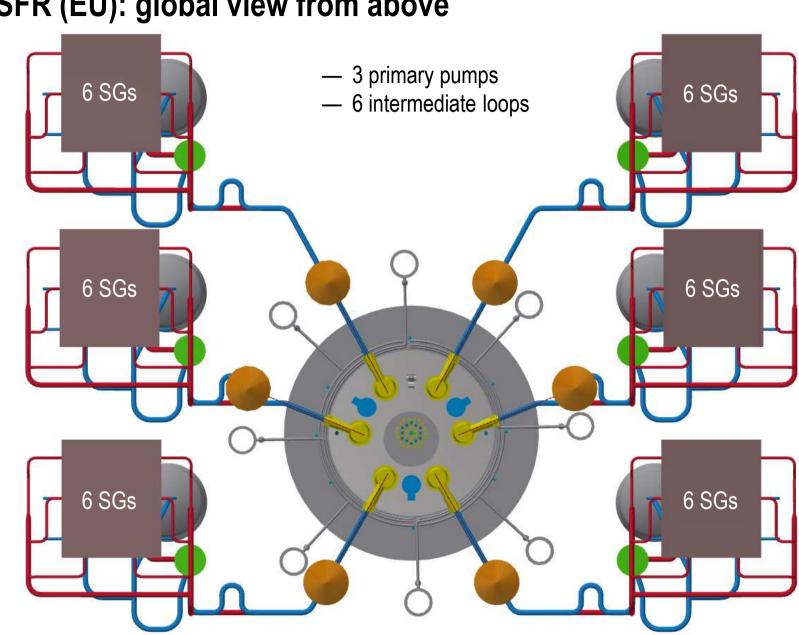


ESFR (EU): radial core layout

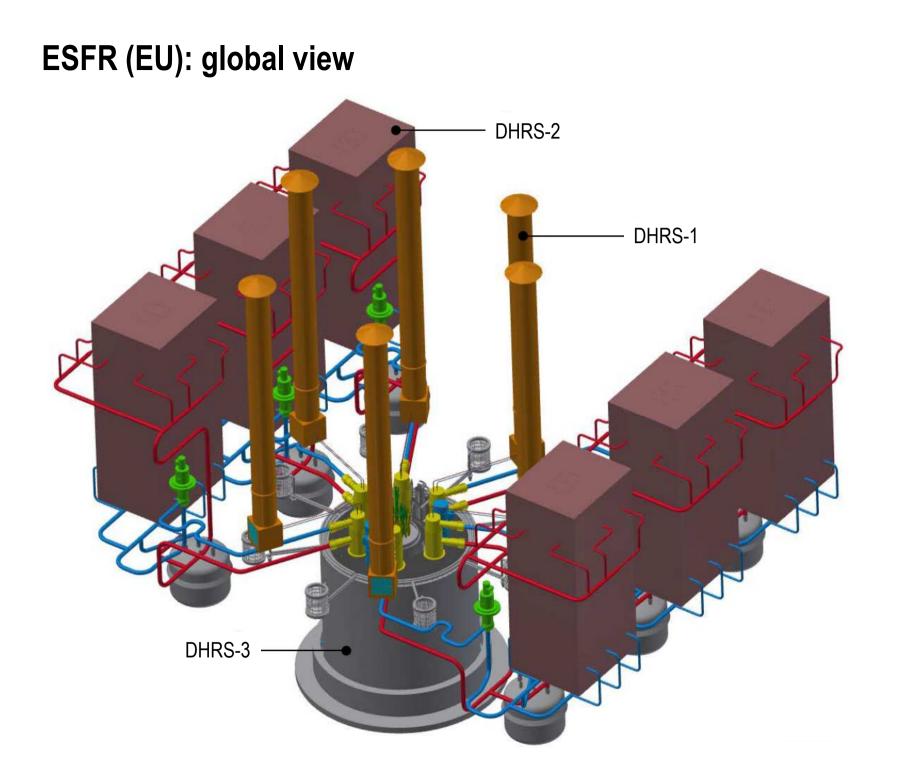
- Perfectly symmetric
- 6 batches = 6-year fuel cycle
- Mixed scheme (no reshuffling)
- Internal storage for 50% of core loading
- Corium discharge tubes
- All DSD rods equipped with passively-activated Curiepoint locks



