Prof. Corinna Ulcigrai Measure Preserving Transformations

1.1 Measure preserving transformations

In this section we present the definition and many examples of measure-preserving transfor-
mations. Let (X, %, u) be a measure space. For the ergodic theory part of our course, we
will use the notation 7' : X — X for the map giving a discrete dynamical system, instead
than f: X — X (T stands for transformation). This is because we will use the letter f for
functions f : X — R (which will play the role of observables).

Definition 1.1.1. A transformation 7' : X — X is measurable, if for any measurable set
A € % the preimage is again measurable, that is T=1(A) € 4.

One can show that if (X,d) is a metric space, & = Z(X) is the Borel o—algebra and
T : X — X is continuous, than in particular 7" is measurable. All the transformations we will
consider will be measurable.

[Even if not explicitly stated, when in the context of ergodic theory we consider a transfor-
mation T : X — X on a measurable space (X, %) we implicitly assume that it is measurable.]

Definition 1.1.2. A transformation 7" : X — X is measure-preserving if it is measurable
and if for all measurable sets

w(T7H(A)) = p(A), for all A € A. (1.1)

We also say that the transformation T' preserves p.
If 1 satisfies (1.1), we say that the measure u is invariant under the transformation 7.

Notice that in (1.1) one uses 7~! and not 7. This is essential if 7" is not invertible, as it
can be seen in Example 1.1.1 below (on the other hand, one could alternatively use forward
images if T' is invertible, see Remark 1.1.2 below). Notice also that we need to assume that
T is measurable to guarantee that 7-1(A) is measurable, so that we can consider p(T~1(A))
(recall that a measure is defined only on measurable sets).

We will see many examples of measure-preserving transformations both in this lecture and
in the next ones.

Remark 1.1.1. Let T be measurable. Let us define T,y : B — RT U {+o0} by
Tou(A) = u(T(4), A€

One can check that T,u is a measure. The measure T, pu is called push-forward of p with
respect to T'. Equivalently, T" is measure-preserving if and only if T,u = p.

Exercise 1.1.1. Verify that if 4 is a measure on the measurable space (X, %) and T is a
measurable transformation, the push-forward T,y is a measure on (X, %).

Thanks to the extension theorem, to prove that a measure is invariant, it is not necessary
to check the measure-preserving relation (1.1) for all measurable sets A € £, but it is enough
to check it for a smaller class of subsets:

Lemma 1.1.1. If the c—algebra B is generated by an algebra of (that is, B = B()), then
w is preserved by T if and only if

w(THA)) = p(A), forall A e o, (1.2)

that is, it is enough to check the measure preserving relation for the elements on the generating
algebra o/ and then it automatically holds for all elements of B(<).
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Proof. Consider the two measures g and Tip. If (1.2) holds, then p and T.pu are equal on
the algebra /. Moreover, both of them satisfy the assumptions of the Extension theorem,
since they are measures. The uniqueness part of the Extension theorem states that there is a
unique measure that extends their common values on the algebra. Thus, since p and T, are
both measures that extend the same values on the algebra, by uniqueness they must coincide.
Thus, p = Ty, which means that T is measure-preserving. The converse is trivial: if g and
T.p are equal on elements of (), in particular they coincide on «7. O

As a consequence of this Lemma, to check that a transformation 7' is measure preserving,
it is enough to check it for:

(R) intervals [a,b] if X =R or X =1 C R is an interval and % is the the Borel o—algebra;
(R?) rectangles [a,b] x [a,b] if X = R? or X = [0,1]? and % is the the Borel o—algebra;
(51

(2) cylinders C_py n(a—m, ... an) if X is a shift space X = ¥n or X = X4 and 4 is the

o—algebra;

arcs if X = S' with the Borel o—algebra;

[This is because finite unions of the subsets above mentioned (intervals, rectangles, arcs,
cylinders) form algebras of subsets. If one checks that p = T, on these subsets, by additivity
of a measure they coincide on the whole algebra of their finite unions. Thus, by the Lemma,
w and T, p coincide on the whole o—algebra generated by them, which is in all cases the
corresponding Borel o—algebra.]

Examples of measure-preserving transformations

Example 1.1.1. [Doubling map] Consider (X, %, \) where X = [0,1] and X is the Lebesgue
measure on the Borel o—algebra & of X. Let f(z) = 2z mod 1 be the doubling map. Let
us check that f preserves A. Since

“gp = |2 2] et ott
f[a’b]_|:272:|u|:272:|a

we have
A a, b)) = b;@ R - (a+1)

so the relation (1.1) holds for all intervals. Since if I = U;I; is a (finite or countable) union
of disjoint intervals I; = [a;, b;], we have

)‘(I) = Z ‘bl _ai|a

one can check that A(f~1(I)) = A(I) holds also for all I which belong to the algebra of finite
unions of intervals. Thus, by the extension theorem (see Lemma 1.1.1 and (S1)), we have
A(f~Y(B)) = A(B) for all Borel measurable sets.

On the other hand check that A(f([a,b])) = 2A([a,b]), so A(f([a,b])) # A([a,b]). This
shows the importance of using 77! and not T in the definition of measure preserving.

