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Outline-2 

Result estimates 
− Scoring and collecting the results using batches 
− Statistical accuracy and law of large numbers  
− Central limit theorem and confidence intervals 

 
Non-analog Monte Carlo 

− Result estimates of neutron flux 
− Statistical weight 
− Russian roulette 
− Splitting 

 
Interactions 

− Real or virtual 
− Collision type: scattering (isotropic) 
− Collision type: absorption = fission + capture 
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Introduction 



Introduction: Monte Carlo method in neutron transport calculations 
 
The Monte Carlo method is a technique for estimating the expected value of 
a random variable together with its standard deviation. 

 
− In reactor physics it is done by a direct simulation of a population of 

neutrons by sampling individual neutrons. 
 

− For each neutron a sequence of physical random events is simulated 
using a sequence of random numbers. 
 

− Some parameters of average behavior of the population are recorded 
(scored). 
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Introduction: stochastic versus deterministic 
 
Monte Carlo is a stochastic method differing from the deterministic methods 
 
 
− Deterministic methods (e.g. discrete ordinates method or method of 

characteristics) solve the neutron transport (Boltzmann) equation for 
angular flux and k-effective. 
 
 

− Stochastic method (Monte Carlo) find the parameters of interest (e.g. k-
effective, reaction rates) by simulating the random walk of individual 
neutrons. No neutron transport equation is solved. 
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Introduction: continuous-energy versus multi-group 
 
Monte Carlo can use the following two representations of the nuclear data 

 
− Continuous-energy, i.e. based on all data points available in ENDF files 

without any condensations. ACE format data libraries are prepared using 
the NJOY code. 
 

− Multi-group, i.e. nuclear data condensed in energy using the energy group 
structures, similarly to conventional deterministic codes. 

 
Most of the modern Monte Carlo codes (MCNP, Serpent) are based on the 
continuous-energy representation of the nuclear data. 
 
In our Matlab exercises we will use multi-group representation of the nuclear 
data. 
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Introduction: analog versus non-analog 
 
 
− Analog Monte Carlo:  

explicit, ‘as is’ simulation of individual neutrons from emission to 
absorption without any simplifications. 
 

− Non-analog Monte Carlo: 
simulations using simplifications, tricks, acceleration techniques, etc. 
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Mathematical background 



Math: a random variable 
 
A random variable x is a variable whose possible values are numerical 
outcomes of a random process (experiment), e.g. flipping a coin or rolling a 
die. 
 
x can be 

• discrete, i.e. taking one of a specified finite list of values (e.g. number 
of dots on a dice face);  

or  
• continuous, i.e. taking any numerical value in a specified interval (e.g. 

atmospheric pressure). 
 

Continuous random variable uniformly distributed between 0 and 1 is 
denoted ξ. All other random numbers will be derived from ξ. 
 
In MATLAB exercise ξ is calculated using the Matlab pseudo-random number 
generator rand()based on the Mersenne-Twister algorithm (see Wikipedia). 10 



Math: probability density function (PDF) 
 
A probability density function (PDF) f (x) describes the relative likelihood for 
the continuous random variable x. 
 
Examples: 
− angle between bike wheel valve and horizon (uniformly-distributed PDF) 
− atmospheric pressure (normally-distributed PDF) 
 
dP = f (x)dx  is the probability for x to have a value between x and x+dx. 
 
The probability for x to have a value between a and b 
 
 
 
 
The total area below the PDF curve = ? 
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Math: cumulative distribution function (CDF) 
 
Probability that a random variable takes a value less than or equal to x:  
 
 
 
 
 
F(x) changes from 0 to 1. 
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Math: sampling 
 
Sampling is selection of random values 
according to the probability distributions (CDF 
or PDF) with the goal to represent with these 
few values the whole population. 
 
Sampling approach: 
1. Generate ξ (uniformly distributed 

between 0 and 1) 
2. Use ξ to generate random values for 

parameters of interest using CDF by 
inverse method 

This is only one approach. There are much 
more techniques... 
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Math: sampling by inverse method  
 
Sampling of random variable by inverse method is done using the inverse of 
the Cumulative Distribution Function  F (x). 
 
