Simulation of neutronics for advanced reactors:
Monte-Carlo method

Konstantin Mikityuk
Paul Scherrer Institut, Switzerland

Joint IAEA-ICTP Workshop on
Physics and Technology of Innovative Nuclear Energy Systems
20-24 August 2018, ICTP, Trieste, Italy

QOutline-2

Result estimates
— Scoring and collecting the results using batches
— Statistical accuracy and law of large numbers
— Central limit theorem and confidence intervals

Non-analog Monte Carlo
— Result estimates of neutron flux
— Statistical weight
— Russian roulette
— Splitting

Interactions
— Real or virtual
— Collision type: scattering (isotropic)
— Collision type: absorption = fission + capture

Literature

J. Leppanen, Development of a New Monte Carlo Reactor Physics Code,
ISBN 978-951-38-7018-8, PhD thesis, VTT Publications (2007), Chapters 5

and 6.

A. Hebert, Applied Reactor Physics, ISBN 978-2-553-01436-9, Library and
Archives Canada, Canada (2009), Chapter 3.11.

Introduction

Introduction: Monte Carlo method in neutron transport calculations

The Monte Carlo method is a technique for estimating the expected value of
a random variable together with its standard deviation.

— In reactor physics it is done by a direct simulation of a population of
neutrons by sampling individual neutrons.

— For each neutron a sequence of physical random events is simulated
using a sequence of random numbers.

— Some parameters of average behavior of the population are recorded
(scored).

Introduction: stochastic versus deterministic

Monte Carlo is a stochastic method differing from the deterministic methods

— Deterministic methods (e.g. discrete ordinates method or method of
characteristics) solve the neutron transport (Boltzmann) equation for
angular flux and k-effective.

— Stochastic method (Monte Carlo) find the parameters of interest (e.g. k-
effective, reaction rates) by simulating the random walk of individual
neutrons. No neutron transport equation is solved.

Introduction: continuous-energy versus multi-group

Monte Carlo can use the following two representations of the nuclear data

— Continuous-energy, I.e. based on all data points available in ENDF files
without any condensations. ACE format data libraries are prepared using

the NJOY code.

— Multi-group, I.e. nuclear data condensed in energy using the energy group
structures, similarly to conventional deterministic codes.

Most of the modern Monte Carlo codes (MCNP, Serpent) are based on the
continuous-energy representation of the nuclear data.

In our Matlab exercises we will use multi-group representation of the nuclear
data.

Introduction: analog versus non-analog

— Analog Monte Carlo:

explicit, ‘as is’ simulation of individual neutrons from emission to
absorption without any simplifications.

— Non-analog Monte Carlo:
simulations using simplifications, tricks, acceleration techniques, etc.

Mathematical background

Math: a random variable

A random variable x Is a variable whose possible values are numerical
outcomes of a random process (experiment), e.g. flipping a coin or rolling a
die.

X can be
* discrete, i.e. taking one of a specified finite list of values (e.g. number
of dots on a dice face);
or
e continuous, i.e. taking any numerical value in a specified interval (e.g.
atmospheric pressure).

Continuous random variable uniformly distributed between 0 and 1 is
denoted ¢&. All other random numbers will be derived from &.

In MATLAB exercise £ is calculated using the Matlab pseudo-random number
generator rand(Qbased on the Mersenne-Twister algorithm (see Wikipedia).

Math: probability density function (PDF)

A probability density function (PDF) f (x) describes the relative likelihood for
the continuous random variable x.

Examples:
— angle between bike wheel valve and horizon (uniformly-distributed PDF)
— atmospheric pressure (normally-distributed PDF)

dP = f (X)dx Is the probability for x to have a value between x and x+dx.

The probability for x to have a value between a and b

b b
Pla<x<b)= de=jf(x)dx

The total area below the PDF curve = ?

Math: cumulative distribution function (CDF)

Probability that a random variable takes a value less than or equal to x:

X X
F(x) = f dP = f f(xHdx'
F(x) changes from 0 to 1.

PDF CDF
Z = FEEvalaZa
TN RES IRER
A []
AR /L]
Y = NEN = =

Math: sampling

Sampling Is selection of random values
according to the probability distributions (CDF
or PDF) with the goal to represent with these
few values the whole population.

