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1.1 Metric Spaces and Basic Topology notions

In this section we briefly overview some basic notions about metric spaces and topology.

A metric space (X, d) is a space X with a distance function d : X ×X → R+ (also called
metric, from which the name metric space), that is a function which assigns to each pair of
points x, y ∈ X a real number d(x, y) (their distance) and has the following properties:

Definition 1.1.1. A distance d is a function d : X ×X → R+ such that

1. If d(x, y) = 0 then x = y;

2. For each x, y ∈ X we have d(x, y) = d(y, x) (symmetry);

3. The triangle inequality holds, that is for all x, y, z ∈ X

d(x, z) ≤ d(x, y) + d(y, z).

Examples of metric spaces and distances are the following. The first three are classical
examples, while the following two are useful in dynamical systems.

Example 1.1.1. 1. X = R or X = [0, 1] with

d(x, y) = |x− y|.

2. X = R2 or X = [0, 1]×[0, 1] with the Euclidean distance: if x = (x1, x2) and y = (y1, y2)

are points in R2, their distance is

d(x, y) =
√

(x1 − x2)2 + (y1 − y2)2

3. X = S1 with the arc lenght distance d(z1, z2) defined in §1.2.

4. Σ+ = {0, 1}N+

, the shift space of one-sided sequences, is a metric space with the follow-
ing distance:

d((ai)
∞
i=1, (bi)

∞
i=1) =

∞∑
i=1

|ai − bi|
2i

.

In particular two points (ai)
∞
i=1, (bi)

∞
i=1 ∈ Σ+ are close if and only if the first block of

digits agree: for example, if ak = bk for 1 ≤ k ≤ n, then the distance is less than 1/2n.

5. Let (X, d) be any metric space and f : X → X. Then for each n ∈ N+ we can define a
new distance, dn, given by

dn(x, y) = max
k=0,...,n−1

d(fk(x), fk(y)).

Two points x, y are close in the dn metric if their orbits up to time n stay close. We
will use this distance to defined topological entropy in §2.3.

Exercise 1.1.1. Check that the distances in the previous Examples satisfy the properties in
Definition 1.1.1.

In a metric space one can talk about convergence and continuity as in Rn. Let (X, d) be
a metric space. Given x ∈ X and ε > 0, let Bd(x, ε) be the ball of radius ε around the point
x defined using the distance d, that is

Bd(x, ε) = {y ∈ X such that d(x, y) < ε}.

If there is no ambiguity about the distance, we will often write simply B(x, ε), dropping the
pedex d. We can use balls to define convergence:
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Definition 1.1.2. A sequence {xn}n∈N ⊂ X converges to x and we write limn→∞ xn = x if
for any ε > 0 there exists N > 0 such that xn ∈ Bd(x, ε) for all n ≥ N .

We can use the distance to define the notion of open and closed sets.

Definition 1.1.3. A set U ⊂ X of a metric space (X, d) is open if for any x ∈ U there exists
an ε > 0 such that

Bd(x, ε) ⊂ U.

A set C ⊂ X is closed if its complement X\C is open.

Example 1.1.2. If X ⊂ R and d(x, y) = |x − y|, the intervals (a, b) are open sets and the
intervals [a, b] are closed sets. Also intervals of the form (a,∞) or (∞, b) are open and intervals
of the form [a,∞) or (∞, b] are closed. Intervals of the form [a, b) or (a, b] are neither open
nor closed.

Exercise 1.1.2. Prove that a ball Bd(x, ε) is open (use the triangle inequality).

Open and closed sets in a metric space enjoy the following property:1

Lemma 1.1.1. (1) Countable unions of open sets are open: if U1, U2, . . . , Un, . . . are open
sets, than ∪k∈NUk is an open set;

(2) Finite intersections of open sets are open: if U1, U2, . . . , UN are open sets, than ∩Nk=1Uk
is an open set.

Exercise 1.1.3. Prove the lemma using the Definition 1.1.3 above.

Exercise 1.1.4. Given an example in X = R of a countable collection of open sets whose
interesection is not open.

By using De Morgan Law, it follows that open sets have the following properties (remark
that the role of intersections and unions is reversed):

Corollary 1.1.1. (1) Countable intersections of closed sets are closed: if C1, C2, . . . , Cn, . . .
are open sets, than ∩k∈NCk is a closed set;

(2) Finite unions of closed sets are closed: if C1, C2, . . . , CN are open sets, than ∪Nk=1Ck is
a closed set.

Exercise 1.1.5. Prove the Corollary from Lemma 1.1.1

Exercise 1.1.6. Given an example in X = R of a countable collection of closed sets whose
union is not closed.

Definition 1.1.4. A subset Y ⊂ X is dense if for any non-empty open set U ⊂ X there is a
point y ∈ Y such that y ∈ U .

One can check that this definition of dense set reduces to the usual definition of dense set
for a subset Y ⊂ R, that is, for each y ∈ Y and ε > 0 there exists y ∈ Y such that |x− y| < ε.