1. Generate ξ (uniformly distributed between 0 and 1) 

 
2. The cumulative probability of the event assumed equal to ξ : F (x) = ξ 

 
3.  x is found from the inverse function:  x = F–1( ξ ) 
 
Example: sampling of exponential distribution 
 
The inverse of CDF is known only in simple case (exp → ln, sin → arcsin), 
in most real cases the inverse function is not known analytically. In such cases 
the inverse could be found numerically or by acceptance-rejection technique  
(not considered here) 
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Neutron tracking 



Neutron tracking: introduction 
 
Neutron tracking is simulation of a single neutron movement through the 
different material regions of the reactor core. 
 
A neutron track – length of path that neutron makes between two interactions 
(collisions). The track can be cut short by the boundary between materials. 
 
A neutron history – entire set of tracks made from initial emission to final 
absorption or escape. 
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Neutron tracking: sampling of free path length in homogeneous medium 
 
Sampling of the free path length between two collision points (0 and x) is the 
basis of neutron tracking. For homogeneous infinite medium: 
 
Macroscopic XS is interaction probability P per path length travelled by neutron: 
 
 
Increase of probability to have the first interaction moving from x to x+dx: 
 
 
Decrease of probability NOT to interact moving from x to x+dx : 
 
 
Non-interaction probability: 
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Σ𝑡𝑡 = 𝑑𝑑𝑃𝑃/𝑑𝑑𝑑𝑑 

𝑑𝑑𝑃𝑃0 = −𝑑𝑑𝑃𝑃1 𝑥𝑥 = −𝑃𝑃0 𝑥𝑥 𝑑𝑑𝑑𝑑 = −𝑃𝑃0(𝑥𝑥)Σ𝑡𝑡𝑑𝑑𝑑𝑑 

𝑃𝑃0 𝑥𝑥 = exp (−𝑥𝑥Σ𝑡𝑡) 

𝑑𝑑𝑃𝑃1 𝑥𝑥 = 𝑃𝑃0 𝑥𝑥 𝑑𝑑𝑑𝑑 



Neutron tracking: sampling of free path length in homogeneous medium 
 
Increase of probability that neutron has first interaction moving from x to x+dx: 
 
 
PDF of free path length: 
 
CDF of free path length:  
 
The inverse function: 
 
 
Sampling of free path length by inverse method:  
  
 
where ξ (uniformly distributed between 0 and 1) 
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𝑓𝑓 𝑥𝑥 =  𝑑𝑑𝑃𝑃1/𝑑𝑑𝑑𝑑 = Σ𝑡𝑡 exp −𝑥𝑥Σ𝑡𝑡  

𝐹𝐹 𝑥𝑥 = 1 − exp −𝑥𝑥Σ𝑡𝑡 = ξ 

𝐹𝐹−1 ξ = − ln 1 − ξ /Σ𝑡𝑡 

𝑥𝑥 = − ln ξ /Σ𝑡𝑡 

𝑑𝑑𝑃𝑃1 𝑥𝑥 = 𝑃𝑃0 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝑃𝑃0 𝑥𝑥 Σ𝑡𝑡𝑑𝑑𝑑𝑑 = Σ𝑡𝑡 exp −𝑥𝑥Σ𝑡𝑡 𝑑𝑑𝑑𝑑 

% Sample free path length according to the Woodcock method 
freePath = -log(rand())/SigTmax(iGroup(iNeutron)); 



Neutron tracking: homogeneous versus heterogeneous materials 
 
Neutron free path length sampling is valid in homogeneous material (Σt is 
independent on space coordinate). 
 
For heterogeneous materials (combination of several homogeneous materials 
or cells) collision probability changes each time when neutron crosses a cell 
boundary. 
 
What to do? 
 
− stop neutron at boundary surface and adjust or re-sample remaining 

distance to the next collision point (ray tracing); 
 

− do not stop neutron at boundary surface but instead consider for each 
material fictitious XSs which equalize total XSs of all materials (delta 
tracking) 
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Neutron tracking: ray-tracing 
 
Assume that the free path length sampled for mat1 is x1.  
It can happen that neutron ends up at different material (mat2). 
 
