

Joint ICTP-IAEA Workshop on the Physics and Technology of Innovative Nuclear Energy Systems *20 – 24 August 2018, Trieste, Italy*

Thermal Hydraulics **of** *Innovative Nuclear Energy Systems*

Vladimir Kriventsev

Fast Reactor Technology Development Team Nuclear Power Technology Development Section Department of Nuclear Energy

Outline

- Reactor Classification and Innovative Fast Neutron Systems
- Main Reactor Components
	- Reactor Core
	- Fuel Rod Bundle (Subassembly)
	- Fuel Rod (Pin)
- Comparison of Coolant Physical Properties
- TH Calculations on Design Temperature Limits
- Simulation of Real S/A under Irradiation
- Transient Analysis

General Reactor Classification

• Moderator

- Water / Heavy Water
- **Graphite**
- None (fast neutron systems)
- **Coolant**
	- Water/Heavy Water
	- Liquid Metal
		- Sodium / Lead / Lead-Bismuth Eutectic (LBE)
	- Gas
		- Air / $CO₂$ / Helium
	- Molten Salt
- Fuel
	- UO2
	- $-$ MOX (UO₂ + PuO₂)
	- **Metallic**
	- **Molten Salt**
- Purpose
	- Electricity/Non-Electric Application
- Power
	- Low/Middle/High

Vladimir Kriventsev, Joint ICTP-IAEA Workshop, 20-24 August 2018, Trieste, Italy 3

GEN-IV Reactors (GIF)

Supercritical-Watercooled Reactor (SCWR)

astR_{Te}

Six Generation IV Reactor systems

Lead-cooled Fast Reactor (LFR)

Gas-cooled Fast Reactor (GFR)

Very-High-Temperature Reactor (VHTR)

Vladimir Kriventsev, Joint ICTP-IAEA Workshop, 20-24 August 2018, Trieste, Italy 4 Vladimir Kriventsev, Joint ICTP-IAEA Workshop, 20-24 August 2018, Trieste, Italy 4 Vladimir Kriventsev, Joint ICTP-IAEA Workshop, 20-24 Aug

Sodium Cooled Fast Reactor (SFR)

Vladimir Kriventsev, Joint ICTP-IAEA Workshop, 20-24 August 2018, Trieste, Italy 5 (SIL Website: www.gen-4.org, Solling the United States of the United States of the United States of the United States of the United States

astRTe

Reactor Core

astRTe

LWR Fuel Assembly (Rod Bundle)

BWR

Vladimir Kriventsev, Joint ICTP-IAEA Workshop, 20-24 August 2018, Trieste, Italy 8 (Northern St. 2018) Number 2018, Trieste, Italy

astRTe

Sub-Assembly Types

Phenix SFR Fuel Sub-Assembly

Fuel S/A: Pin Arrangement

Large Fuel Fraction:

- Triangular Array (in HexCan)
- Smaller P/D Ratio
	- Cannot use grid spacers
	- >> wire wrap

Fast Reactor Coolants: Neutronic Considerations

- \triangleright Neutrons interact with the atoms of the coolant
- \triangleright The strength of the overall effect is governed by the probability of a particular interaction (absorption or scattering) and the number density of the coolant atoms
- \triangleright Absorption removes neutrons from the system
- Scattering causes the neutrons to "bleed" energy thus slowing them down (moderation)
- \triangleright Both of these mechanisms add negative reactivity
- If the coolant is removed (lost or "voided"), the loss of negative reactivity is equivalent to an insertion of positive reactivity:

Void Reactivity effect

FR Coolants: *key physical properties* **(1/3)**

- \triangleright Melting temperature: impact on the reactor's cold shutdown temperature for fuel handling
- \triangleright Boiling point and liquid phase temperature range
- \triangleright Thermal characteristics: Cp, λ , Prandtl number
- \triangleright Thermal stability: decomposition close to high temperature, safety margin
- Density: impact on power pumping required, internal dynamic pressures, seismic behavior
- \triangleright Interaction with structural materials: Dissolution (solubility of metal elements), corrosion, embrittlement and potential mass transfer
- \triangleright Chemical reactivity with surrounding fluids (air, water, organic products, etc) and impact on operating safety

FR Coolants: *key physical properties* **(2/3)**

-
- \triangleright Interaction with primary coolant when used as different intermediate coolant: corrosion, contamination.
- \triangleright Interaction with ECS coolants (water, SC CO2, etc) when used as different intermediate coolant: corrosion, contamination
- \triangleright Transparency/opacity: special in-service inspection methods
- \triangleright Vapor pressure: impact on aerosols production and deposition
- \triangleright Ability to "block" the Tritium produced in the primary system (Tritium is the only radioactive contaminant capable to cross metal walls)
- \triangleright Capability to be purified and meet quality standards

