The topologically twisted index on $S^{2} \times T^{2}$ and black strings in AdS

James Liu
University of Michigan

9 July 2018

```
JTL, L. A. Pando Zayas, V. Rathee and W. Zhao
    JHEP 1801 (2018) 026 [arXiv:1707.04197]; PRL 120 (2018) 221602 [arXiv:1711.01076]
Junho Hong and JTL, JHEP 1807 (2018) 018 [arXiv:1804.04592]
JTL, L. A. Pando Zayas and S. Zhou, in progress
```

Supersymmetric partition functions and precision holography

Supersymmetric partition functions from localization

- Localization is a very powerful tool for computing supersymmetric partition functions and observables
- S^{n} partition functions, Wilson loop observables
- $S^{n} \times S^{1}$ partition functions and supersymmetric indices
- Generically, the partition function takes the form

$$
Z_{\text {susy }}=\int d \Phi Z_{\text {classical }} Z_{1-\text { loop }}
$$

Supersymmetric partition functions from localization

- Localization is a very powerful tool for computing supersymmetric partition functions and observables
- S^{n} partition functions, Wilson loop observables
$-S^{n} \times S^{1}$ partition functions and supersymmetric indices
- Generically, the partition function takes the form

$$
Z_{\text {susy }}=\int d \Phi Z_{\text {classical }} Z_{1-\text { loop }}
$$

- We explore the connection between the topologically twisted index on $S^{2} \times T^{2}$ and AdS_{5} black string microstates
[F. Benini, K. Hristov and A. Zaffaroni, arXiv:1504.03698]
[S. M. Hosseini, A. Nedelin and A. Zaffaroni, arXiv:1611.09374]

AdS/CFT and black hole/black string entropy

- AdS/CFT allows us to compare observables on both sides of the duality

Global AdS \leftrightarrow partition function on S^{n}
Black holes in AdS \leftrightarrow partition function on $S^{n-1} \times S^{1}$
Black strings in AdS \leftrightarrow partition function on $S^{n-2} \times T^{2}$

AdS/CFT and black hole/black string entropy

- AdS/CFT allows us to compare observables on both sides of the duality

Global AdS $\quad \leftrightarrow$ partition function on S^{n}
Black holes in AdS \leftrightarrow partition function on $S^{n-1} \times S^{1}$
Black strings in AdS \leftrightarrow partition function on $S^{n-2} \times T^{2}$

- Consider a BPS black string in AdS_{5}

	boundary		near horizon
AdS	AAdS_{5}	\longrightarrow	$\mathrm{AdS}_{3} \times S^{2}$
	\downarrow		\downarrow
CFT	$S^{2} \times T^{2}$	\longrightarrow	T^{2}

The topologically twisted index on $S^{2} \times T^{n}$

- The topologically twisted index was introduced by F. Benini and A. Zaffaroni, arXiv:1504.03698
- Take an object with magnetic flux on S^{2} in AdS
- magnetic black hole in AdS_{4}
- magnetic black string in AdS_{5}
- What do we do on the field theory side?
- Background R symmetry flux on S^{2}
- This cancels the curvature of $S^{2} \Rightarrow$ partial topological twist
- The index may be computed using localization

The topologically twisted index on $S^{2} \times T^{n}$

- The topologically twisted index was introduced by F. Benini and A. Zaffaroni, arXiv:1504.03698
- Take an object with magnetic flux on S^{2} in AdS
- magnetic black hole in AdS_{4}
- magnetic black string in AdS_{5}
- What do we do on the field theory side?
- Background R symmetry flux on S^{2}
- This cancels the curvature of $S^{2} \Rightarrow$ partial topological twist
- The index may be computed using localization
- This topologically twisted index on $S^{2} \times S^{1}$ is conjectured to count the black hole microstates [Benini, Hristov, Zaffaroni]
- Many general features are now known
- Extended to dyonic black holes, black holes with hyperbolic horizons, magnetic black strings,...