To re-adjust  the coordinate of the next collision: 
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− we preserve the sampled non-interaction 
probability: 

 
 
or (equivalent) 
 
− we stop at the boundary and re-sample x2 

In both cases we should calculate distance to the boundary d :  
could become very expensive for complicated geometry 

exp −𝑥𝑥2Σ𝑡𝑡,2 = exp −(𝑥𝑥1−𝑑𝑑)Σ𝑡𝑡,1 = ξ 



Neutron tracking: delta-tracking 
 
Goal: to sample the next collision point without handling the surface crossings 
 
Is an acceptance-rejection technique. 
 
Proposed by Woodcock in the 1960s. 
 
Used in Serpent Monte Carlo code as a basic algorithm (optional in other 
codes) 
 
Based on a concept of virtual collision (or pseudo-scattering) 
 
Scattering reaction (fictitious) in which angular and energy distributions are 
characterised by δ-functions (δ(E0) and δ(Ω0)) and state of neutron is 
completely preserved 
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Neutron tracking: delta-tracking 
 
Key idea: to add an appropriate virtual collision XS (ΣV) to each material in 
such a way that the modified total XS (Σt) has the same value in all materials. 
 
Instead of heterogeneous material composition we obtain one pseudo-
homogeneous material 
 
 
 
 
 
 
 
This eliminates the need to adjust free path length each time neutron 
enters new material and the need to calculate surface distances. 
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Neutron tracking: delta-tracking 
 
The virtual collision XS is given by: 
 
 
where Σm(E) is the majorant, maximum of all total XSs in the system (the same 
for all materials). 
 
Delta-tracking starts with sampling the free path using the majorant 
 
 
At the new collision point the collision type (real or virtual) is sampled by 
generating the random ξ and comparing it with 
 
 
P > ξ – virtual, otherwise real 
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ΣV 𝒓𝒓,𝐸𝐸 = Σm 𝐸𝐸 − Σt 𝒓𝒓,𝐸𝐸  

𝑥𝑥 = − ln ξ /Σ𝑚𝑚 

𝑃𝑃 =  ΣV 𝒓𝒓,𝐸𝐸 /Σm 𝐸𝐸  



Neutron tracking: delta-tracking 
 
If the collision is real, the collision type is sampled, if virtual—nothing changes 
 
 
In other words: the neutron always travels by steps (free paths) determined by 
the most “opaque” material in the system and when it realizes that it is 
unnecessarily too short it just continues. 
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Neutron tracking: delta-tracking 
 
Advantage 
− it does not matter if the neutron crosses one or several material boundaries 

between two collision points, we just need to know where the collision point 
is (what is the total XSs at this point). 

 
Disadvantages 
− surface crossings are not recorded at all (only collision estimator of neutron 

flux available); 
− surface flux and current can be easily estimates only at outer geometry 

boundary; 
− when there is small-volume heavy absorber in the geometry, it determines 

the majorant and the efficiency is reduced. 
25 
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Result estimates 



Result estimates: scoring 
 
Monte-Carlo game consists of two parts: 

− simulation of neutron histories (discussed above) 
− collection of results 

Recorded events = scores are combined to obtain statistical estimates 
 
Collection of results similar to measurements in an experiment and based on 
evaluation of flux integrals: 
 
 
 
where  f (r, E) is response function, e.g. 1 (to estimate flux) or Σx (to estimate 
reaction rate) 
 
Integration over time is equivalent to averaging over many neutron histories. 
Normalization should be applied afterwards... 
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Result estimates: collecting the results using batches 
 
All scores from one generation of neutrons n are grouped in a single batch. 
 
Batch = generation.  
 