Population

Sampling approach:

1. Generate & (uniformly distributed
between 0 and 1)

2. Use £ to generate random values for

parameters of interest using CDF by

inverse method 5 |

O
. O
This is only one approach. There are much OO0 @ s JEC
more techniques... o |l w 12
Population

Math: sampling by inverse method

Sampling of random variable by inverse method is done using the inverse of
the Cumulative Distribution Function F (x).

1. Generate & (uniformly distributed between 0 and 1)

2. The cumulative probability of the event assumed equalto &: F (x) =¢&

3. xis found from the inverse function: x = F1(&)

Example: sampling of exponential distribution

The inverse of CDF is known only in simple case (exp — In, sin — arcsin),
In most real cases the inverse function is not known analytically. In such cases

the inverse could be found numerically or by acceptance-rejection technique
(not considered here)

Neutron tracking

Neutron tracking: introduction

Neutron tracking is simulation of a single neutron movement through the
different material regions of the reactor core.

A neutron track — length of path that neutron makes between two interactions
(collisions). The track can be cut short by the boundary between materials.

A neutron history — entire set of tracks made from initial emission to final
absorption or escape.

Neutron tracking: sampling of free path length in homogeneous medium

Sampling of the free path length between two collision points (0 and x) is the
basis of neutron tracking. For homogeneous infinite medium:

Macroscopic XS is interaction probability P per path length travelled by neutron:

Increase of probability to have the first interaction moving from x to x+dx:
dpl(X) — Po(X)dP

Decrease of probability NOT to interact moving from x to x+dx :
dPO — —dPl(x) — —PO(X)dP — _Po(x)ztdx

Non-interaction probability:
Py(x) = exp(—xZ;)

Neutron tracking: sampling of free path length in homogeneous medium

Increase of probability that neutron has first interaction moving from x to x+dx:
dP;(x) = Py(x)dP = Py(x)X;dx = X; exp(—xX;) dx

PDF of free path length: f(x) = dP;/dx = Z; exp(—xX;)
CDF of free path length: F(x) =1 — exp(—xX;) =&

The inverse function: F71(®) = —-In(1 -9 /Z,

Sampling of free path length by inverse method:

x = —In(®)/, 0

where & (uniformly distributed between 0 and 1)

Neutron tracking: homogeneous versus heterogeneous materials

Neutron free path length sampling Is valid in homogeneous material (X, Is
Independent on space coordinate).

For heterogeneous materials (combination of several homogeneous materials
or cells) collision probability changes each time when neutron crosses a cell
boundary.

What to do?

— stop neutron at boundary surface and adjust or re-sample remaining
distance to the next collision point (ray tracing);

— do not stop neutron at boundary surface but instead consider for each
material fictitious XSs which equalize total XSs of all materials (delta
tracking)

Neutron tracking: ray-tracing

Assume that the free path length sampled for matl is Xx;.
It can happen that neutron ends up at different material (mat2).

To re-adjust the coordinate of the next collision:

— Wwe preserve the sampled non-interaction !
probability:
exp(—szt,z) = exp(—(xl—d)Zm) =3

or (equivalent) <

— We stop at the boundary and re-sample x,

In both cases we should calculate distance to the boundary d :
could become very expensive for complicated geometry @)

Neutron tracking: delta-tracking

Goal: to sample the next collision point without handling the surface crossings
IS an acceptance-rejection technique.

Proposed by Woodcock in the 1960s.

Used in Serpent Monte Carlo code as a basic algorithm (optional in other
codes)

Based on a concept of virtual collision (or pseudo-scattering)
Scattering reaction (fictitious) in which angular and energy distributions are

characterised by 6-functions (6(E,) and 6(€2,)) and state of neutron Is
completely preserved

Neutron tracking: delta-tracking

Key idea: to add an appropriate virtual collision XS (X,,) to each material in

such a way that the modified total XS (X,) has the same value in all materials.

Instead of heterogeneous material composition we obtain one pseudo-
homogeneous material

This eliminates the need to adjust free path length each time neutron
enters new material and the need to calculate surface distances.

22

Neutron tracking: delta-tracking

The virtual collision XS is given by:
Ly(r E) = En(E) — (1 E)

where X_(E) Is the majorant, maximum of all total XSs in the system (the same
for all materials).

