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1. Integrated Managements in Terms of
Material, Design, Manufacturing,
Inspection and Maintenance
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Relationship between failure modes and countermeasures
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1.1 Structural Design Methods for
Nuclear Components

rational design : keep the risk at an
appropriate level.

-> imposing design margin according
to safety importance and loading
frequency



Component Classification based on safety significance

Class 1 Components forming reactor coolant boundary (e.g., reactor vessel, IHX, primary pump)
Component

Class 2 Component forming reactor cover gas boundary, safety systems, etc. (e.g., secondary
Component main pipe, guard vessel, primary cover gas system)

Components of Class 3 components etc. (e.g., steam generator, secondary cover gas system)
less safety
significance

Class MC vessel | Metal containment vessel

Condition classification based on the frequency of occurrence of loading

Service condition | Normal operating conditions of nuclear reactor facility

Service condition Il | Conditions deviated from normal operating conditions due to single failure of
component, misoperation or other causes

Service condition Il | Conditions requiring emergency shutdown due to a failure or abnormality of reactor
facility

Service condition Conditions where an abnormal situation assumed in reactor safety design occurs

v

Testing Condition Conditions where pressure exceeding the maximum service pressure is applied

during a pressure test

Ref: Fast Reactor System Design, Naoto Kasahara Ed., Springer.



1.2 Structural Material of FRs
Materials employed in GenlV SFR
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Property of Materials Employed in GenlV SFR

It is excellent in high temperature strength
and ductility, corrosion resistance,
workability and has low degree of
embrittlement and hardening due to

316SS . e

neutron irradiation. Reactor
(LO\_N C+ 2.9%Mo is added to improve corrosion Vessel
Medium N) resistance, high temperature strength etc.

Restriction on Carbon content, and

addition of Nitrogen with low to medium

extent.
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Mod.9Cr- |[Mod.9Cr-1Mo steel has been used for ..

. . e Piping
1Mo boiler components in ultra-supercritical

fossil power plants.

Integrated SG




materials employed in MONJU
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Property of Materials Employed in MONJU

It is excellent in high temperature
strength and ductility, corrosion
resistance, workability, weldability, and

Reactor Vessel,

304SS has low degree of embrittlement and |IHX, etc
hardening due to neutron irradiation.
Restrictions on C and Co.
2.5%Mo is added to improve

316SS |corrosion resistance, high temperature |Air Cooler
strength etc.

: : Heat transfer

Improve inter—granular corrosion

321SS resistance by adding Ti. Tube of Super

Heater
Low alloy steel. Proven material in
2.25Cr-1Mo | fossil power plant, in particular heat |Evaporator

exchangers.




1.3 Structural Design of FRs

(1) Loading Conditions Specific to the
Use of Sodium
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Comparison of Operating Condition with LWR

LWR *1 FBR*2 | Feature of FBR
Material Ferrite | Austenitic | Ductile
e Steel SS Material
Coolant Water Sodium ngh Boiling
Point
Operating Temperature | 320°C 520°c | 9h
P | P Temperature
Temperature difference 30°C 132°C High Thermal
Stress
Operation Pressure =16MPa | —0-oMPa Low
(Pump Outlet) | Pressure

*1:PWR
% 2:Monju
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Comparison of loading conditions between
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Load-controlled stress versus
Displacement-controlled stress
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(2) Types of Thermal Loads

Generally speaking, the effect of thermal
transients on structural material in FRs are
more severe than those in LWRs.

Coolant; Heat transfer characteristic

Structural material; Thermal conductivity,
Thermal expansion rate



Typical Thermal Stresses in Fast Reactor

(a) Through-thickness temperature gradient
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(b) Axial temperature gradient near
sodium surface
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(c) Hoop force

Binding force is exerted between perforated part that rapidly
follows thermal transient and solid part that slowly follows.
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(d) Thermal stratification
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(e) Thermal striping-1
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(e) Thermal striping-2

=) HERTERR

‘. :|!!'|‘| X )

R ._ Control
" rod drive

f
—=
.-

Core instrumentation
plate (CIP)

Cold sodium  Cold sodium Cold sodium

egurnE=

Areas of interest

lanket subassembly

Hot
sodjum
WiN
/ Fuel subassembl f f
Y | Hot sodium Hot sodium

Reactor vessel of a large—scale
sodium—cooled reactor

Core —

Schematic Diagram of Thermal Striping Phenomenon
in the Lower Part of Core Internals

22



(3) Failure Modes Assumed in FRs
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Ductile Fracture and Brittle Fracture

Stress(o=F/A)

Tensile Test Machine
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Relationship between creep rupture
time and temperature/stress
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Creep-Fatigue Crack observed in the structure
subject 10 repeated temperature change
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Creep-Fatigue Life
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Limits for creep fatigue damage

The prevention of the creep fatigue failure is achieved according to the linear
cumulative damage rule that limits the sum of the following calculated values :
1) usage factor Df, and i1) creep damage factor Dc.
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Expected failure modes of Reactor Vessels

Thermal load Structural response Failure
The dominant load is thermal stress caused by the Elastic plastic creep response of Failure mode due to cyclic
change in fluid temperature during plant structure due to operation at high loading during lifetime
startup/shutdown temperatures
CL
| Cold
|
¢ Hot
| Cold
|
;\ Residual Excessive deformation
|| strain due to ratcheting strain
Startup Shutdown : :

Strain Creep fatigue
concentration crack
Ref: Fast Reagﬁ)r System Design, Naoto Kasahara Ed., Springer.



Neutron Irradiation Effect

(D Atoms on the metal crystal lattice are Knocked out by
collision with neutron to produce a disturbance of the
crystal lattice(ie, lattice defect)

= Fast neutron (E>0.1MeV)

= These defect hinder the distortion movement and
lead 1o a reduction in ductility due +o hardening.

@ Thermal neutrons convert+ minute impurities in steel
into He,

= Thermal neutron (E<0.4eV)

= The generated He atoms enhance the aggregation
of vacancy 1o the grain boundary, etc, a reduction in
ductility and creep strength results,
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