
Prof. Corinna Ulcigrai Measure Preserving Transformations

1.1 Measure preserving transformations

In this section we present the definition and many examples of measure-preserving transfor-
mations. Let (X,B, µ) be a measure space. For the ergodic theory part of our course, we
will use the notation T : X → X for the map giving a discrete dynamical system, instead
than f : X → X (T stands for transformation). This is because we will use the letter f for
functions f : X → R (which will play the role of observables).

Definition 1.1.1. A transformation T : X → X is measurable, if for any measurable set
A ∈ B the preimage is again measurable, that is T−1(A) ∈ B.

One can show that if (X, d) is a metric space, B = B(X) is the Borel σ−algebra and
T : X → X is continuous, than in particular T is measurable. All the transformations we will
consider will be measurable.

[Even if not explicitly stated, when in the context of ergodic theory we consider a transfor-
mation T : X → X on a measurable space (X,B) we implicitly assume that it is measurable.]

Definition 1.1.2. A transformation T : X → X is measure-preserving if it is measurable
and if for all measurable sets

µ(T−1(A)) = µ(A), for all A ∈ B. (1.1)

We also say that the transformation T preserves µ.

If µ satisfies (1.1), we say that the measure µ is invariant under the transformation T .

Notice that in (1.1) one uses T−1 and not T . This is essential if T is not invertible, as it
can be seen in Example 1.1.1 below (on the other hand, one could alternatively use forward
images if T is invertible, see Remark 1.1.2 below). Notice also that we need to assume that
T is measurable to guarantee that T−1(A) is measurable, so that we can consider µ(T−1(A))
(recall that a measure is defined only on measurable sets).

We will see many examples of measure-preserving transformations both in this lecture and
in the next ones.

Remark 1.1.1. Let T be measurable. Let us define T∗µ : B → R+ ∪ {+∞} by

T∗µ(A) = µ(T−1(A)), A ∈ B.

One can check that T∗µ is a measure. The measure T∗µ is called push-forward of µ with
respect to T . Equivalently, T is measure-preserving if and only if T∗µ = µ.

Exercise 1.1.1. Verify that if µ is a measure on the measurable space (X,B) and T is a
measurable transformation, the push-forward T∗µ is a measure on (X,B).

Thanks to the extension theorem, to prove that a measure is invariant, it is not necessary
to check the measure-preserving relation (1.1) for all measurable sets A ∈ B, but it is enough
to check it for a smaller class of subsets:

Lemma 1.1.1. If the σ−algebra B is generated by an algebra A (that is, B = B(A )), then
µ is preserved by T if and only if

µ(T−1(A)) = µ(A), for all A ∈ A , (1.2)

that is, it is enough to check the measure preserving relation for the elements on the generating
algebra A and then it automatically holds for all elements of B(A ).
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Proof. Consider the two measures µ and T∗µ. If (1.2) holds, then µ and T∗µ are equal on
the algebra A . Moreover, both of them satisfy the assumptions of the Extension theorem,
since they are measures. The uniqueness part of the Extension theorem states that there is a
unique measure that extends their common values on the algebra. Thus, since µ and T∗µ are
both measures that extend the same values on the algebra, by uniqueness they must coincide.
Thus, µ = T∗µ, which means that T is measure-preserving. The converse is trivial: if µ and
T∗µ are equal on elements of B(A ), in particular they coincide on A .

As a consequence of this Lemma, to check that a transformation T is measure preserving,
it is enough to check it for:

(R) intervals [a, b] if X = R or X = I ⊂ R is an interval and B is the the Borel σ−algebra;

(R2) rectangles [a, b]× [a, b] if X = R2 or X = [0, 1]2 and B is the the Borel σ−algebra;

(S1) arcs if X = S1 with the Borel σ−algebra;

(Σ) cylinders C−m,n(a−m, . . . , an) if X is a shift space X = ΣN or X = ΣA and B is the
σ−algebra;

[This is because finite unions of the subsets above mentioned (intervals, rectangles, arcs,
cylinders) form algebras of subsets. If one checks that µ = T∗µ on these subsets, by additivity
of a measure they coincide on the whole algebra of their finite unions. Thus, by the Lemma,
µ and T∗µ coincide on the whole σ−algebra generated by them, which is in all cases the
corresponding Borel σ−algebra.]

Examples of measure-preserving transformations

Example 1.1.1. [Doubling map] Consider (X,B, λ) where X = [0, 1] and λ is the Lebesgue
measure on the Borel σ−algebra B of X. Let f(x) = 2x mod 1 be the doubling map. Let
us check that f preserves λ. Since

f−1[a, b] =

[
a

2
,
b

2

]
∪
[
a+ 1

2
,
b+ 1

2

]
,

we have

λ(f−1[a, b]) =
b− a

2
+

(b+ 1)− (a+ 1)

2
= b− a = λ([a, b]),

so the relation (1.1) holds for all intervals. Since if I = ∪iIi is a (finite or countable) union
of disjoint intervals Ii = [ai, bi], we have

λ(I) =
∑
i

|bi − ai|,

one can check that λ(f−1(I)) = λ(I) holds also for all I which belong to the algebra of finite
unions of intervals. Thus, by the extension theorem (see Lemma 1.1.1 and (S1)), we have
λ(f−1(B)) = λ(B) for all Borel measurable sets.

On the other hand check that λ(f([a, b])) = 2λ([a, b]), so λ(f([a, b])) 6= λ([a, b]). This
shows the importance of using T−1 and not T in the definition of measure preserving.