FR Coolants: *key physical properties* **(3/3)**

- \triangleright Potential structures wetting: impact on fluid-material interactions, instrumentation, quality of ultra-sound transmission, maintenance
- \triangleright Toxicity: need to confine the coolant during handling and repair
- \triangleright Possibility of processing during dismantling, including specific systems like cold trapping
- \triangleright Production of wastes and their processing during operation and dismantling
- \triangleright Availability in nature
- **≻ Cost**

Sodium Properties: *several advantages*

- \triangleright Low melting point (97.8° C at 1 bar)
- Large temperature range of the liquid phase $(97.8^{\circ} \text{ C} 881.5^{\circ} \text{ C}$ at 1 bar)
- Low saturation vapor pressure **Primary system at**
- \triangleright Low density and viscosity
- \triangleright Very high thermal conductivity and good heat capacity
- Excellent electrical conductivity
- \triangleright Low activation and no alpha emitters
- \triangleright No specific toxicity
- \triangleright Cheap and largely available
- \triangleright Perfectly compatible with steels
- \triangleright Very limited amount of particles in sodium
- Low oxygen and hydrogen solubility
- \triangleright Very good wetting

Sodium Properties: *three main disadvantages*

Important: Violent reaction with water

- \checkmark possible deleterious effects in Steam Generator Units (SGU), in case of pipe rupture
- \checkmark Na-H₂O interaction must be avoided or mitigated by design
	- Selection of a modular SGU
- \checkmark Na-H₂O interaction must be detected,
	- Thanks to the production of hydrogen
	- Risk of hydrogen explosion has to be mitigated

Important: Chemical reactivity with air

- \checkmark Can induce Na fire
- \checkmark Need inert zones and confinement
- \checkmark Need early detection

Opacity

 \checkmark Need specific equipments for under-sodium viewing and measurements

Lead/LBE Properties: *several advantages*

- Low absorption and elastic scattering cross-sections (neutrons just diffuse in lead)
- Effective gamma-rays shielding
- \triangleright High retention of fission products
- \triangleright High boiling point (1749/1670 °C at 1 bar)
- **E** Very low vapor pressure **Primary system at**
	- **atmospheric pressure**
- \triangleright High thermal capacity
- \triangleright Good heat transfer properties
- \triangleright Chemically inert, in particular with water and air (allows elimination of intermediate circuit)
- \triangleright No hydrogen formation
- Cheap and largely available

Lead/LBE Properties: *three main disadvantages*

Material compatibility: erosion, corrosion

- *Low coolant velocity*
- *Limit in cladding Tmax*
- *Hydrogen and oxygen control*
- *New steels*
- *Coatings*
- **High density** (*also an advantage due to reduced risk of re-criticality in case of core melting*)
- **Opacity**
	- *Need specific equipment for under-lead viewing and measurements*

Very limited **operational experience** (Alpha-class submarines)

Gas (He) Properties: *advantages*

- \triangleright Completely transparent to neutron (very hard neutron spectrum)
- Low reactivity insertion due to voiding of the coolant
- Chemically inert
- Single phase behavior
- Optical transparency
- Electrically non-conducting
- Possibility to adopt direct gas turbine cycle
- Very high temperature applications

Gas (He) Properties: *four main disadvantages*

Low density creating requirement for pressurization

Likelihood and severity of a LOCA

Inability to adopt a pool configuration

Core remains uncovered in case of breached primary circuit

Non-condensable

Pressure loading the containment building in case of LOCA

Low-thermal inertia

The reactor core heat up rapidly if forced cooling is lost

No operational experience

Coolant Thermal-Physical Properties

Please Don't Sleep!!!

Reactor Core Power Balance

S/A:
$$
N_i = G_i C_p (t_i - t_{inlet})
$$

\n $t_{outlet} = \frac{\sum G_i t_i}{G}$
\n N_i $N = \sum N_i$
\n $G = \sum G_i$
\nPower $q_l = \frac{dN}{dz}$
\nDensity $q_v = \frac{dN}{dV}$

Fuel Pin: Power Density

astR_{Te}

Fuel Pin: Temperature Profiles

TH Limiting Parameters

Vladimir Kriventsev, Joint ICTP-IAEA Workshop, 20-24 August 2018, Trieste, Italy $28\,$