=b—a= )\([a,b]),

Example 1.1.2. [Rotations] Let R, : S' — S! be a rotation. Let A be the Lebesgue
measure on the circle, which is the same than the 1—dimensional Lebesgue measure on [0, 1]
under the identification of S with [0, 1]/ ~. The measure A(A) of an arc is then given by the
arc length divided by 27, so that A\(S1) = 1.
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Remark that if R, is the counterclockwise rotation by 27a, than Rj' = R_, is the
clockwise rotation by 27wa. If A is an arc, it is clear that the image of the arc under the
rotation has the same arc length, so

MRLY(A) = M\A),  forallarcs AcC S,

(e}

Thus, by the Extension theorem (see (S!) above), we have (R, ).\ = A, that is R, is measure
preserving.

In this Example, one can see that we also have A\(R4(A4)) = M(R;*(A4)) = A(A). This is
the case more in general for invertible transformations:

Remark 1.1.2. Suppose T is invertible with 7' measurable. Then T preserves p if and
only if
w(TA) = p(A), for all measurable sets A € A. (1.3)

Exercise 1.1.2. Prove the remark, by first showing that if T is invertible (injective and
surjective) one has

T(T-'(A) =4, T YT(4)=A
[Notice that this is false in general if T' is not invertible. For any map T one has the inclusions
T(T ' (A)cA  AcCT HT(4),

but you can give examples where the first inclusion can be strict if T is not surjective and the
second inclusion A C T~1(T(A)) is strict if T is not injective.]

In the next example, we will use the following:

Remark 1.1.3. Let (X, %, ) be a measure-space. If T : X — X and S : X — X both
preserve the measure pu, than also their composition T o S preserves the measure p. Indeed,
for each A € &, since T~1(A) € % since T is measurable. Then, using first that S is measure
preserving and then that T is also measure preserving, we get

p(STHTTH(A)) = W(T™H(A)) = u(A).
Thus, T o S is measure-preserving.

Example 1.1.3. [Toral automorphisms] Let f4 : T? — T? be a toral automorphism;
A denotes the corresponding invertible integer matrix. Let us show that f4 preserves the
2—dimensional Lebesgue measure A on the torus. As usual be identify T? with the unit
square [0,1)? with oposite sides identified. Since the set of all finite unions of rectangles in
[0,1)? forms an algebra which generates the Borel o-algebra of the metric space (T2, d), and
since f,' = fa-1 is measurable, it is sufficient to prove A(fa(R)) = A(R) for all rectangles
R C [0,1)2. The image of R under the linear transformation A is the parallelogram AR.
Since | det(A4)| = 1, AR has the same area as A. The parallelogram AR can be partitioned
into finitely many disjoint polygons P;, such that for each j we find an integer vector m; € Z?
with P; +m; € [0,1)2. Thus
fa(R) = J(P; + my).
J
Since f4 is invertible, the sets P; + my; are pairwise disjoint, and hence

Mfa(R)) = Z)\(Pj +mj) = Z)\(Pj) = \R)

which completes the proof. (In the second equality above we have used that translations
preserve the Lebesgue measure \.)
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Example 1.1.4. [Gauss map]
Let X = [0, 1] with the Borel o—algebra and let G : X — X be the Gauss map (see Figure
1.1). Recall that G(0) =0 and if 0 < z < 1 we have

Figure 1.1: The first branches of the graph of the Gauss map.

The Gauss measure p is the measure defined by the density m, that is the measure
that assigns to any interval [a,b] C [0, 1] the value

(la,b]) = — /bld
HS ~log2 ), 14x -

By the Extension theorem, this defines a measure on all Borel sets. Since

1
1 1

Tia = log(1 + z)|, = log2 —log1 = log 2,

the factor log 2 in the density is such that ([0, 1]) = 1, so the Gauss measure is a probability

measure.

[The Gauss measure was discovered by Gauss who found that the correct density to consider

to get invariance was indeed 1/(1 + x).]

Proposition 1. The Gauss map G preserves the Gauss measure i, that is G.p = p.

Proof is part of the exercise sessions today! It will be added (as 7‘solution”’) tomorrow!
(refresh the browser to update the file if it is past 18/7!)

Spaces and transformations in different branches of dynamics

Measure spaces and measure-preserving transformations are the central object of study in
ergodic theory. Different branches of dynamical systems study dynamical systems with dif-
ferent properties. In topological dynamics, the discrete dynamical systems f : X — X studied
are the ones in which X is a metric space (or more in general, a topological space) and the
transformation f is continuous. In ergodic theory, the discrete dynamical systems f: X — X
studied are the ones in which X is a measured space and the transformation f is measure-
PTeserving.
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Similarly, other branches of dynamical systems study spaces with different structures and
maps which preserves that structure (for example, in holomorphic dynamics the space X is
a subset of the complex plan C (or C") and the map f : X — X is a holomorphic map;
in differentiable dynamics the space X is a subset of R” (or more in general a manifold,
for example a surface) and the map f : X — X is smooth (that is differentiable and with
continuous derivatives) (as summarized in the Table below) and so on...

branch of dynamics space X transformation f: X — X
Topological dynamics metric space continuous map
(or topological space)
Ergodic Theory measure space measure-preserving map
Holomorphic Dynamics subset of C (or C™) holomorphic map
Smooth Dynamics subset of R” smooth
(or manifold, as surface) (continuous derivatives)