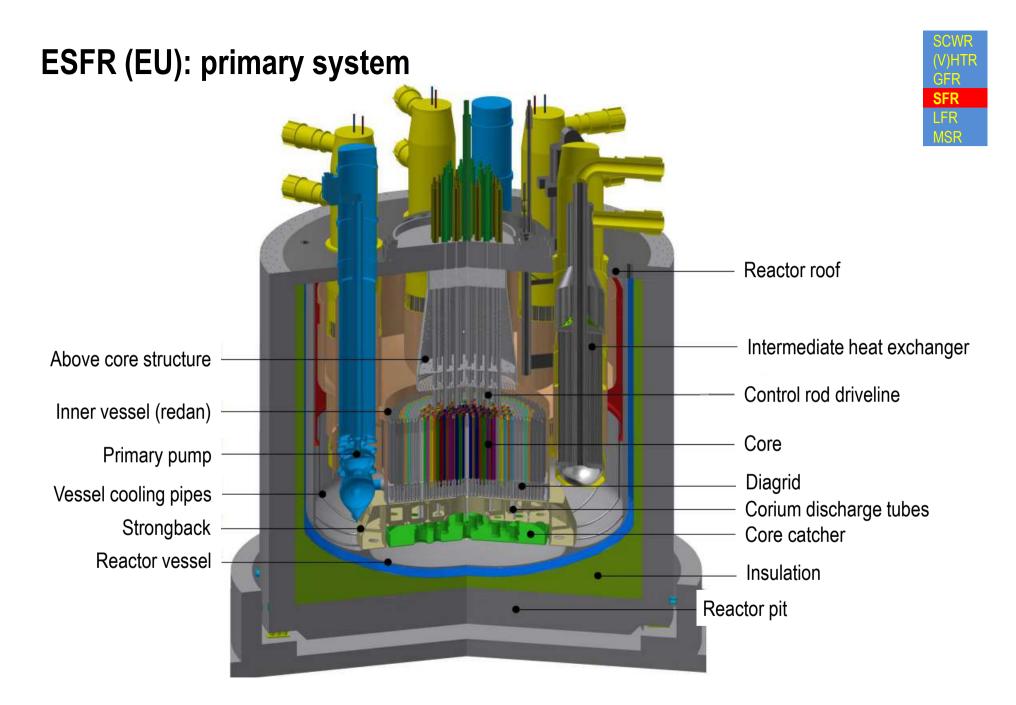
31


ESFR (EU): axial core layout 5 6 5 6 5 5 2 2 4 3 3 3 14 4

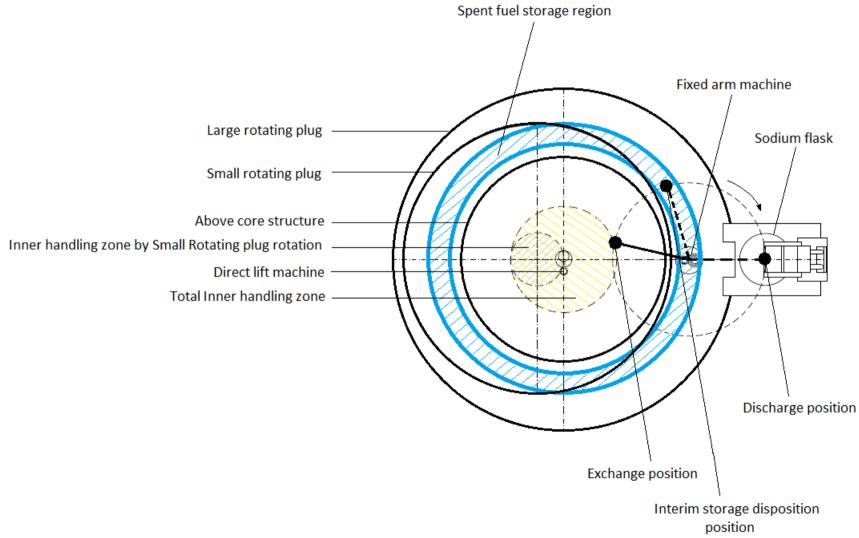
- 1 Inner zone SA
- 2 Outer zone SA
- 3 Control assembly
- 4 Corium discharge path
- 5-Shielding SA
- 6 Internal spent fuel storage

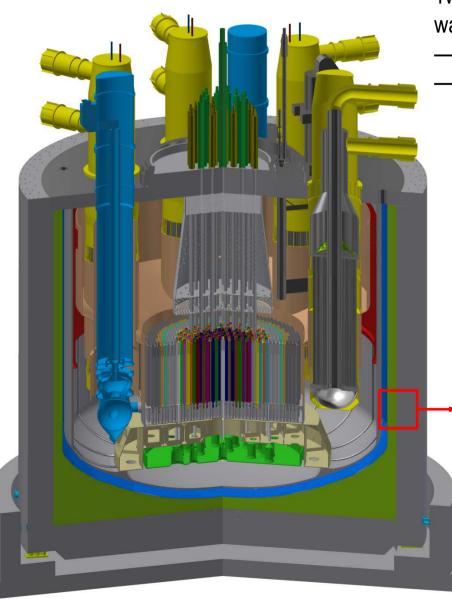

Fissile fuel (~18% Pu content) Fertile blanket Steel blanket Fission gas plenum Sodium plenum Shielding (absorber) (V)HT GFR SFR