Counting black hole/black string microstates

- Given a magnetically charged AdS object, we can construct the topologically twisted index in the field theory dual and evaluate it in the large- N limit

Counting black hole/black string microstates

- Given a magnetically charged AdS object, we can construct the topologically twisted index in the field theory dual and evaluate it in the large- N limit
- First a quick review of black holes in AdS_{4}

1. Magnetic black holes in M -theory on $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$

Dual to ABJM theory
2. Magnetic black holes in massive IIA on $\mathrm{AdS}_{4} \times S^{6}$

Dual to $\mathcal{N}=2$ Chern-Simons-matter theory

Counting black hole/black string microstates

- Given a magnetically charged AdS object, we can construct the topologically twisted index in the field theory dual and evaluate it in the large- N limit
- First a quick review of black holes in AdS_{4}

1. Magnetic black holes in M-theory on $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{k}$

Dual to ABJM theory
2. Magnetic black holes in massive IIA on $\mathrm{AdS}_{4} \times S^{6}$

Dual to $\mathcal{N}=2$ Chern-Simons-matter theory

- Then we focus on black strings in AdS_{5}

3 Magnetic black strings in IIB on $\mathrm{AdS}_{5} \times S^{5}$
Dual to $\mathcal{N}=4$ super-Yang-Mills

The $S^{2} \times S^{1}$ index and AdS
black holes

Building blocks of the $S^{2} \times S^{1}$ index

- Consider three-dimensional $\mathcal{N}=2$ Chern-Simons-matter theories on $S^{2} \times S^{1}$
- The topologically twisted index receives contributions from:
- Vector multiplets:

$$
Z_{\text {vector }}=\prod_{i} \frac{d x_{i}}{2 \pi i x_{i}} x_{i}^{k m_{i}} \prod_{\alpha \in G}\left(1-x^{\alpha}\right)
$$

- Chiral multiplets:

$$
Z_{\text {chiral }}=\prod_{\mu \in R}\left(\frac{\sqrt{x^{\mu} y^{\mu_{f}}}}{1-x^{\mu} y^{\mu_{f}}}\right)^{\mu(\mathfrak{m})+\mu_{f}(\mathfrak{n})-q+1}
$$

- These elements can be combined to construct the index for various models

M-theory on $A d S_{4} \times S^{7} / Z_{k}$

- The field theory dual is ABJM theory

Chern-Simons-matter with $U(N)_{k} \times U(N)_{-k}$ gauge groups and bi-fundamental matter A_{i}, B_{j}

- The topologically twisted index is given by

$$
\begin{aligned}
& Z\left(y_{a}, \mathfrak{n}_{a}\right)= \frac{1}{(N!)^{2}} \sum_{\mathfrak{m}, \tilde{\mathfrak{m}}} \int \prod_{i} \frac{d x_{i}}{2 \pi i x_{i}} x_{i}^{k \mathfrak{m}_{i}} \prod_{i \neq j}\left(1-\frac{x_{i}}{x_{j}}\right) \\
& \int \prod_{i} \frac{d \tilde{x}_{i}}{2 \pi i \tilde{x}_{i}} \tilde{x}_{i}^{-k \tilde{\mathfrak{m}}_{i}} \prod_{i \neq j}\left(1-\frac{\tilde{x}_{i}}{\tilde{x}_{j}}\right) \\
& \prod_{i, j} \prod_{a}\left(\frac{\sqrt{\frac{x_{i}}{x_{j}} y_{a}}}{1-\frac{\tilde{i}_{i}}{\frac{x}{j}^{y_{a}}}}\right)^{\mathfrak{m}_{i}-\tilde{m}_{j}-\mathfrak{n}_{a}+1} \prod_{i, j} \prod_{b}\left(\frac{\sqrt{\frac{x_{i}}{x_{i}} y_{b}}}{1-\frac{x_{j}}{x_{i} y_{b}}}\right)^{\tilde{m}_{j}-\mathfrak{m}_{i}-\mathfrak{n}_{b}+1}
\end{aligned}
$$

- The index can be evaluated using the Jeffrey-Kirwan residue [Benini, Hristov, Zaffaroni]

Eigenvalue distribution

- Single solution to the BAE up to permutations

Solution for $\Delta_{a}=\{0.3,0.4,0.5,2 \pi-1.2\}$ and $N=50$

Eigenvalue distribution

- Single solution to the BAE up to permutations

Solution for $\Delta_{a}=\{0.3,0.4,0.5,2 \pi-1.2\}$ and $N=50$

- Large- N behavior

$$
\text { Re } \log Z \sim f_{0} N^{3 / 2}+f_{1} N^{1 / 2}-\frac{1}{2} \log N+\cdots
$$

- Subleading terms are difficult to extract analytically

Tails in the distribution lead to complications

Massive IIA theory on $\operatorname{AdS}_{4} \times S^{6}$

- The dual field theory is an $\mathcal{N}=2$

Chern-Simons-matter theory with $S U(N)_{k}$ gauge group and adjoint matter X, Y, Z [Guarino, Jafferis and Varela, arXiv:1504.08009]

