Joint ICTP-IAEA Workshop on Physics and Technology of Innovative Nuclear Energy systems, Trieste, Italy, 20-24 Aug, 2018

"Digital Nuclear Reactor" Data Storage Toolkit

<u>Chirayu Batra</u>, Vladimir Kriventsev International Atomic Energy Agency (IAEA)

Email: C.Batra@iaea.org

IAEA Benchmark in Digital Format?

Objective and Features

Objective:

• The toolkit should provide a universal data storage system: <u>an all-inclusive database</u> with necessary reactor details required for modeling and numerical simulation.

Characteristic Features:

- Store reactor data in an hierarchical manner
- Provides access to the stored reactor data and a standard interface for coupling with the reactor simulation codes
- Bring simplicity in terms of code coupling
- **Visualize** the reactor geometry
- Basic meshing possibilities
- Thermal expansion
- Other features

Structure

A central reactor data storage system is used and various other codes **could** be easily coupled

Various other utilities
could be developed over
it to support the
modelling and simulation
exercises

Data Exchange with

- Neutronics Codes
- Thermal-Hydraulic Codes
- Fuel Behavior Codes
- Structural Mechanics Codes
- Others

Service Utilities:

Architecture

- **Database** chosen: Hierarchical Data Format (HDF)
- HDF could be used to store and organize a large amount of numerical data, which is the requirement of the toolkit
- Open source and compatible with different programming languages
- Data could be stored in a multidimensional space and be organized in the abstract manner

HDF5 Structure based data storage

- Hierarchical storage of data Based on the reactor structure
- An HDF5 file (object) can be considered as a container (group) that holds a variety of heterogeneous data objects (datasets)
- The data structure follows the very logic of the reactors
- An intelligent database that understands the design philosophy of a reactor

Basic Datasets

Integrated User Control Center iUCC

- Integrated User Control Center (iUCC)
- The toolkit has an inbuilt iUCC that aids in visualizations and provides graphical user interface for its applications
- The reactor setup file could be made with the iUCC enabled graphical viewer
- The structure of the setup file is made as explained in the previous slide
- The data is broken into meaningful datasets based on the parts of the reactor core, so that changes done at one part could easily be transferred up the hierarchy

iUCC

• Starts with a basic set of template and could be modified

graphically

Data Input

HDF5 editor to input reactor data

- ✓ Data input is as simple as it is in excel file.
- ✓ Or copy and paste data from excel

Inserting data for the fissile subassembly

Example: NEW CRP:CEFR Start-up tests

• Pre CRP:

- ✓ Storing all available data in the Digital Nuclear Reactor DST
- ✓ Evaluating the available data provided by CIAE
- ✓ Requesting CIAE to provide more data/clarify for benchmark exercise
- ✓ Distribute data to interested MSs for their use
- Post CRP:
- Preserve data and distribute as requested by new interested MSs

Data from Technical Specifications

S/A Name	Туре
KC	Shim Rod
AZ	Safety Rod
PC	Regulatory Rod
C2	Stainless Steel
IN	Neutron Source
I, II, III, IV	Fuel Rod

	S/A Name	Type
	SH (KC)	Shim Rod
	SA (AZ)	Safety Rod
	RE (PC)	Regulatory Rod
	Fuel (I – IV)	Fuel Rod
	SS-I (C2)	Stainless Steel
	SS-II	Stainless Steel
ınovative N	B Shield	B4C Shielding

Figure 2 Axial structure of CEFR fuel SA

Subassemblies – Tech Spec

Data Input

• Step 1:

Use subassembly geometry data and create HDF5 files with a simple interface to input data

- i. Define axial distribution
- ii. Define each segment
- iii. Define pin geometry and material

Number of attributes = 0

Eg.: Fuel Subassembly

- Each axial segment defined via setup file
- Fuel pin structure and material also defined via setup file
- Currently hexagonal, cylindrical or rectangular geometry could be defined via available templates
- The isotopic composition could also be defined

Subassemblies – Digital Reactor

Fuel Subassembly

8

9

10

11

12

tems, 20-24 Aug, 2018

wire_angle

is width b... false

gap

clr.a

clr.r

0.5235987.

1.38E-4

1.0

1.0

Wire angle Start

Color Opacity

Color Red

Canwall/Wiredpin Gap

is width calculated by gap size

Chirayu Batra, Joint ICTP-IAEA workshop on Innovative l

Place all assemblies in the core

• Step 2:

Arrange all assemblies in the reactor core to create the layout

Core Map

vative Nuclear Energy Systems, 20-24 Aug COO

Chirayu Batra, Joint ICTP-IAEA works

Core Layout

Additional Features: Meshing

Additional Features: Thermal Expansion

Summary

- 1. "Digital Nuclear Reactor" is an easy to use data storage toolkit that can be used to input all necessary reactor data for benchmark exercises
- 2. The CRP participants are free to use the data and can be provided to them
- 3. The interfaces to connect different codes can be developed
- 4. The tool can be used to assess if enough data is available to carry out the CRP, thus assuring availability of data before the kick-off meeting
- 5. Will reduce the risk of incorrect data input by the participants
- 6. Will lead to long term preservation of benchmark data and later the results (after post processing module is developed)
- 7. The data can then be distributed to interested member states after the CRP is completed along with the TECDOC
- 8. The toolkit can be used for educational purposes simple calculations/simulations

Future Work

- Develop interfaces to couple different codes
 - Will try to make interface for SERPENT
- Perform simple calculations for thermal expansion
 - Based on the thermal expansion coefficients provided
- Develop other modules to do post-processing
- Make necessary changes in the graphical interface for better user experience
- Perform similar exercise for FFTF ULOF CRP

Acknowledgement: Thanks to KIT for the advice in the development of this toolkit

Thank you!

Contact information:

Chirayu Batra

C.Batra@iaea.org

Joint ICTP-IAEA Workshop on Physics and Fechnology of Innovative Nuclear Energy systems, Trieste, Italy, 20-24 Aug, 2018