LFR MSR



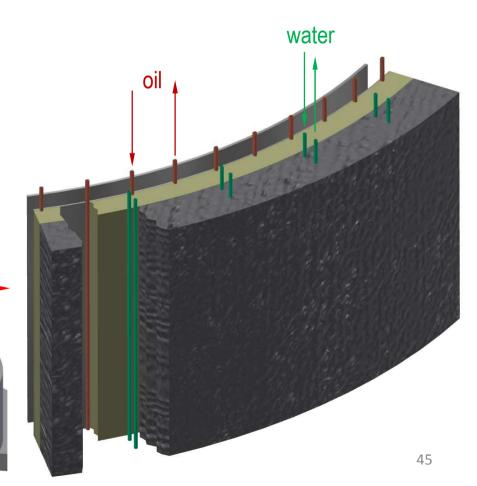
ESFR (EU): global view from above

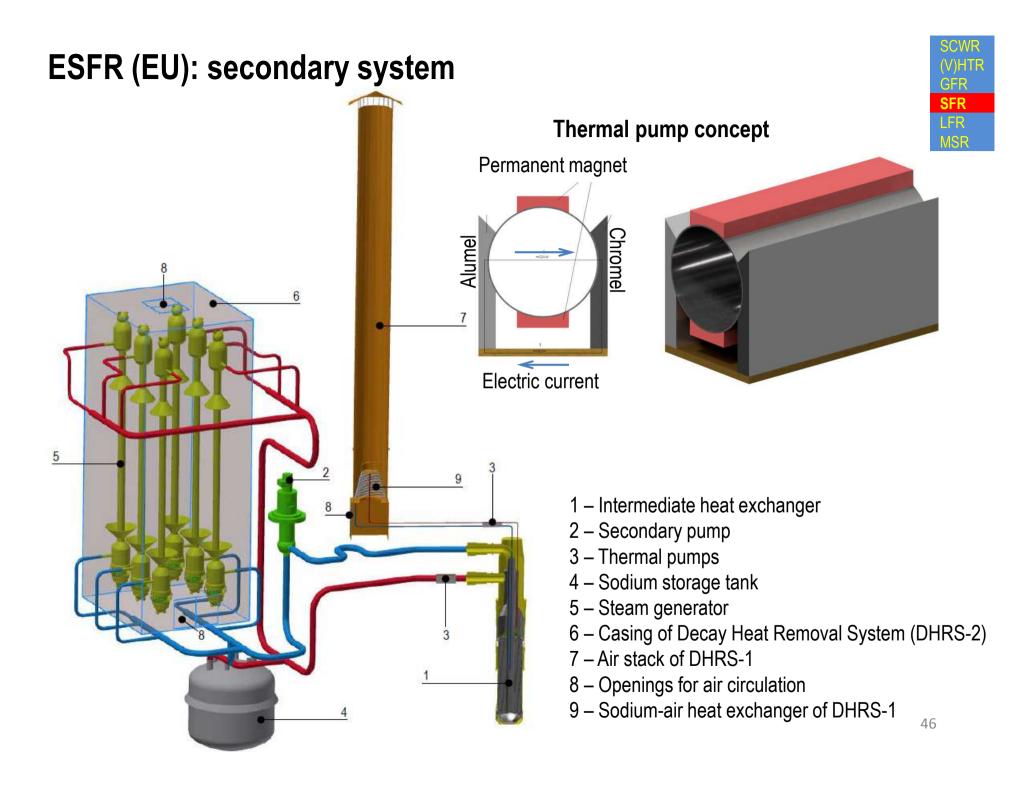




ESFR (EU): in-vessel fuel handling system

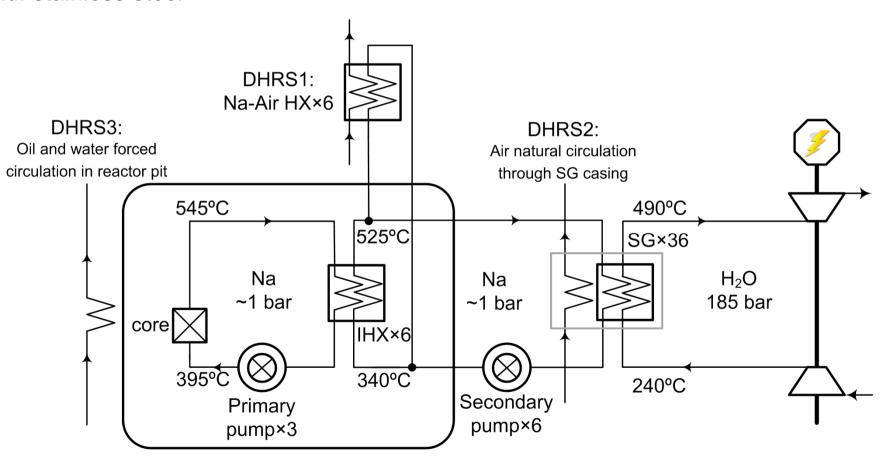
ESFR (EU): pit cooling




Two reactor pit concrete cooling systems (oil and water) suitable for decay heat removal (DHRS-3)