Delta-tracking starts with sampling the free path using the majorant

x =—In(&)/Zp

At the new collision point the collision type (real or virtual) is sampled by
generating the random € and comparing it with

P= Yy(rE)/Zn(E)

P > € — virtual, otherwise real

Neutron tracking: delta-tracking
If the collision is real, the collision type is sampled, if virtual—nothing changes
In other words: the neutron always travels by steps (free paths) determined by

the most “opaque” material in the system and when it realizes that it is
unnecessarily too short it just continues.

Neutron tracking: delta-tracking

Advantage

— it does not matter if the neutron crosses one or several material boundaries
between two collision points, we just need to know where the collision point
IS (what Is the total XSs at this point).

Disadvantages

— surface crossings are not recorded at all (only collision estimator of neutron
flux available);

— surface flux and current can be easily estimates only at outer geometry
boundary;

— when there is small-volume heavy absorber in the geometry, it determines
the majorant and the efficiency is reduced.

Result estimates

Result estimates: scoring

Monte-Carlo game consists of two parts:
— simulation of neutron histories (discussed above)
— collection of results
Recorded events = scores are combined to obtain statistical estimates

Collection of results similar to measurements in an experiment and based on
evaluation of flux integrals:

R = !J!f(r,E)qb(r,E)dthdE

where f (r, E) is response function, e.g. 1 (to estimate flux) or X, (to estimate
reaction rate)

Integration over time is equivalent to averaging over many neutron histories.
Normalization should be applied afterwards...

Result estimates: collecting the results using batches
All scores from one generation of neutrons n are grouped in a single batch.
Batch = generation.
Number of neutron histories in one batch I, (may differ from batch to batch)
Number of batches N
In
Estimate of reaction rate in generationn: R, = z flot
More generally: estimate X, (e.g. could be ratio of riezalction rates)
X, Is random parameter, changing from batch to batch, not so interesting

More interesting — statistically averaged (mean) values + standard deviations

Result estimates: statistical accuracy

Mean value = the result
N
_ 1
X — N z XTL
n=1

Standard deviation = statistical accuracy

N
1 _
o) = [Fv =T Z(Xn—)oz
\ i

Frequently used quantities related to the standard deviation
— variance 0%(X))
— relative statistical error E(X) = o(X)/X

Result estimates: statistical accuracy
The result of Monte Carlo simulation always given in the form X + o(X)

The longer simulation runs the closer the mean of the results to the expected
value = Law of large numbers

lIimo=20 D

n—->00

Qualitative meanings of the statistical accuracy:

— how much the mean value is likely to deviate from the expected value

— how much results of two identical but independent simulations are likely to
differ

In any case statistical accuracy of the simulation # physical accuracy of the
simulation

Result estimates: central l[imit theorem

To find statistical accuracy of estimate X, we need in addition to standard
deviation to know the probability distribution function (PDF).

Central limit theorem states that sum (or mean) of a large number of arbitrarily
distributed random variables is itself a random variable following the normal
distribution. €1)

Assumptions:

— distribution is the same for each term in the sum
— values are independent

— both mean and standard deviation exist and are finite

31

Result estimates: confidence intervals

Confidence interval determines probability at which the result lies within a
certain distance from the true mean value of the distribution.

In case of normal PDF, e.g. 1.02 £ 0.01
means that the true result lies

— with probability of 68% in the interval y Y
1.01-1.03 and il
— with probability of 95% In the interval o5% o aren

100 - 104 99.7% of area

Non-analog Monte Carlo

Non-analog Monte Carlo: statistical trickery

Non-analog methods could be used instead of analog ones in order to make
calculations faster

1. toIimprove statistics on reaction rates by estimating the flux (important
when reaction rate Is low)

2. to iImprove the random walk algorithm in order to score more frequently the
neutrons having largest contribution to the results and to get rid of the
neutrons with low importance

Non-analog Monte Carlo: result estimates

Analog

Score physical interactions for individual reactions (fission, capture, scattering,
etc.)

Non-analog

Estimate flux and multiply it by the value of the response function (e.g. macro-
XS).

The flux can be found by
— Collision estimate
— Track length estimate

— Surface and current estimate

Non-analog Monte Carlo: statistical weight

Analog
Each neutron history represents the transport of a single particle

Non-analog

Each neutron is assigned with a statistical weight W and

— represents the contribution of several particles (W > 1); or
— has the same significance as analog simulation (W =1); or

— has less significance than analog simulation (W < 1).