Number of neutron histories in one batch In (may differ from batch to batch) 
 
Number of batches N  
 
Estimate of reaction rate in generation n : 
 
More generally: estimate Xn (e.g. could be ratio of reaction rates) 
 
Xn is random parameter, changing from batch to batch, not so interesting 
 
More interesting – statistically averaged (mean) values + standard deviations 
 28 
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Result estimates: statistical accuracy 
 
Mean value = the result 
 
 
 
 
Standard deviation = statistical accuracy 
 
 
 
 
 
 
Frequently used quantities related to the standard deviation 
− variance 
− relative statistical error  
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Result estimates: statistical accuracy 
 
The result of Monte Carlo simulation always given in the form  
 
The longer simulation runs the closer the mean of the results to the expected 
value = Law of large numbers 
 
 
 
Qualitative meanings of the statistical accuracy: 
− how much the mean value is likely to deviate from the expected value 
− how much results of two identical but independent simulations are likely to 

differ 
 
In any case statistical accuracy of the simulation ≠ physical accuracy of the 
simulation 
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𝑋𝑋� ± σ(𝑋𝑋) 

lim
𝑛𝑛→∞

σ = 0 



To find statistical accuracy of estimate X, we need in addition to standard 
deviation to know the probability distribution function (PDF). 
 
Central limit theorem states that sum (or mean) of a large number of arbitrarily 
distributed random variables is itself a random variable following the normal 
distribution. 
 
 
 
 
 
Assumptions: 
− distribution is the same for each term in the sum 
− values are independent 
− both mean and standard deviation exist and are finite 
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Result estimates: central limit theorem 

𝑓𝑓(𝑥𝑥) =
1

σ 2π
exp −

𝑥𝑥 − 𝑥̅𝑥
2σ2
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Result estimates: confidence intervals 

Confidence interval determines probability at which the result lies within a 
certain distance from the true mean value of the distribution. 

In case of normal PDF, e.g. 1.02 ± 0.01 
means that the true result lies 
 
− with probability of 68% in the interval 

1.01 – 1.03 and  
 

− with probability of 95% in the interval 
1.00 – 1.04 
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Non-analog Monte Carlo 
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Non-analog Monte Carlo: statistical trickery 
 
Non-analog methods could be used instead of analog ones in order to make 
calculations faster 
 
1. to improve statistics on reaction rates by estimating the flux (important 

when reaction rate is low) 
 

2. to improve the random walk algorithm in order to score more frequently the 
neutrons having largest contribution to the results and to get rid of the 
neutrons with low importance 



Non-analog Monte Carlo: result estimates 
 
Analog 
Score physical interactions for individual reactions (fission, capture, scattering, 
etc.) 
 
Non-analog 
Estimate flux and multiply it by the value of the response function (e.g. macro-
XS). 
The flux can be found by 
− Collision estimate 
− Track length estimate 
− Surface and current estimate 
 35 



Non-analog Monte Carlo: statistical weight 
 
Analog 
Each neutron history represents the transport of a single particle 
 
Non-analog 
Each neutron is assigned with a statistical weight W and  
− represents the contribution of several particles (W > 1); or 
− has the same significance as analog simulation (W = 1); or 
− has less significance than analog simulation (W < 1). 
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Non-analog Monte Carlo: statistical weight 
 
k-effective of the cycle is the total weight of neutrons in the system divided by 
the number of neutrons born Nborn (fixed value = size of the batch). 
 
At the beginning of each cycle the total weight of neutrons is normalised to 
Nborn. This is equivalent to dividing the fission source by k-effective. 
 
 
 
 
 
 
When W > 1 neutron splitting and when W < 1 neutron terminating are 
considered. 
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% Normalize the weights of the neutrons to make the total weight equal  
% to numNeutrons_born (equivalent to division by keff_cycle) 
  weight = (weight ./ sum(weight,2)) * numNeutrons_born; 
  weight0 = weight; 



Non-analog Monte Carlo: Russian roulette 
 
When weight of a neutron reduces, its contribution to overall results reduces 
too and tracking of such a neutron becomes a waste of computing time. How to 
get rid of too “light” neutrons? 
 
Solution: assign a cut-off value for weight and play Russian roulette for 
neutrons with the weight below the cut-off. 
 