- Here the topologically twisted index is given by

$$
\begin{aligned}
& Z\left(y_{a}, \mathfrak{n}_{a}\right)=\frac{(-1)^{N}}{N!} \sum_{\mathfrak{m}} \int \prod_{i} \frac{d x_{i}}{2 \pi i x_{i}} x_{i}^{k \mathfrak{m}_{i}} \prod_{i \neq j}\left(1-\frac{x_{i}}{x_{j}}\right)
\end{aligned}
$$

- Once again, the index is evaluated using the Jeffrey-Kirwan residue [Benini, Khachatryan and Milan 1707.06886; Hosseini, Hristov and Passias 1707.06884]

Eigenvalue distribution

- Single solution to the BAE up to permutations

Solution for $\Delta_{a}=\{0.2,0.7,2 \pi-0.9\}$ and $N=50$

Eigenvalue distribution

- Single solution to the BAE up to permutations

Solution for $\Delta_{a}=\{0.2,0.7,2 \pi-0.9\}$ and $N=50$

- Large- N behavior

$$
\operatorname{Re} \log Z \sim f_{0} N^{5 / 3}+f_{1} N^{2 / 3}+f_{2} N^{1 / 3}+f_{3} \log N+\cdots
$$

- Can we understand the subleading behavior?

No tails, but still have to deal with endpoints

The $S^{2} \times T^{2}$ index and AdS black strings

Building blocks of the $S^{2} \times T^{2}$ index

- We now turn to the topologically twisted index on $S^{2} \times T^{2}$ where T^{2} is parametrized by $q=e^{2 \pi i \tau}$
- Four-dimensional Yang-Mills theory on $S^{2} \times T^{2}$

Building blocks of the $S^{2} \times T^{2}$ index

- We now turn to the topologically twisted index on $S^{2} \times T^{2}$ where T^{2} is parametrized by $q=e^{2 \pi i \tau}$
- Four-dimensional Yang-Mills theory on $S^{2} \times T^{2}$
- Work in an $\mathcal{N}=1$ language
- Vector multiplets:

$$
Z_{\mathrm{vector}}=(-1)^{2 \rho(\mathfrak{m})} \prod_{i \in G} \frac{d x_{i}}{2 \pi i x_{i}} \eta(q)^{2} \prod_{\alpha \in G}\left(\frac{\theta_{1}\left(x^{\alpha}, q\right)}{i \eta(q)}\right)
$$

- Chiral multiplets:

$$
Z_{\text {chiral }}=\prod_{\mu \in R}\left(\frac{i \eta(q)}{\theta_{1}\left(x^{\mu} y^{\mu_{f}}, q\right)}\right)^{\mu(\mathfrak{m})+\mu_{f}(\mathfrak{n})+1}
$$

IIB on $\operatorname{AdS}_{5} \times S^{5}$

- The standard AdS/CFT setup
- IIB on $\mathrm{AdS}_{5} \times S^{5} \longleftrightarrow \mathcal{N}=4$ SYM with $S U(N)$ gauge group
- On the gravity side [Benini and Bobev, arXiv:1302.4451]
- Consider the $S U(4)_{R} \supset U(1)^{3}$ truncation - ie the STU model
- Magnetic string solutions with magnetic charges \mathfrak{n}_{a}
- Near horizon $\mathrm{AdS}_{3} \times S^{2}$ with $\mathfrak{n}_{1}+\mathfrak{n}_{2}+\mathfrak{n}_{3}=2$

IIB on $\operatorname{AdS}_{5} \times S^{5}$

- The standard AdS/CFT setup
- IIB on $\mathrm{AdS}_{5} \times S^{5} \longleftrightarrow \mathcal{N}=4$ SYM with $\operatorname{SU}(N)$ gauge group
- On the gravity side [Benini and Bobev, arXiv:1302.4451]
- Consider the $S U(4)_{R} \supset U(1)^{3}$ truncation - ie the STU model
- Magnetic string solutions with magnetic charges \mathfrak{n}_{a}
- Near horizon $\mathrm{AdS}_{3} \times S^{2}$ with $\mathfrak{n}_{1}+\mathfrak{n}_{2}+\mathfrak{n}_{3}=2$
- On the field theory side
- $\mathcal{N}=4$ SYM on $T^{2} \times S^{2}$ with modular parameter $q=e^{2 \pi i \tau}$
- Magnetic fluxes on S^{2} (given by \mathfrak{n}_{a}) enforce the topological twisting
- We also turn on chemical potentials Δ_{a}
- The topologically twisted index is then a function of these parameters $Z\left(\Delta_{a}, \mathfrak{n}_{a} ; \tau\right)$