Non-analog Monte Carlo: statistical weight

k-effective of the cycle is the total weight of neutrons in the system divided by
the number of neutrons born N, (fixed value = size of the batch).

At the beginning of each cycle the total weight of neutrons is normalised to
Nyorm- THIS IS equivalent to dividing the fission source by k-effective.

When W > 1 neutron splitting and when W < 1 neutron terminating are
considered.

Non-analog Monte Carlo: Russian roulette

When weight of a neutron reduces, its contribution to overall results reduces
too and tracking of such a neutron becomes a waste of computing time. How to
get rid of too “light” neutrons?

Solution: assign a cut-off value for weight and play Russian roulette for
neutrons with the weight below the cut-off.

One of the simple implementations:

— for each neutron set the terminate probability as P = (1 - W / W,), where W,
IS the weight at the beginning of the generation;

— generate random ¢;
— If P > ¢ terminate the neutron;
— otherwise and if P > 0 keep the neutron and set W = W,

Non-analog Monte Carlo: splitting

The way around: when the weight of the neutron born in fission or (n,2n)
reaction is too high, it should be split.

One of the simplest algorithms is for every neutron with W > 1.
— Generate random ¢

— calculate N = floor(W) = [|W]
— IfW-=N>¢, split the neutron in N + 1 identical neutrons with W / N;
— otherwise, split the neutron in N identical neutrons with W/ N

Interactions

Interactions: real or virtual

Once the collision point is sampled using either ray-tracing or delta-tracking
method, the interaction type is sampled.

Non-analog (delta-tracking only): sample if collision real or virtual

P=Zy(rE)/Zm(E)
¢=rand()

_ Y
Virtual Real

Interactions: collision type
Both non-analog (when reaction is real) and analog: sample reaction type*

= gcattering
= absorption (capture + fission)

P =25(r E)/2:(T,E)

¢=rand()

. Y N .
Scattering Absorption

* (n,2n) reaction not considered

Interactions: scattering

Analog and non-analog are the same (weight does not change).

Scattering assumptions:
— Isotropic: new direction and energy are sampled independently.

— Anisotropic: new direction and new energy are not independent (not
considered here, see Leppéanen pp. 105-111 for more details)

Interactions: isotropic scattering

Direction and energy of secondary neutron are sampled independently
assuming isotropic scattering in the laboratory system (simplification)

Direction: 6 = arccos[2¢ - 1] and¢=21¢, z
x(r0,9)

\w)\m

Energy E' is sampled by the inverse method:
¢=rand()
Integrate numerically CDF ~ F(E,E") =
until F(E, E') = ¢

X

[Z4(E > E")dE"
fooo Xs(E - E")dE"

Interactions: absorption = capture + fission

A simple method (combination of analog and non-analog) to be used in our
Matlab exercise:

— Neutron is not terminated but its weight is changed by the eta-value (number
of neutrons emitted per neutron absorbed):

)

W' =w=

2g
weight(iNeutron) = weight(iNeutron) * (SigP/Sigh)

— Automatically the neutron is terminated in non-multiplying regions

— Energy E' of neutron is sampled by the inverse method:

¢=rand()
Integrate numerically CDF until F(E) = ¢

MATLAB exercise

22
23
24
25
26
27
28
29
30
31
32
33
34
25
Ja
37
38
39
40
41
42
43
44
43
48
47
43

Humber of source neutrons
nunMeutrons born = 100;

Number of inactive source cycles to =2kip before starting k-eff
accumulation
nunCycles inactive = 100;

HNumber of active source cycles for k-eff accumumlation
numCycles active = 2000;

S5ize of the square unit cell
pitch = 3.6 %Icm

Path to macroscopic cross section data:

path (path, '. .02 .Macro.X5.421g"'):

Fill the structures fuel, clad and cool with the cross sections data
fuel = macrod4dl TC2 03 200K;

clad macro4dl Zry 600K:

cool macro42l H20E &00K:

Define the majorant: the maximum total cross section wvector
SigTmax = max([fuel.5igT; clad.5igT; cool.5igT]):

Humber of energy groups
ng = fuel.ng;

INFUT

INFUT

INFUT

INFUT

INFUT
INFUT
INFUT

47

50
=l
52
33
54
S5
56
a7
58
o
&0
6l
62
63
ad
65
66
a7
68
69
70
71
72
73
T4
15
T8
77
T8