Definition 1.1.5. A metric space (X, d) is called separable if it contains a countable dense
subset.

1It is possible to define open sets as an abstract collection of the subsets of X which satisfy certain
properties. In this case, Property (1) in the Lemma is taken as an axiom. A collection U of subsets of X such
that ∅, X ∈ U and Property (1) is satisfied is called a topology. In this case, sets in U are called open sets
and complement of sets in U are called closed sets. A topological space (X,U ) is a space X with a topology
U .
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Example 1.1.3. If X = Rn with the Euclidean distance, X is separable since the set Qn
given by all points (x1, . . . , xn) ∈ Rn whose coordinates xi are rational numbers is dense and
it is countable.

Let (X, dX) and (Y, dY ) be a metric space. We will now consider properties of functions
f : X → Y .

Definition 1.1.6. A function f : X → Y is an isometry if it preserves the distances, that is

dY (f(x), f(y)) = dX(x, y) ∀ x, y ∈ X.

We already saw an example of isometry:

Example 1.1.4. If X = Y = S1 is the circle with the arc lenght distance d = dX = dY , then
f = Rα the rotation by 2πα is an isometry.

Definition 1.1.7. A function f : X → Y is continuous if for any ε > 0 there exists a δ > 0
such that

f(BdX (x, δ)) ⊂ BdY (y, ε).

Exercise 1.1.7. Check that if X,Y ⊂ R and dX(x1, x2) = |x1 − x2|, dY (y1, y2) = |y1 − y2|
this gives the usual ε, δ definition of continuity of a real function.

Exercise 1.1.8. Let X = Y = S1 and dX = dY = d be the arc lenght distance. Prove that

(a) The rotation Rα : S1 → S1 by 2πα is continuous;

(b) The doubling map f : S1 → S1 given in this coordinates by f(e2πiθ) = (e2πi2θ) is
continuous.

It is enough to know which are the open sets in X and Y to define the notion of continuity:2

Lemma 1.1.2. A function f : X → Y is continuous if and only if for each open set U ⊂ Y
the preimage f−1(U) is an open set of X.

Proof. Assume that f is continuous. Let U ⊂ Y is open and let us show that f−1(U) is open.
We have to show that for each x ∈ f−1(U) there is an open ball contained in f−1(U). Let
y = f(x). Clearly y ∈ U since x ∈ f−1(U). By definition of open set there exists ε > 0 such
that BdY (y, ε) ⊂ Y . By definition of continuity, there exists δ > 0 such that

f(BdX (x, δ)) ⊂ BdY (y, ε) ⊂ U,

thus BdX (x, δ) ⊂ f−1(U). This shows that f−1(U) is open.
The other implication is left as an exercise.

Exercise 1.1.9. Prove the other implication in Lemma 1.1.2, that is show that if a function
f : X → Y between two metric spaces (X, dX), (Y, dY ) is such that for each open set U ⊂ Y
the preimage f−1(U) is an open set of X, then f is continuous in the sense of Definition 1.1.7.

The last metric space notion that we will use is the notion of compact sets. Let (X, d) be
a metric space.

Definition 1.1.8. [Sequentially compact] A subset K ⊂ X is (sequentially) compact if for
any sequence (xn)n∈N ⊂ K there exists a convergent subsequence (xnk

)k∈N and the limit
limk→∞ xnk

= x belong to K.

2The following Lemma can be taken as definition of a continuous function when (X,U ) is a topological
space.
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This property is called sequentially compactness since the definition involves sequences.
There are other notion of compactness (see compactness by covers below) which are equivalent
in a metric space, so we will simply say that a set is compact and use the term sequentially
compact only when we specifically want to use the above property of compact sets.

Example 1.1.5. Closed bounded intervals [a, b] ⊂ R are sequentially compact (this is known
as Heine-Borel theorem).

Conversely, in R, if a set is not bounded or not closed, it is not compact. The following two
are non-examples, that is examples of spaces that are not compact.

Example 1.1.6. The unbounded closed interval [0,∞) is not sequentially compact: con-
sider for example the sequence (xn)n∈N given by xn = n. The sequence has no convergent
subsequence.

The open interval (0, 1) is not sequentially compact: consider for example the sequence
(xn)n∈N given by xn = 1/n. We have limn→∞ xn = 0, but 0 /∈ (0, 1).

1.1.1 Compactness by covers (level M only, Extra for level 3)

In addition to the definition of sequencial compact, there is an other definitions of com-
pactness, compactness by open covers, which turn out to be equivalent in a metric space.
Compactness by open covers is a more general definition of compactness and can be used
as a defintion of compactness in any topological space (see Extra on topological spaces if
interested).

Definition 1.1.9. An open cover of K ⊂ X is a collection {Uα}α of open sets of X such that

X ⊂
⋃
α

Uα

(this is why we say that they cover X). A finite subcover is a finite subset {Uα1
, Uα1

, . . . , UαN
} ⊂

{Uα}α which still covers, that is such that X ⊂ ∪Ni=1Uαi
.