The topologically twisted index

- Compute the topologically twisted index for $\mathcal{N}=4$ SYM with gauge group $S U(N)$ on $S^{2} \times T^{2}$

One vector and three chiral multiplets in the $\mathcal{N}=1$ language

- The result is [Hosseini, Nedelin and Zaffaroni, arXiv:1611.09374]

$$
\begin{gathered}
Z=\frac{1}{N!} \sum_{\mathfrak{m}} \int \prod_{i} \frac{d x_{i}}{2 \pi i x_{i}} \eta(q)^{2} \prod_{i \neq j}\left(\frac{\theta_{1}\left(\frac{x_{i}}{x_{j}}, q\right)}{i \eta(q)}\right) \prod_{a} \prod_{i, j}\left(\frac{i \eta(q)}{\theta_{1}\left(\frac{x_{i}}{x_{j}} y_{a}, q\right)}\right)^{\mathfrak{m}_{i}-\mathfrak{m}_{j}-\mathfrak{n}_{a}+1} \\
x_{i}=e^{i u_{i}}, \quad y_{a}=e^{i \Delta_{a}}, \quad q=e^{2 \pi i \tau}
\end{gathered}
$$

The topologically twisted index

- Compute the topologically twisted index for $\mathcal{N}=4$ SYM with gauge group $S U(N)$ on $S^{2} \times T^{2}$

One vector and three chiral multiplets in the $\mathcal{N}=1$ language

- The result is [Hosseini, Nedelin and Zaffaroni, arXiv:1611.09374]

$$
\begin{gathered}
Z=\frac{1}{N!} \sum_{\mathfrak{m}} \int \prod_{i} \frac{d x_{i}}{2 \pi i x_{i}} \eta(q)^{2} \prod_{i \neq j}\left(\frac{\theta_{1}\left(\frac{x_{i}}{x_{j}}, q\right)}{i \eta(q)}\right) \prod_{a} \prod_{i, j}\left(\frac{i \eta(q)}{\theta_{1}\left(\frac{x_{i}}{x_{j}} y_{a}, q\right)}\right)^{\mathfrak{m}_{i}-\mathfrak{m}_{j}-\mathfrak{n}_{a}+1} \\
x_{i}=e^{i u_{i}}, \quad y_{a}=e^{i \Delta_{a}}, \quad q=e^{2 \pi i \tau}
\end{gathered}
$$

- After evaluating the Jeffrey-Kirwan residue

$$
Z\left(\Delta_{a}, \mathfrak{n}_{a} ; \tau\right)=\mathcal{A} \sum_{I \in \mathrm{BAEs}} \frac{1}{\operatorname{det} \mathbb{B}} \prod_{i \neq j}\left[\frac{\theta_{1}\left(\frac{x_{i}}{x_{j}}, q\right)}{i \eta(q)} \prod_{a}\left(\frac{i \eta(q)}{\theta_{1}\left(\frac{x_{j}}{x_{j}} y_{a}, q\right)}\right)^{1-\mathfrak{n}_{a}}\right]
$$

Solving the BAE

- The BAEs that we need to solve are

$$
1=e^{i B_{i}} \equiv e^{i v} \prod_{j} \prod_{a} \frac{\theta_{1}\left(e^{i\left(u_{j}-u_{i}+\Delta_{a}\right)}, q\right)}{\theta_{1}\left(e^{i\left(u_{i}-u_{j}+\Delta_{a}\right)}, q\right)}
$$

- How do we obtain the u_{i} 's?

Solving the BAE

- The BAEs that we need to solve are

$$
1=e^{i B_{i}} \equiv e^{i v} \prod_{j} \prod_{a} \frac{\theta_{1}\left(e^{i\left(u_{j}-u_{i}+\Delta_{a}\right)}, q\right)}{\theta_{1}\left(e^{i\left(u_{i}-u_{j}+\Delta_{a}\right)}, q\right)}
$$

- How do we obtain the u_{i} 's?

Hosseini, Nedelin, Zaffaroni obtained $u_{j}=\bar{u}+2 \pi \frac{\tau}{N} j$ in the high-temperature limit $\beta \rightarrow 0^{+}$where $\tau=i \beta / 2 \pi$

Multiple solutions to the BAE

- Evenly distributed eigenvalues \Rightarrow good solution for any q !