Detectors

detect5 = zeros(l,ng):

Initialize your new detector here

Four main wvectors describing the neutrons in a batch
®x = zeros(l,numNeutrons born*2);

¥ = zZeros(l,nunMNeuntrons born®2);

weight = ones (1, numNeutrons born#2) ;

iGroup = ones(l, numieutrons born*2);

Heutrons are assumed born randomly distributed in the cell with weight 1

with =zampled fission energy sSpectrum
nuneutrons = numNeutrons born;
for iNeutron = linumNeutrons
X (iNeutron) = rand()*pitch;
vi{iNeutron) = rand()*pitch;
weight (iHeutron) = 1;
% Sample the neutron energy group
iGroup (iNeutron) = find({cumsum(fuel.chi) >= rand().

Prepare wvectors for keff and standard deviation of keff
keff expected = ones(l,numCycles active):

sigma keff = zeros(l,numCycles active):

keff active cycle = ones(l,numCycles actiwve);
virtualColli=sion = false;

1,

"*first') s

48

a0 % Main (power) iteration loop

g1 - [for iCycle = 1: (mumCycles inactive + numCycles active)

g2

83 % Normalize the weights of the neutrons to make the total weight egual [Co
a4 % numNeutrons born (eguivalent to division by keff cycle)

BS = weight = (weight ./ sum(weight,2)) * nunMeutrons born;

86 — weight) = weight;

g7

g8 E-—
29 %2 Loop over neutrons

g0 — [for iNeutron = 1:numMeutrons

91

92 - abzorbed = false;

93

94 E -
95 % Neutron random walk cycle: from emission to absorption

96

g7 — [while ~absorbed

98

99 % Sample free path length according to the Woodcocock method

100 — freePath = -logirand()) /5igTmax (iGroup (iNeutron)) :

101

102 — if ~wvirtualCollision

103 % Sample the direction of neutron flight assuming both

104 % fis=zion and scattering are isotropic in the lab (a strong
145 %2 assumption!)

106 — teta = pi*rand():

107 — phi = 2.0%*pi*rand()

log — dir¥ = zin(teta)*cos(phi)

1o — dir¥ = sin{(teta)*sin(phi) ;

110 — end

112
113
114
115
114
117
11a
115
120
121
122
123
124
125
1246
127
128
125
130
133
132
133
134
135
1348
137
138
135
140
141
142
143
144

Fly
X (iNeutron) = x(iNeutron) + freePath * dirX;
v({iNeutron) = y(iNeutron) + freePath * diry¥;

If outside the cell, find the corresponding point inside the

cell

while x(iNeutron) < 0, x(iNeutron) = X (iNeutron) + pitch; end

while y{iNeutron) < 0, y{iNeutron) = y(iNeutron) + pitch; end

while X (iNeutron) > pitch, X(iNeutron) = X(iNeutron) - pitch; end
while y(iNeutron) > pitch, vy (iNeutron) = y(iNeutron) - pitch; end
Find the total and scattering cross sections

if x(iNeutron) > 0.9 && X(iNeutron) < 2.7 % INPUT

Sigh = fuel.S5igF(iGroup (iNeutron)) + fuel.S5igC({iGroup (iNeutron)) + fuel.S5igL(iGroup (iNeutron
S5igE = fuel.S5ig5{14+0} (iGroup (iNeutron),:)':
SigP = fuel.SigP(iGroup (iNeutron})

elzeif x(iNeutron) < 0.7 || x(iNeutron) > 2.9 % INPUT
Sigh = cool.5igC(iGroup (iNeutron)) + cool.S5igL(iGroup (iNeutron)):
S5igs = cool.5ig5{14+0} (iGroup (iNeutron),:)':
S5igP = 0;

else
Sigh = clad.5igC(iGroup (iNeutron)) + clad.SigL(iGroup (iNeutron)):
S5igs = clad.S5ig5{14+0} (iGroup (iNeutron),:)"':
S5igP = 0;

end

Find the other cross sections

total
5igT = 5igh + 5ig5_sum;
virtual
5igV = SigTmax (iGroup (iNeutron)) - 5igT;

50

144
147
l4s
143
150
151
152
153
154
155
1548
157
158
153
140
16l
laz
143
lad
145
la6
1a7
1&8
169
170
171
172
173
174
175
176
177
178
179