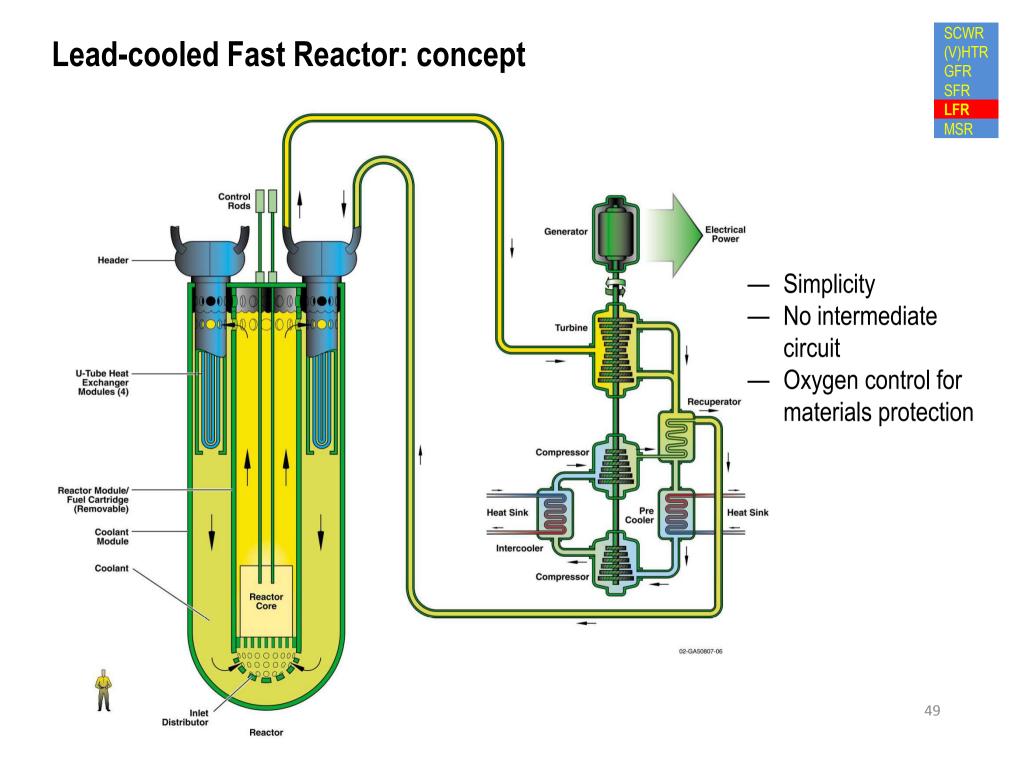
SFR

LFR MSR


- forced convection
- efficient for severe accident mitigation

ESFR (EU): BoP concept

Power: 3600 MWth Fuel: (U-Pu)O₂ Clad: stainless steel



From Gen-III to Gen-IV: improvements to reach the goal(s)

Concept	PV	VR	SC	WR	(V)ŀ	ITR	GF	R	SF	R
Specific design*	EF	PR	HPL	.WR	HTR	R-PM	GC	FR	ES	FR
Thermal power (MW)	43	00	23	00	4	58	24	00	36	00
Efficiency (%)	3	7	~4	14	~4	45	~4	15	~4	1 2
Primary coolant	H ₂	20	H ₂	0	Н	e	Н	е	N	a
Inlet/outlet temp. (C)	296	327	280	500	250	750	400	780	395	545
Pressure (MPa)	~`	16	~2	25	~	7	~	7	~0	.2
Moderator	H ₂	20	H ₂	0	()	No	ne	No	ne
Neutron spectrum	The	rmal	The	rmal	The	rmal	Fa	ist	Fa	st
Breeding gain	<<	< 0	<<	: 0	<<	< 0	~	0	~	0
Reference	[1]	[2	2]	[3	8]	[4	!]	[{	5]
G1: Sustainability	Pc	or	+	\leftrightarrow		?				
G2: Safety & reliability	Go	od							↓	1
G3: Economics	Go	od						?		

- SFR is the most mature concept among GIF fast reactors. However, the weakness of SFR is the risk of sodium-water and sodium-air reaction and corresponding design complication (e.g., intermediate loop). How to improve G2 and G3, keeping G1?
- \rightarrow Use another liquid metal instead of sodium

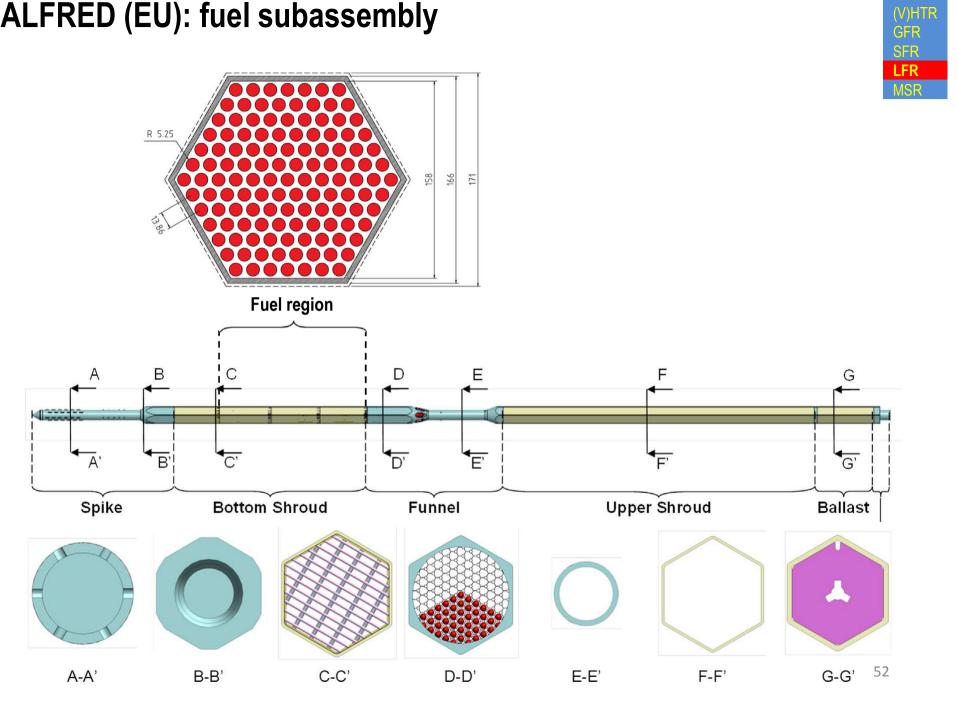
Lead-cooled Fast Reactor: fact sheet

Advantages

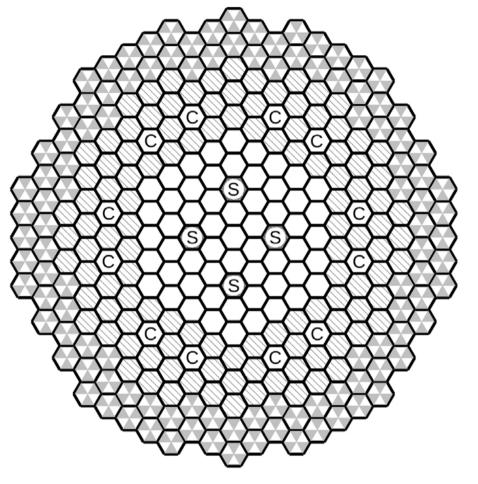
- Potential for new fissile breeding due to fast neutron spectrum
- High density \rightarrow thermal inertia is VERY high
- High thermal conductivity and expansion coefficient → efficient heat removal at low velocities and high natural circulation level
- Passive with water and air \rightarrow no intermediate circuit
- Large margin to boiling (1740° C) \rightarrow no pressurization required