Multiple solutions to the BAE

- Evenly distributed eigenvalues \Rightarrow good solution for any q !

Multiple solutions to the BAE

- Evenly distributed eigenvalues \Rightarrow good solution for any q !

Multiple solutions to the BAE

- Evenly distributed eigenvalues \Rightarrow good solution for any q !

Multiple solutions to the BAE

- Evenly distributed eigenvalues \Rightarrow good solution for any q !

Multiple solutions to the BAE

- Evenly distributed eigenvalues \Rightarrow good solution for any q !

- We find a family of exact solutions specified by $\{m, n, r\}$ where $N=m n$ and $r=0,1, \ldots, n-1$

$$
u_{j k}=\bar{u}+2 \pi \frac{j+k \tilde{\tau}}{m} \quad \tilde{\tau}=\frac{m \tau+r}{n}
$$

with $j=0,1, \ldots, m-1$ and $k=0,1, \ldots, n-1$

The sum over sectors

- The topologically twisted index for $\mathcal{N}=4 \mathrm{SYM}$ on $S^{2} \times T^{2}$ can be written as $Z=\sum_{\{m, n, r\}} Z_{\{m, n, r\}}$ where

$$
Z_{\{m, n, r\}}\left(\Delta_{a}, \mathfrak{n}_{a} ; \tau\right)=\frac{i^{N-1}}{\operatorname{det} \mathbb{B}_{\{m, n, r\}}} \prod_{a}\left[\psi\left(\Delta_{a}, \tau\right)\left(\frac{m}{\psi\left(m \Delta_{a}, \tilde{\tau}\right)}\right)^{N}\right]^{1-\mathfrak{n}_{a}}
$$

and

$$
\psi(u, \tau)=\frac{\theta_{1}(u, \tau)}{\eta^{3}(\tau)}=\sqrt{\varphi_{-2,1}(u, \tau)}
$$

Here $\varphi_{-2,1}$ is the unique weak Jacobi form of weight -2 and index 1

The sum over sectors

- The topologically twisted index for $\mathcal{N}=4 \mathrm{SYM}$ on $S^{2} \times T^{2}$ can be written as $Z=\sum_{\{m, n, r\}} Z_{\{m, n, r\}}$ where

$$
Z_{\{m, n, r\}}\left(\Delta_{a}, \mathfrak{n}_{a} ; \tau\right)=\frac{i^{N-1}}{\operatorname{det} \mathbb{B}_{\{m, n, r\}}} \prod_{a}\left[\psi\left(\Delta_{a}, \tau\right)\left(\frac{m}{\psi\left(m \Delta_{a}, \tilde{\tau}\right)}\right)^{N}\right]^{1-\mathfrak{n}_{a}}
$$

and

$$
\psi(u, \tau)=\frac{\theta_{1}(u, \tau)}{\eta^{3}(\tau)}=\sqrt{\varphi_{-2,1}(u, \tau)}
$$

Here $\varphi_{-2,1}$ is the unique weak Jacobi form of weight -2 and index 1

- The sum over sectors is crucial for modularity of the index

Two modular parameters: $\tau: T^{2}$ and $\tilde{\tau}: T^{2} / \mathbb{Z}_{m} \times \mathbb{Z}_{n}$

The index as an elliptic genus

- The index computes the elliptic genus of the $\mathcal{N}=(0,2)$ SCFT obtained by reducing on S^{2}

Transforms under $S L(2, \mathbb{Z})$ as a weak Jacobi form of weight 0

The index as an elliptic genus

- The index computes the elliptic genus of the $\mathcal{N}=(0,2)$ SCFT obtained by reducing on S^{2}

Transforms under $S L(2, \mathbb{Z})$ as a weak Jacobi form of weight 0

- Consider, for example, the case $N=6$

The transformation $T: \tau \rightarrow \tau+1$

The transformation $S: \tau \rightarrow-1 / \tau$

The high-temperature limit

The high-temperature limit of the index

- We can take the Cardy limit of the index in order to compare with the black string in AdS

Expect $\log Z \sim \frac{\pi^{2}}{6 \beta} c_{r}$ as $\beta \rightarrow 0^{+}$where $\tau=\frac{i \beta}{2 \pi}$

