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Solutions to Exercise 1.1

Part (a) An orbit of Rα for α for p/q = 2/7 and for p/q = 5/8 are in Figure 1. They are obtained dividing the
circle in 7 or 8 equal arcs respectively and moving by steps of 2 or 5 respectively.

Figure 1: Orbits of Rα for α for p/q = 2/7 and for p/q = 5/8.

Assume now that α = p/q and (p, q) = 1 i.e. p and q are coprime. We have seen that for every x ∈ R/Z we
have Rqα(x) = x. Assume that n ∈ N+ is also a period, so that Rnα(x) = x. We want to show that n ≥ q. We have

Rnα(x) = x+ n
p

q
mod 1 = x ⇔ x+

np

q
= x+ k for some k ∈ Z.

Thus np = qk. Since (q, p) = 1, this shows that q divides n, so that n ≥ q. We have shown moreover that all
periods n are multiples of q.

We claim that |p| gives the winding number, i.e. the number of “turns” that the orbit of any point does around
the circle S1 before closing up. Consider z ∈ S1. In each iteration of Rα, Rkα(z) is rotated by an arc of lenght
2π|α| = 2π|p|/q (counterclockwise if p > 0, clockwise if p < 0). Thus, in q iterations, Rqα(z) has been rotated
by q2πα|p|/q = 2π|p|. This shows that it has covered |p| times the full circle lenght 2π, so the winding number is |p|.

Part (a) Assume that α is irrational. Let us first show that the each orbit consist of infinitely many distinct
points, or, in other words, that for each z1 = e2πix1 ∈ S1, for all m 6= n, Rnα(e2πix1) 6= Rmα (e2πix1). Let us argue
by contradiction. If Rnα(e2πix1) and Rmα (e2πix1) were equal,

e2πi(x1+mα) = e2πi(x1+nα), thus

2π(x1 +mα) = 2π(x1 + nα) + 2πk for some integer k ∈ N, thus simplifying

mα = nα+ k.

But since m 6= n, this shows that α = k/(m− n), contradicting the assumption that α is irrational.

Part (b) We want to show that for every z1 ∈ S1 the orbit of z1 is dense in S1, i.e. we have to show that for
each z2 ∈ S1 and ε > 0 there is a point of O+

f (z1) inside the ball B(z2, ε). Let N be big enough so that 1/N < ε.

We have already seen in class that if we consider the points z1, Rα(z1), . . . , RNα (z1), since the rotation number is
irrational, they are all distinct. Hence, by the Pigeon Hole principle, there exists n,m such that 0 ≤ n < m ≤ N
and

d(Rnα(z1), Rmα (z1)) ≤ 1

N
< ε.

This means that for some θ with |θ| < 1/N we have

Rmα (z1) = e2πiθRnα(z1) ⇔ e2πimαz1 = e2πiθe2πinαz1 ⇔ e2πimα

e2πinα
= e2πiθ (1)

Consider now Rm−nα . We claim that it is again a rotation by an angle smaller than 2πε. Indeed, from (1), we see
that

Rm−nα (z1) = e2πi(m−n)αz1 =
e2πimα

e2πinα
z1 = e2πiθz1 = Rθ(z1),

so that Rm−nα = Rθ is a rotation and that the rotation angle is 2πθ with |θ| < 1/N . Thus, if we consider the

iteratates R
(m−n)
α (z1), R

2(m−n)
α (z1), R

3(m−n)
α (z1), . . . , we see that the orbit contains the points

e2πix1 , e2πi(x1+θ), e2πi(x1+2θ), . . . , e2πi(x1+kθ), . . .

whose spacing on S1 is less than πε, or in other words whose distance is less than ε (recall that the distance is

the arc lenght divided by 2π). Thus, there will be a j > 0 such that R
j(m−n)
α (z1) enters the ball B(z2, ε). This

concludes the proof that every orbit is dense.
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Solutions to Exercise 1.2

Let us consider the orbit of the origin 0 under the rotation Rα (remark that Rnα(0) = {nα}). Remark first that,
reasoning as in class and using the pigeon hole principle, one can show that given n ∈ N there exists 0 < q ≤ n
such that qα mod 1 ≤ 1

n . Thus, there exists p ∈ Z such that

|qα− p| ≤ 1

n
⇔

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qn
≤ 1

q2
,

where in the last inequality we used that q ≤ n. Assume now by contradiction that there are only finitely many

fractions p/q where p ∈ Z, q ∈ N and p, q coprime that solve the equation∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2
, say

{
p1
q1
, . . . ,

pN
qN

}
.

Choose n > 0 such that
1

n
< min
i=1,...,N

∣∣∣∣α− pi
qi

∣∣∣∣ . (2)

By the initial remark, we can find 0 ≤ q ≤ n and p ∈ Z such that p/q satisfies∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

nq
≤ 1

q2
.

Thus, it is a solution to our equation. We can assume that p/q has been simplifyed so that p, q are coprime, since
if not we can simplify it and get a new solution p′/q′ where still q′ ≤ q ≤ 1/δ. We claim that it is different than
all the other solutions pi/qi, i = 1, . . . , N . This is because, since q ≥ 1,∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

nq
≤ 1

n
< min
i=1,...,N

∣∣∣∣α− pi
qi

∣∣∣∣ ,
where in the last inequality we used the choice of n, see (2). so that p/q is strictly closer than all the previous
solutions. This gives a contradiction.
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