• Challenges

- High density \rightarrow erosion, seismic refueling issues
- At high temperature structural materials (such as iron or nickel) are slowly dissolving in lead flow \rightarrow protection needed
- High void reactivity effect (e.g. gas entry)
- Low margin to freezing (327°C) \rightarrow special safety measures needed
- Designs under development
 - ELFR, ALFRED, BREST-OD-300, SSTAR
- Reactors under operation
 - None (very small operational experience)

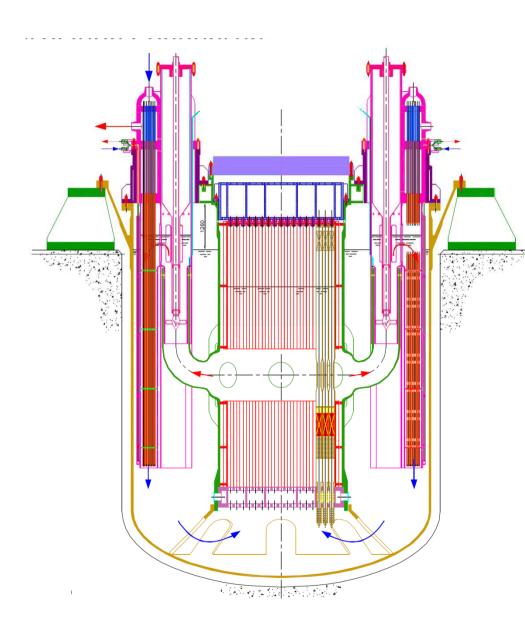

ALFRED (EU): European LFR demonstrator project

Concept	PW	/R	R SCWR		(V)HTR		GFR		SFR		LFR		MSR
Specific design*	EP	'R	HPL	WR	HTR	-PM	GC	CFR	ES	FR	ALF	RED	
Thermal power (MW)	430	00	23	00	45	58	24	100	36	00	3	00	
Efficiency (%)	37	7	~	44	~4	45	~	45	~4	12	~	42	Slow
Primary coolant	H ₂	0	H	20	Н	е	ŀ	le	N	a	F	°b ◄	dissolution of
Inlet/outlet temp. (C)	296	327	280	500	250	750	400	780	395	545	400	480	structural
Pressure (MPa)	~1	6	~2	25	~	7	-	-7	~0	.2	~(0.5	materials
Moderator	H ₂	0	H	20	()	No	one	No	ne	No	one	
Neutron spectrum	Ther	mal	The	rmal	The	rmal	Fa	ast	Fa	ist	Fa	ast	
Breeding gain	<<	0	<<	< 0	<<	: 0	~ 0		~ 0		~ 0		
Reference	[1]	[4	2]	[3	3]	[4]		[5]		[6]		
G1: Sustainability	Po	or	+	\leftrightarrow		?		1		1		↑	Limited
G2: Safety & reliability	Go	od		Ļ				↓	↓	↑	ļ	,↑ ◄	operational
G3: Economics	Go	od		\uparrow				?		,		?	experience


*Specific designs chosen by lecturer

ALFRED (EU): fuel subassembly

SCV


ALFRED (EU): core

- Inner Fuel Assembly
- Outer Fuel Assembly
- C Control Rod
- S Safety Rod
- Dummy Element (shield)

ALFRED (EU): primary system

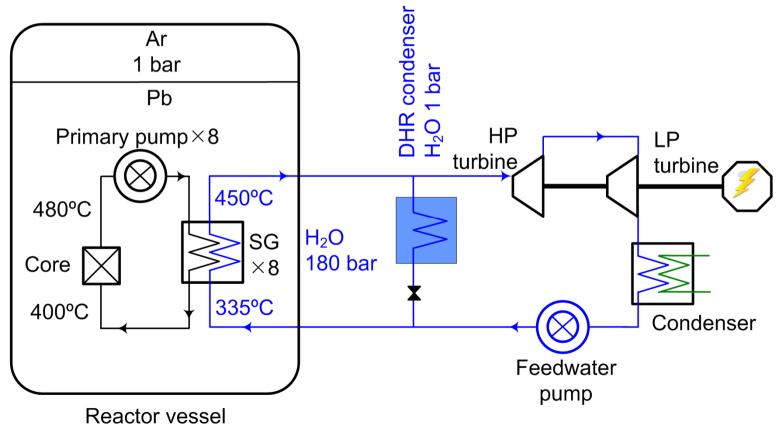
Reactor roof: hot, standard flanged connections, *no rotational plugs*

Fuel assemblies: MOX, grid spacers, hexagonal, wrapped, *extended stem*

Reactivity control: two diverse and redundant systems, control and shut-down rods

Primary system configuration: pool-type, *enhanced natural convection* in accident conditions