Governing Equations

Energy Conservation in Coolant

$$
\rho c_p \frac{\partial t}{\partial \tau} + \rho c_p W(r) \frac{\partial t}{\partial z} = \frac{1}{r} \frac{\partial}{\partial r} \left(\left(\lambda + \lambda_{turb}^r(r) \right) r \frac{\partial t}{\partial r} \right) + \frac{\partial}{\partial z} \left(\left(\lambda + \lambda_{turb}^z(r) \right) \frac{\partial t}{\partial z} \right)
$$

Steady Temperature Profiles: Inside Pin

$$
\rho c_p \frac{\partial t}{\partial \tau} = \frac{1}{r} \frac{\partial}{\partial r} \left(\lambda(t) r \frac{\partial t}{\partial r} \right) + \frac{\partial}{\partial z} \left(\lambda(t) \frac{\partial t}{\partial z} \right) + q_v
$$

- No transient term
- Axial heat conduction can be neglected **Easy to Solve in 1D (Analytically)**

$$
t_{\max}(z) = t_{\text{colant}}(z) + \Delta t_{\text{colant}} + \Delta t_{\text{clad}} + \Delta t_{\text{gap}} + \Delta t_{\text{fuel}}
$$

\n
$$
t_{\text{colant}}(z) = t_{\text{inlet}} \int_{-h/2}^{z} c_{p} G_{i} q_{l}(z) dz
$$

\n
$$
\Delta t_{\text{colant}} = \frac{q_{l}(z)}{\alpha \pi d_{\text{pin}}} \qquad \Delta t_{\text{clad}} = \frac{q(z) \Delta_{\text{clad}}}{\lambda_{\text{clad}}}
$$

\n
$$
\Delta t_{\text{gap}} = \frac{q(z) \Delta_{\text{gap}}}{\lambda_{\text{gap}}} \qquad \Delta t_{\text{fuel}} = \frac{q_{v}(z) d_{\text{fuel}}^{2}}{16 \lambda_{\text{fuel}}}
$$

Non-Linear Effects

Thermal Conductivity [W/mK)]

Coolant-Cladding Heat Transfer

Energy Conservation in Coolant

$$
\rho c_p \frac{\partial t}{\partial \tau} + \rho c_p W(r) \frac{\partial t}{\partial z} = \frac{1}{r} \frac{\partial}{\partial r} \left(\left(\lambda + \lambda_{turb}^r(r) \right) r \frac{\partial t}{\partial r} \right) + \frac{\partial}{\partial z} \left(\left(\lambda + \lambda_{turb}^z(r) \right) \frac{\partial t}{\partial z} \right)
$$

Temperature Distribution within S/A: **Subchannel Analysis**

- 1.2 1.4 higher (if isolated)
- \cdot 1.1 1.15 in real S/A, thanks to mixing

S/A Deformation Under Irradiation

FFTF

Numerical Simulation (CFD)

TH Analysis: at Nominal Power

- Core Design Verification Calculations
	- For the given core design and power, to check if temperatures and velocities are below the limits
	- Input
		- Core Design, S/A and Pin Geometry
		- Max Pin or S/A Power (number of pins/SA) (from Reactor Power Distribution)
		- Axial Power Profile (or peaking factor)
		- Inlet Coolant Temperature
		- Coolant Velocity or Flowrate/SA
	- Output
		- Outlet Coolant Temperature
		- Maximal Cladding Temperature (or Distribution)
		- Maximal Fuel Temperature (or Distribution)

TH Analysis: Max Nominal Power

- Design Study Calculations
	- For the given core configuration, what can be a maximal pin/SA/core thermal power?
	- Input
		- Core Design, S/A and Pin Geometry
		- Inlet Coolant Temperature
		- Axial and Radial Power Profiles (or peaking factors)
	- Output
		- Max Pin or S/A Power; Total Reactor Power

TH Analysis: Transients

Reactor Accidental Transient Scenarios

- DBC (Design Basis Condition) accidents
	- *Reactor shut-down normally (Protected)*
	- Drop/Release of Single Control Rod
	- Loss of one or all primary pumps
- DEC (Design Extension Conditions) accidents
	- *Severe Accidents, May Result in Core Melting*
	- **ULOF** (Unprotected Loss of Flow)
		- For LMFNS, ULOF is considered as most serious accident
	- **UTOP** (Unprotected Trip of Power)
		- Drop/Release of Control Rod Bank
	- Core Flow Blockage (incl. **TIB** Total Instantaneous Blockage)
		- May results in core melting/damage. Simulations should reject/confirm the possibility of propagation
	- Loss of Heat Sink (**LOHS**)
- **Required**: Coupling TH/Neutronics/Mass Transfer/EOS