One of the simple implementations: 
− for each neutron set the terminate probability as P = (1 – W / W0), where W0 

is the weight at the beginning of the generation; 
− generate random ξ; 
− if P > ξ terminate the neutron; 
− otherwise and if P > 0 keep the neutron and set W = W0 
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Non-analog Monte Carlo: splitting 
 
The way around: when the weight of the neutron born in fission or (n,2n) 
reaction is too high, it should be split. 
 
One of the simplest algorithms is for every neutron with W > 1: 
− Generate random ξ 
− calculate N = floor(W) =    W             
− if W – N > ξ , split the neutron in N + 1 identical neutrons with W / N; 
− otherwise, split the neutron in N identical neutrons with W / N 

39 
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Interactions 



Interactions: real or virtual 
 
Once the collision point is sampled using either ray-tracing or delta-tracking 
method, the interaction type is sampled. 
 
Non-analog (delta-tracking only): sample if collision real or virtual 
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𝑃𝑃 =  ΣV 𝒓𝒓,𝐸𝐸 /Σm 𝐸𝐸  

ξ < P Virtual Real Y N 

ξ = rand() 



Interactions: collision type 
 
Both non-analog (when reaction is real) and analog: sample reaction type* 
 scattering 
 absorption (capture + fission) 
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ξ < P Scattering Absorption 
Y N 

* (n,2n) reaction not considered 

ξ = rand() 

𝑃𝑃 = Σ𝑆𝑆(𝒓𝒓,𝐸𝐸)/Σ𝑡𝑡(𝒓𝒓,𝐸𝐸) 



Interactions: scattering 
 
Analog and non-analog are the same (weight does not change). 
 
Scattering assumptions: 
− Isotropic: new direction and energy are sampled independently. 
− Anisotropic: new direction and new energy are not independent (not 

considered here, see Leppänen pp. 105-111 for more details) 
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Interactions: isotropic scattering 
 
Direction and energy of secondary neutron are sampled independently 
assuming isotropic scattering in the laboratory system (simplification) 
Direction: θ = arccos[2ξ 1 – 1]  and φ = 2 π ξ 2 

 
 
 
Energy E' is sampled by the inverse method: 

 ξ = rand() 

Integrate numerically CDF  
until F(E, E') ≥ ξ 
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𝐹𝐹 𝐸𝐸,𝐸𝐸′ =
∫ Σ𝑠𝑠 𝐸𝐸 → 𝐸𝐸′′ 𝑑𝑑𝑑𝑑𝑑𝑑𝐸𝐸′

0

∫ Σ𝑠𝑠 𝐸𝐸 → 𝐸𝐸′′ 𝑑𝑑𝑑𝑑𝑑𝑑∞
0

 

% Sample the energy group of the secondary neutron 
  iGroup(iNeutron) = find(cumsum(SigS)/SigS_sum >= rand(), 1, 'first'); 

teta = acos(2*rand()-1); 
phi = 2.0*pi*rand(); 
dirX = sin(teta)*cos(phi); 
dirY = sin(teta)*sin(phi); 
x(iNeutron) = x(iNeutron) + freePath * dirX; 
y(iNeutron) = y(iNeutron) + freePath * dirY; 



Interactions: absorption = capture + fission 
 
A simple method (combination of analog and non-analog) to be used in our 
Matlab exercise: 
 
− Neutron is not terminated but its weight is changed by the eta-value (number 

of neutrons emitted per neutron absorbed): 
 
 
 
 

− Automatically the neutron is terminated in non-multiplying regions 
 

− Energy E' of neutron is sampled by the inverse method: 
 ξ = rand() 
Integrate numerically CDF until F(E) ≥ ξ 
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𝑊𝑊′ = 𝑊𝑊
Σ𝑃𝑃
Σ𝑎𝑎

 

iGroup(iNeutron) = find(cumsum(fuel.chi) >= rand(), 1, 'first'); 

weight(iNeutron) = weight(iNeutron) * (SigP/SigA) 
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MATLAB exercise 
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Initialize your new detector here 
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Insert your new detector here 
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