Definition 1.1.10. [Compact by covers] A subset K ⊂ X is compact by covers if for any open
cover {Uα}α there exists a finite subcover {Uα1

, Uα1
, . . . , UαN

} ⊂ {Uα}α such that X ⊂ ∪αUα.

Example 1.1.7. The open interval (0, 1) is not compact by covers: consider for example the
collection

U =

{(
1

n+ 2
,

1

n

)
, n ∈ N

}
is an open cover, but U does not admit a finite subcover. Indeed, a finite subset of intervals
in U is of the form{(

1

n1 + 2
,

1

n1

)
,

(
1

n2 + 2
,

1

n2

)
, ,

(
1

nk + 2
,

1

nk

)}
so that if n = maxi=1,...,k ni, no point in

(
0, 1

n+2

)
is covered by the finite collection.

Theorem 1.1.1. In a metric space (X, d), a subset K ⊂ X is sequentially compact if and
only if it is compact by covers.

Since we will work only with metric spaces, we will simply say that a set is compact and
use equivalenty either Definition 1.1.8 or 1.1.10.

Remark 1.1.1. In Rn, any subset C ⊂ X which is closed and bounded, that is such that
supx,y∈C d(x, y) < +∞, is compact.
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Extra: Topological Spaces

We will consider only metric spaces and define all notions of topological dynamics (see next
section) in the context of metric spaces. More in general, all notions of topological dynamics
that we will see can be applyed in the more general setting of topological spaces. Metric spaces
are a special example of topological spaces. In a metric space, we defined the notion of open
and closed sets (see Definition 1.1.3. The collection of open sets determines what is called a
topology on the metric space. We also saw, from the definition of open set in a metric space,
that countable unions and finite intersections of open sets are again open sets (see Lemma
1.1.1) and that countable intersections and finite unions of closed sets are closed (Corollary
1.1.1). These properties of open and closed sets can be taken as axioms to characterize open
and closed sets in spaces where a distance is not necessarily given. This leads to the following
definitions:

Definition 1.1.11. A topology T on X is a collection T ⊂ P(X)3 of subsets of X, which
are known as the open sets of X, which satisfy the following properties:

(T1) The empty set and the whole space X belong to T ;

(T2) Countable unions of open sets are open: if U1, U2, . . . , Un, . . . are open sets, then ∪k∈NUk
is an open set;

(T3) Finite intersections of open sets are open: if U1, U2, . . . , Un are open sets, then ∪nk=1Uk
is an open set.

Exercise 1.1.10. If (X, d) is a metric space, the collection T of all sets which are open in
the metric space according to Definition 1.1.3, that is all the sets U ⊂ X such that for each
x ∈ U there exists ε > 0 such that Bd(x, ε) ⊂ U , form a topology. Indeed, X and ∅ satisfy
Definition 1.1.3 trivially and hence belong to T , proving (T1). The second property (T2)
follows from Lemma 1.1.1 The collection of open sets in a metric space give a topology to the
metric space X

Definition 1.1.12. A topological space (X,T ) is a space X together with a topology T .

Example 1.1.8. [Metric space topology] A metric space (X, d) with the topology given in
the egample 1.1.10 is a topological space.

The following two are examples of trivial topologies that exist on any set X.

Example 1.1.9. [Trivial topology] Consider a space X and let Ttr = {∅, X}. One can check
that Ttr satisfies (T1), (T2), (T3). This topology is known as trivial topology. Thus, (X,Ttr)
is a topological space.

Example 1.1.10. [Point topology] Consider a space X and let Tpt = P(X) be the collection
of all subsets of X. One can check that also Tpt satisfies (T1), (T2), (T3). This topology is
known as point topology. Thus, (X,Tpt) is a topological space.

In a topological space one can define the notion of convergence or density in the same way
we did with metric spaces, just using open sets instead than balls. Similarly, one can define
what it means for a function to be continous, taking as definition of continuity the equivalent
characterization given by Lemma 1.1.2.

Definition 1.1.13. Let (X,T ) be a topological space. A sequence {xn}n∈N ⊂ X converges
to x and we write limn→∞ xn = x if for any open set U ∈ mathscrT that contains x, there
exists N > 0 such that xn ∈ U for all n ≥ N .

3The notation P(X) denotes the parts of X, that is the collection of all subsets of X.
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Lemma 1.1.3. A function f : X → Y between two topological spaces (X,TX) and (Y,TY )
is continuous if and only if for each open set V ∈ TY the preimage f−1(V ) is an open set of
X, that is f−1(V ) ∈ TX .

In the next sections we will define, in the context of metric spaces, dynamical properties
as topological transitivity, topological minimality and topological mixing. All this properties
can be defined more in general for topological spaces. This is why they are called topological
properties and why we talk of topological dynamics.

6