ASTRID: Advanced Sodium Technological Reactor for Industrial Demonstration

C. Latge at Joint IAEA-ICTP Workshop August 2016, Trieste, Italy

ASTRID: ULOF Simulations with SAS4A and SIMMER-III codes

V. NITVOTROOV, ZOTO, NIT, OOITHAITY 40

ULOF Simulations with SAS4A and SIMMER-III Codes

V. Kriventsev, 2015, KIT, Germany

V. TWORLOOV, ZOTO, INT, OOITIGITY 41

ULOF Simulations with SIMMER-III Code

Reactor Power **Material Distribution in Core vs. Time**

V. NITVOTROOV, ZOTO, NIT, OOITHATTy 42
Vladimir Kriventsev, Joint ICTP-IAEA Workshop, 20-24 August 2018, Trieste, Italy 42

V. Kriventsev, 2015, KIT, Germany

Kindly Wake Up Now !!!

CRP on Benchmark Analysis of *EBR-II* **Shutdown Heat Removal Test (***2012-2016***)**

- Coupled Neutronics and Thermalhydraulic Transient Simulations
- SHRT-17 (Protected): Loss of normal and emergency pumping
- SHRT-45 (Unprotected): Loss of normal flow, scram disabled, station blackout

Benchmark Analysis of *EBR-II* **Shutdown Heat Removal Test**

- Coupled Neutronics and Thermalhydraulic Transient Simulations
- SHRT-17 (Protected): Loss of normal and emergency pumping
- SHRT-45 (Unprotected): Loss of normal flow, scram disabled, station blackout

New IAEA CRP: **Benchmark Analysis of FFTF Loss of Flow Without Scram Test**

- **FFTF Reactor:**
	- 400 MW(th) sodium cooled fast test reactor
	- Mixed UO2-PuO2 (MOX) fuel
	- Loop type plant, axial and radial reflectors
	- Prototypic size
		- \cdot ~1 m^3 core volume
		- ~91 cm high, ~120 cm diameter
	- Series of Passive Safety Tests
		- Demonstrated passive safety of SFRs
		- Demonstrated efficacy of negative reactivity insertion safety devises (GEMs)

PNNL/ANL at Consultants' Meeting November 2017, IAEA, Vienna

Benchmark Analysis of FFTF Loss of Flow Without Scram Test

ULOF to Natural Circulation Tests

Pacific Northwest **NATIONAL LABORATORY** Proudly Operated by **Battelle** Since 1965

--- ----- 30% POWER

(ULOF)

- With reactor at 50% power, main coolant pumps were turned off and normal control rod scram response was disabled
- GEMs and inherent core reactivity feedback mechanisms took the core subcritical with a modest peak coolant temperature transient
- Peak reached 85 °C above the pretransient value, >400 °C below sodium boiling point
- Initial Flow Coast Down Causes First Sharp Peak
- Negative GEM Reactivity Feedback Causes Power to Drop
- Broad Peak Is Caused by Flow and Power Reaching Quasi Steady-State Values

TEMPERATURE

--- 10% POWER

TIME

20% POWEF

Subsequent Decline Is Caused by Reduction in Decay Heat

PNNL/ANL at Consultants' Meeting November 2017, IAEA, Vienna

Benchmark Analysis of FFTF Loss of Flow Without Scram Test

COOLANT TEMPERATURE

Passive Safety Tests Demonstrated Advantages of LMRS for Surviving ULOF

Pacific Northwest Proudly Operated by Battelle Since 1965

- The result of loss of flow tests in Rapsodie, EBR-II, and FFTF was that the peak coolant temperatures were several hundred degrees below the sodium boiling point.
- While the driver fuel for the FFTF passive safety tests was oxide, the structural reactivity feedbacks are independent of fuel type.

TIME

PNNL/ANL at Consultants' Meeting November 2017, IAEA, Vienna

New CRP: **Neutronics Benchmark of CEFR Start-Up Tests**

- Sodium-cooled fast reactor with nominal power of 65MW(th), 20MW(e)
- Reached the first criticality in 2010
- Generated electricity at 40% full power and was connected firstly to the grid in July 2011
- Generated electricity at 100% power in December 2015 and operated for more than 40 effective full power days

CIAE at Consultants' Meeting November 2017, IAEA, Vienna

NAPROC ^β: Sodium Properties Calculator

•Get various properties like Density, Heat Capacity, Dynamic

Viscosity, **Saturation** Pressure etc.

Output

Thank You!