Example 1.1.2. [Rotations] Let Rα : S1 → S1 be a rotation. Let λ be the Lebesgue
measure on the circle, which is the same than the 1−dimensional Lebesgue measure on [0, 1]
under the identification of S1 with [0, 1]/ ∼. The measure λ(A) of an arc is then given by the
arc length divided by 2π, so that λ(S1) = 1.
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Remark that if Rα is the counterclockwise rotation by 2πα, than R−1
α = R−α is the

clockwise rotation by 2πα. If A is an arc, it is clear that the image of the arc under the
rotation has the same arc length, so

λ(R−1
α (A)) = λ(A), for all arcs A ⊂ S1.

Thus, by the Extension theorem (see (S1) above), we have (Rα)∗λ = λ, that is Rα is measure
preserving.

In this Example, one can see that we also have λ(Rα(A)) = λ(R−1
α (A)) = λ(A). This is

the case more in general for invertible transformations:

Remark 1.1.2. Suppose T is invertible with T−1 measurable. Then T preserves µ if and
only if

µ(TA) = µ(A), for all measurable sets A ∈ B. (1.3)

Exercise 1.1.2. Prove the remark, by first showing that if T is invertible (injective and
surjective) one has

T (T−1(A)) = A, T−1(T (A)) = A.

[Notice that this is false in general if T is not invertible. For any map T one has the inclusions

T (T−1(A)) ⊂ A, A ⊂ T−1(T (A)),

but you can give examples where the first inclusion can be strict if T is not surjective and the
second inclusion A ⊂ T−1(T (A)) is strict if T is not injective.]

In the next example, we will use the following:

Remark 1.1.3. Let (X,B, µ) be a measure-space. If T : X → X and S : X → X both
preserve the measure µ, than also their composition T ◦ S preserves the measure µ. Indeed,
for each A ∈ B, since T−1(A) ∈ B since T is measurable. Then, using first that S is measure
preserving and then that T is also measure preserving, we get

µ(S−1(T−1(A))) = µ(T−1(A)) = µ(A).

Thus, T ◦ S is measure-preserving.

Example 1.1.3. [Toral automorphisms] Let fA : T2 → T2 be a toral automorphism;
A denotes the corresponding invertible integer matrix. Let us show that fA preserves the
2−dimensional Lebesgue measure λ on the torus. As usual be identify T2 with the unit
square [0, 1)2 with oposite sides identified. Since the set of all finite unions of rectangles in
[0, 1)2 forms an algebra which generates the Borel σ-algebra of the metric space (T2, d), and
since f−1

A = fA−1 is measurable, it is sufficient to prove λ(fA(R)) = λ(R) for all rectangles
R ⊂ [0, 1)2. The image of R under the linear transformation A is the parallelogram AR.
Since |det(A)| = 1, AR has the same area as A. The parallelogram AR can be partitioned
into finitely many disjoint polygons Pj , such that for each j we find an integer vector mj ∈ Z2

with Pj + mj ∈ [0, 1)2. Thus

fA(R) =
⋃
j

(Pj + mj).

Since fA is invertible, the sets Pj + mj are pairwise disjoint, and hence

λ(fA(R)) =
∑
j

λ(Pj + mj) =
∑
j

λ(Pj) = λ(R)

which completes the proof. (In the second equality above we have used that translations
preserve the Lebesgue measure λ.)
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Example 1.1.4. [Gauss map]
Let X = [0, 1] with the Borel σ−algebra and let G : X → X be the Gauss map (see Figure

1.1). Recall that G(0) = 0 and if 0 < x ≤ 1 we have

G(x) =

{
1

x

}
=

1

x
− n if x ∈ Pn =

(
1

n+ 1
,

1

n

]
.

10

1

...

... G GG 123

Figure 1.1: The first branches of the graph of the Gauss map.

The Gauss measure µ is the measure defined by the density 1
(1+x) log 2 , that is the measure

that assigns to any interval [a, b] ⊂ [0, 1] the value

µ([a, b]) =
1

log 2

∫ b

a

1

1 + x
dx.

By the Extension theorem, this defines a measure on all Borel sets. Since∫ 1

0

1

1 + x
= log(1 + x)|10 = log 2− log 1 = log 2,

the factor log 2 in the density is such that µ([0, 1]) = 1, so the Gauss measure is a probability
measure.

[The Gauss measure was discovered by Gauss who found that the correct density to consider
to get invariance was indeed 1/(1 + x).]

Proposition 1. The Gauss map G preserves the Gauss measure µ, that is G∗µ = µ.

Proof is part of the exercise sessions today! It will be added (as ”‘solution”’) tomorrow!
(refresh the browser to update the file if it is past 18/7!)

Spaces and transformations in different branches of dynamics

Measure spaces and measure-preserving transformations are the central object of study in
ergodic theory. Different branches of dynamical systems study dynamical systems with dif-
ferent properties. In topological dynamics, the discrete dynamical systems f : X → X studied
are the ones in which X is a metric space (or more in general, a topological space) and the
transformation f is continuous. In ergodic theory, the discrete dynamical systems f : X → X
studied are the ones in which X is a measured space and the transformation f is measure-
preserving.
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Similarly, other branches of dynamical systems study spaces with different structures and
maps which preserves that structure (for example, in holomorphic dynamics the space X is
a subset of the complex plan C (or Cn) and the map f : X → X is a holomorphic map;
in differentiable dynamics the space X is a subset of Rn (or more in general a manifold,
for example a surface) and the map f : X → X is smooth (that is differentiable and with
continuous derivatives) (as summarized in the Table below) and so on...

branch of dynamics space X transformation f : X → X

Topological dynamics metric space continuous map
(or topological space)

Ergodic Theory measure space measure-preserving map

Holomorphic Dynamics subset of C (or Cn) holomorphic map

Smooth Dynamics subset of Rn smooth
(or manifold, as surface) (continuous derivatives)
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