Primary pumps: mechanical, at hot leg

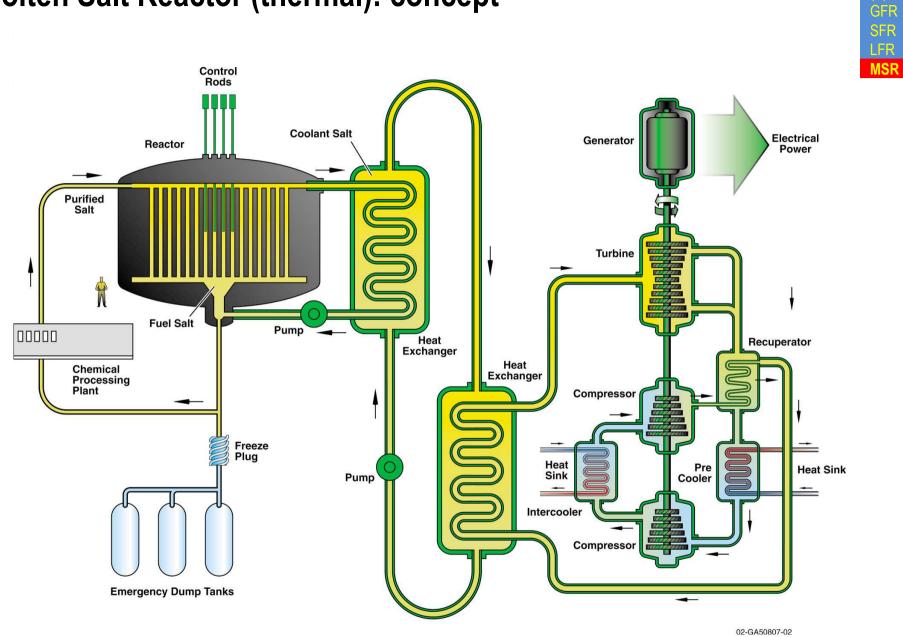

Decay heat removal: isolation condenser connected to dip-coolers with straight double-walled tubes

Reactor and safety vessels: hanged, torospherical bottom head

LFR MSR

ALFRED (EU): BoP concept

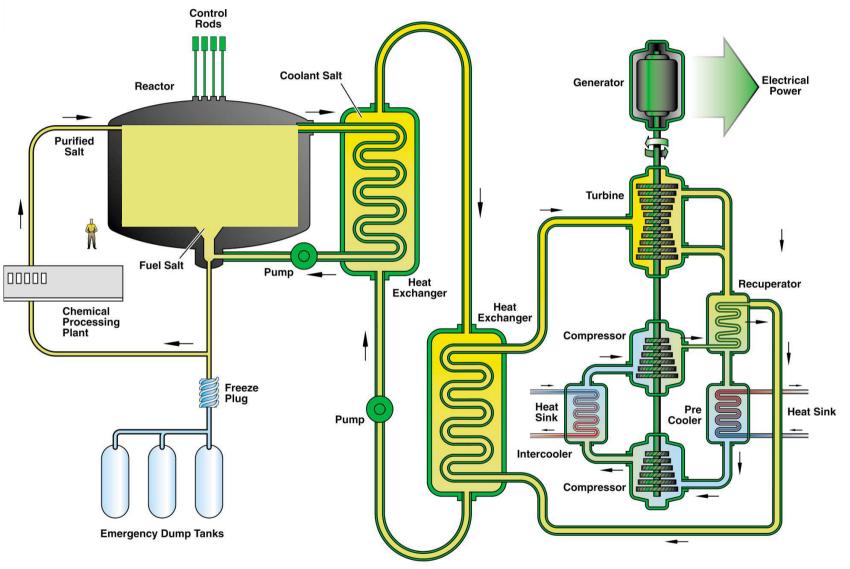
Power: 300 MWth Fuel: (U-Pu)O₂ Clad: Stainless steel


From Gen-III to Gen-IV: improvements to reach the goal(s)

	_			-	_		_				-	
Concept	PV	VR	SC	WR	(V)I	ITR	GI	FR	SF	R	LF	R
Specific design*	EF	PR	HPL	WR	HTR	R-PM	GC	FR	ES	FR	ALF	RED
Thermal power (MW)	43	00	2300		458		2400		3600		300	
Efficiency (%)	3	7	~4	44	~	45	~	45	~4	42	~4	12
Primary coolant	H	<u>_</u> 0	H	20	H	е	H	е	N	а	Р	b
Inlet/outlet temp. (C)	296	327	280	500	250	750	400	780	395	545	400	480
Pressure (MPa)	~`	16	~2	25	~	7	~	7	~0	.2	~(.5
Moderator	H ₂	20	H ₂	20	()	No	ne	No	ne	No	ne
Neutron spectrum	The	rmal	The	rmal	The	rmal	Fa	ast	Fa	ast	Fa	ast
Breeding gain	<<	< 0	<<	< 0	<<	< 0	~	0	~	0	~	0
Reference	[1]	[2	2]	[、	3]	[4	1]	[{	5]	[6	6]
G1: Sustainability	Pc	or	+	→	?		1		↑		-	
G2: Safety & reliability	Go	od							Ļ	↑	↓	↑
G3: Economics	Go	bod			1		?		\downarrow			?

(V)HTR GFR SFR LFR MSR

- In all considered systems the accidents with core meltdown has extremely low probability, but they are still possible. How to practically eliminate the core meltdown?
- $\rightarrow\,$ Use the design with liquid fuel


Molten Salt Reactor (thermal): concept

SCM

(V)HTI

Molten Salt Reactor (fast): concept

SCWR (V)HTR GFR SFR LFR MSR

02-GA50807-02

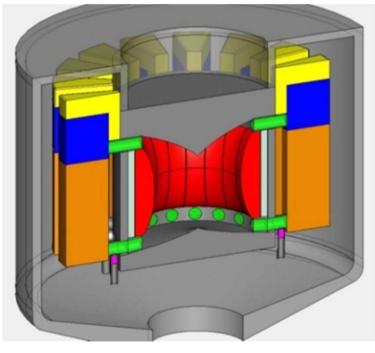
Molten Salt Reactor (fast): fact sheet [7]