% Sample the type of the colli=sion:
if 5igV/5igTmax (iGroup (iNeutron))

virtualCollision = true;
else % real colli=zion
virtualCollision = false;

% Sample type of the collision:
if SigS_sumeigT > rand(}) % i

virtual (do nothing) or real

» rand() % wvirtual colli=ion

scattering or absorption
sotropic scattering

% Score scatterings with account for weight divided by the

% total =scattering cross sect
detectS5 (iGroup (iHeutron)) =

Insert your new detector here

% Sample the energy group of

ion

detect5 (iGroup (iHeutron)) + weight:iNeutrnn}ISigS_sum;

the =secondary neutron

iGroup (iNeutron) = find:cumsum:SigS}fSigS_sum »= rand(), 1, "fir=st'):

else ¥ absorption

abzorbed = true;

% NHeutron i=s converted to the
% the weight increased by eta

new fission neutron with

weight (iNeutron) = weight (iNeutron) * (SigP/5igl):

% Sample the energy group for

the new-born neutron

iGroup (iNeutron) = find (cumsum(fuel.chi) >= rand(), 1,

end % scattering or absorption
end % virtual or real
end % of neutron random walk cycle:
end % of loop over neutrons

from emi=ssion to absorption

'Tirst');

51

1g1 E PV ___—_—_—_——_——_——_——_——_——_——_—_———
182 % Russian roulette

183 — [& for iNeutron = 1:numNeutrons

184 — terminateP = 1 - weight (iMeutron) /weight (iNeutron) ;

185 = if terminateP >= rand{)

186 — welght (iNeutron) = 0; % killed

187 — elseif terminateP > O

188 — weight (iNeutron) = welghtO (iNeutron); % restore the welght

189 — end

130 — = end

191

192 E -
1483 % Clean up absorbed or killed neutrons

134

185 — X({weight == 0) = []:

198 — viweight == 0) = []:

187 — iGroup (weight == 0} = []:

198 — weight (weight == 0) = [1:

Joe — numMlentrons = size (weight, 2) !

200

201 E --—
202 % Split too "heavy" neutrons

203

204 — numfew = 0;

205 — [-] for iNeutron = 1:numNeutrons

206 — if weight (iNeutron) > 1

207 % Truncated integer value of the neutron welight

208 — H = floor(weight (iNeutron)) -

209 % Sample the number of split neutrons

210 — if weight {(iNeutron)-N > rand(), N = N + 1; end

211 % Change the weight of the split neutron

212 — weight (iHeutron) = weight (iMeutron) /H;

213 % Introduce new neutrons

214 — [& for iNew = 1:M-1

213 — nunmiew = numMew + 1;

216 — X (numNeutrons + numNew) = X (iNeutron):

217 = v (numNeutrons 4+ numNew) = y(iNeutron) :

218 — welight (numMNeutrons 4+ numMNew) = weight (iNeutron) ;
219 — iGroup (numMeutrons + nunMew) = iGroup (iNeutron) ;s
220 — = end

221 — end

222 — o end

223 % Increase the number of neutrons

224 — nunmeutrons = numNeutrons + numiew;

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2435
248
247
248
2439
250
251

% k-eff in a cycle equals the total weight of the new generation over
% the total weight of the old generation (the old generation weight =
F numNeutronsBorn)

keff cycle = sum (weight, 2) /sum (weightd, 2)

ilctive = iCycle - numCycles inactive;
if ifctive <= 0O
fprintf("'Inactive cycle = £3i/%3i; k-eff cycle = %8.5f; numileutrons = %3i\n'",
iCycle,numCycles inactive,keff cycle, numieutrons) ;
else
% k-effective of the cycle
keff active cycle (ifictive) = keff cycle;

% k—effective of the problem
keff expected(iRctive) = mean(keff active cycle(l:iRctiwve));

% Standard deviation of k-effective
sigma keff (ilActive) = sgrt(sum((keff active cycle(l:ilctiwve) - keff expected(ilictiwve) }."2)
/S max (ikctive-1,1) J ikctiwve):
fprintf("Active cycle = $31i,/%3i; k-eff cycle = FB2.5f; numMNeutrons = %£3i; k-eff expected = F9.5f; =3
iCycle-numCycles inactive, numCycles active, keff cycle, numMNeutrons, keff expected (1Active

end

end % of main (power) iteration

54

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55