Advantages

- Potential for new fissile breeding due to fast neutron spectrum
- Large margin to boiling \rightarrow no pressurization required
- Strongly negative fuel salt density (void) reactivity effect
- High efficiency due to high temperatures
- No structural materials \rightarrow no radiation damages
- Possibility to add or remove fuel salt and simpler reprocessing
- Continuous removal of insoluble fission products

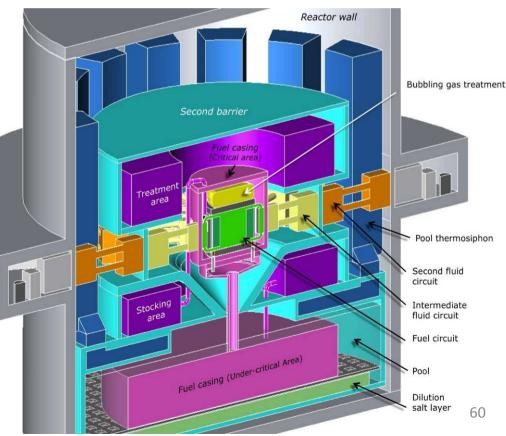
• Challenges

- Strong corrosiveness of molten salt fuels
- Lack of usual barriers (fuel cladding) \rightarrow new safety approach needed
- High fluence on vessel
- Part of fuel always outside core \rightarrow larger fuel inventory needed; reduced β
- Low margin to freezing
- Low or unknown solubility of compounds formed during operation
- Designs under development
 - MSFR, MOSART, FHR
- Reactors under operation
 - None

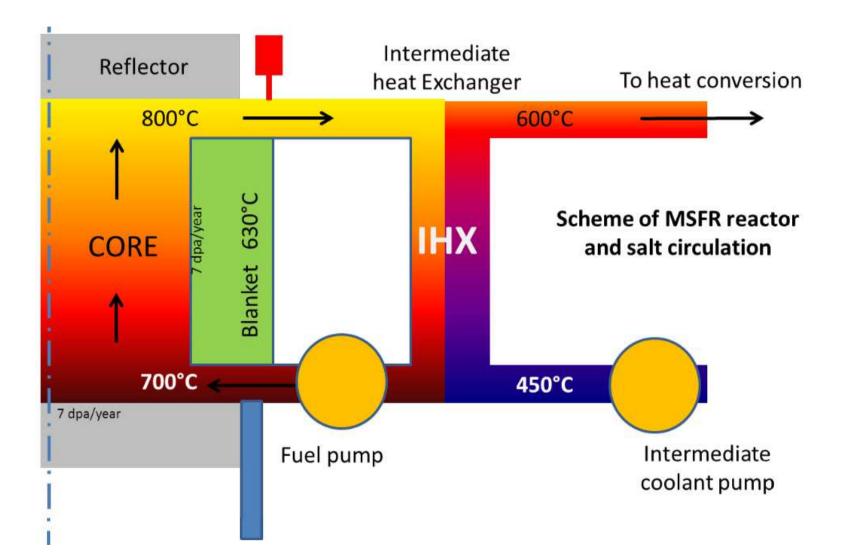

SFR LFR

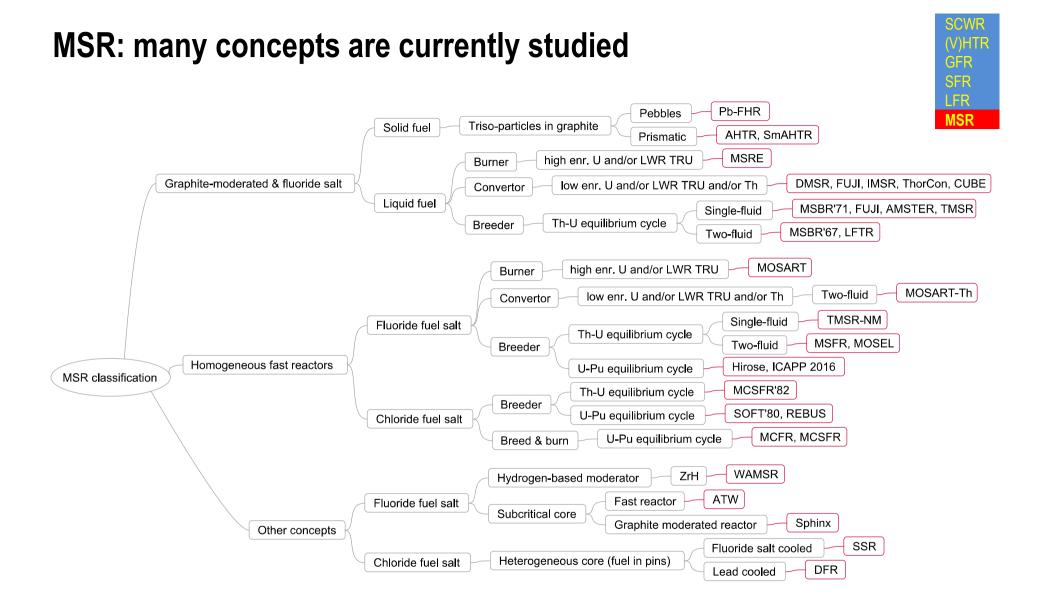
MSR

MSFR (EU): core and reactor


Fuel circuit includes:

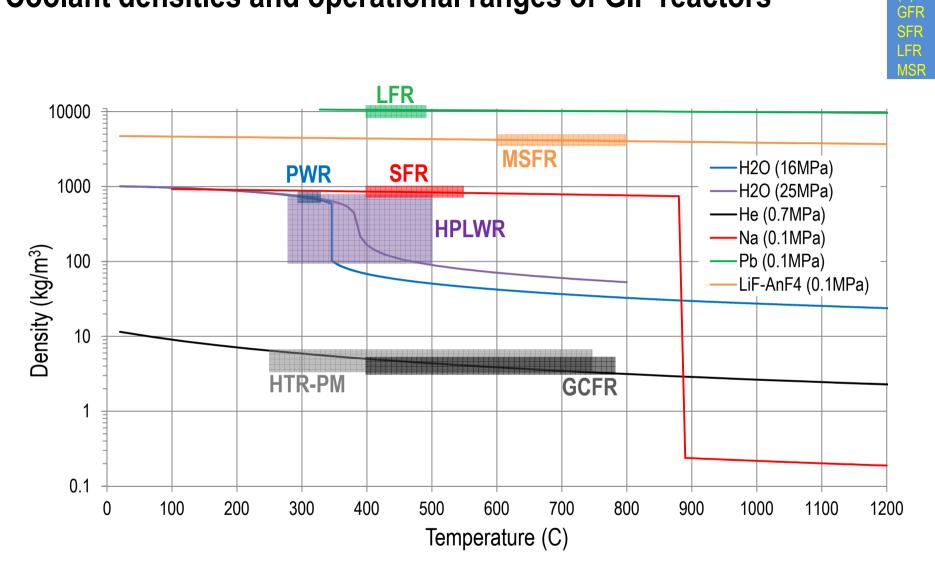
- core (open volume with shape optimized for fluid dynamics);
- 16 external recirculation loops, each includes
 - pipes (cold and hot region);
 - bubble separator;
 - pump;
 - heat exchanger;
 - bubble Injection.


3 circuits:


- Fuel circuit
- Intermediate circuit
- Energy conversion system
- + Draining tanks

MSFR (EU): BoP concept

Summary


We briefly considered 6 specific reactor designs representing 6 GIF concepts in order to discuss some advantages and challenges of these designs (but not to rank the designs!)

Concept	PWR		SCWR		(V)HTR		GFR		S	SFR		LFR		SR
Specific design*	EPR		HPL	NR	HTR	-PM	G	GCFR	E	SFR	ALF	RED	MS	FR
Thermal power (MW)	4300		230)0	45	58		2400	30	500	30)0	30	00
Efficiency (%)	37		~4	4	~4	5		~45	~	42	~4	12	~4	13
Primary coolant	H ₂ O		H ₂	0	Н	е		He		Na	P	b	LiF-T (Pu-N	· · ·
Inlet/outlet temp. (C)	296 3	27	280	500	250	750	40	0 780	395	545	400	480	600	800
Pressure (MPa)	~16		~2	5	~	7	1	~7	~	0.2	~0	.5	~0	0.2
Moderator	H ₂ O		H_2	С	C	;	N	lone	N	one	No	ne	No	ne
Neutron spectrum	Therm	al	Ther	mal	Ther	mal		Fast	F	ast	Fa	st	Fa	ist
Breeding gain	<< 0		<<	0	<<	0		~ 0	-	- 0	~	0	~	0
Reference	[1]		[2]]	[3	8]		[4]		[5]	[6	6]	[7	7]
G1: Sustainability	Poor	,	<	\leftrightarrow		?		1		1			1	
G2: Safety & reliability	Good		Ļ		1			\downarrow		1	Ļ	↑	7	?
G3: Economics	Good		1		1			?		Ļ		?	7	?

*Specific designs chosen by lecturer

(V)HT GFR SFR LFR MSR

Coolant densities and operational ranges of GIF reactors

• What conclusions can we derive from this plot?

SCW

References

- 1. R. Leverenz, L. Gerhard, A. Göbel, "The European Pressurized Water Reactor: A Safe and Competitive Solution for Future Energy Needs", Proc. of International Conference Nuclear Energy for New Europe 2004, Portorož, Slovenia, September 6-9, 2004.
- T. Schulenberg, J. Starflinger, P. Marsault, D. Bittermann, C. Maráczy, E. Laurien, J.A. Lycklama à Nijeholt, H. Anglart, M. Andreani, M. Ruzickova, A. Toivonen, "European supercritical water cooled reactor", Nuclear Engineering and Design 241 (2011) 3505–3513.
- 3. Z. Zhang, Y. Dong, F. Li, Z. Zhang, H. Wang, X. Huang, H. Li, B. Liu, X. Wu, H. Wang, X. Diao, H. Zhang, J. Wang, "The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation", Engineering 2 (2016) 112–118.
- 4. R. Stainsby, K. Peers, C. Mitchell, C. Poette, K. Mikityuk, J. Somers, "Gas Cooled Fast Reactor research in Europe". Nuclear Engineering and Design 241 (2011), 3481-3489.
- K. Mikityuk, E. Girardi, J. Krepel, E. Bubelis, E. Fridman, A. Rineiski, N. Girault, F. Payot, L. Buligins, G. Gerbeth, N. Chauvin, C. Latge, J.-C. Garnier, "ESFR-SMART: new Horizon-2020 project on SFR safety", IAEA-CN245-450, Proceedings of International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable, Development FR17 conference, 26-29 June 2017, Yekaterinburg, Russia.
- 6. P. Lorusso, S. Bassini, A. Del Nevo, I. Di Piazza, F. Giannetti, M. Tarantino, M. Utili, "GEN-IV LFR development: Status & perspectives", Progress in Nuclear Energy 105 (2018) 318–331.
- 7. B. Hombourger "Conceptual Design of a Sustainable Waste-BurningMolten Salt Reactor", EPFL, PhD thesis, 2018.