The high-temperature limit of the index

- We can take the Cardy limit of the index in order to compare with the black string in AdS

$$
\text { Expect } \log Z \sim \frac{\pi^{2}}{6 \beta} c_{r} \text { as } \beta \rightarrow 0^{+} \text {where } \tau=\frac{i \beta}{2 \pi}
$$

- This is obtained by performing a modular transformation $\tau \rightarrow-1 / \tau$

$$
\begin{aligned}
& Z\left(\Delta_{a}, \mathfrak{n}_{\mathrm{a}} ; \tau\right)=e^{\frac{i}{2 \pi \tau^{\prime}}} \sum_{\mathrm{a}} m_{a} \Delta_{\mathrm{a}}^{\prime 2} \\
&=e^{\frac{i}{2 \pi \tau^{\prime}}} \sum_{\mathrm{a}} m_{a} \Delta_{a}^{\prime 2} \\
&\left.\sum_{\left\{m^{\prime}, n^{\prime}, r^{\prime}\right\}}^{\prime}, n_{a} ; \tau^{\prime}\right) \\
& Z_{\left\{m^{\prime}, n^{\prime}, r^{\prime}\right\}}\left(\Delta_{a}^{\prime}, \mathfrak{n}_{a} ; \tau^{\prime}\right)
\end{aligned}
$$

where

$$
\tau^{\prime}=-\frac{1}{\tau}=\frac{2 \pi i}{\beta}, \quad \Delta_{a}^{\prime}=\frac{\Delta_{a}}{\tau}=-\frac{2 \pi i \Delta_{a}}{\beta}
$$

and

$$
m_{a}=-\frac{N^{2}-1}{2}\left(1-\mathfrak{n}_{a}\right)
$$

are indices of the Jacobi form

The high-temperature limit of the index

- We expect the index to be dominated by a single sector

- This is the sector considered in Hosseini, Nedelin, Zaffaroni

$$
\left.\log Z\left(\Delta_{a}, \mathfrak{n}_{a} ; i \beta / 2 \pi\right)\right|_{\beta \rightarrow 0^{+}} \sim \frac{\pi^{2}}{6 \beta} c_{r}\left(\Delta_{a}, \mathfrak{n}_{a}\right)
$$

The high-temperature limit of the index

- We expect the index to be dominated by a single sector

- This is the sector considered in Hosseini, Nedelin, Zaffaroni

$$
\left.\log Z\left(\Delta_{a}, \mathfrak{n}_{a} ; i \beta / 2 \pi\right)\right|_{\beta \rightarrow 0^{+}} \sim \frac{\pi^{2}}{6 \beta} c_{r}\left(\Delta_{a}, \mathfrak{n}_{a}\right)
$$

- But can we really ignore the other sectors?

High-temperature limit in the sector $\{m, n, r\}$

- Expanding the theta functions for $\tau^{\prime} \rightarrow i \infty$ gives

$$
\begin{aligned}
\log Z_{\{m, n, r\}}=\frac{2 \pi^{2}}{\beta}[& \sum_{a}\left(1-\mathfrak{n}_{a}\right)\left(d_{a}\left(1-d_{a}\right)-m^{\prime 2} x_{a}\left(1-x_{a}\right)\right) \\
& \left.+2\left(n^{\prime}-1\right) \alpha_{\left\{m^{\prime}, n^{\prime}, r^{\prime}\right\}}\left(d_{a}\right)\right]+\mathcal{O}(1)
\end{aligned}
$$

where

$$
d_{a}=\frac{\Delta_{a}}{2 \pi} \quad(\bmod 1), \quad x_{a}=\frac{n^{\prime} \Delta_{a}}{2 \pi} \quad(\bmod 1)
$$

- Here $\alpha_{\left\{m^{\prime}, n^{\prime}, r^{\prime}\right\}}\left(d_{a}\right)$ parametrizes the high temperature behavior of the Jacobian factor $\operatorname{det} \mathbb{B}$

$$
\log \operatorname{det} \mathbb{B}_{\left\{m^{\prime}, n^{\prime}, r^{\prime}\right\}} \sim-\frac{4 \pi^{2}}{\beta}\left(n^{\prime}-1\right) \alpha_{\left\{m^{\prime}, n^{\prime}, r^{\prime}\right\}}\left(d_{a}\right)
$$

The determinant factor $\alpha\left(d_{a}\right)$

- We have been unable to find a general expression for $\alpha_{\left\{m^{\prime}, n^{\prime}, r^{\prime}\right\}}\left(d_{a}\right)$
- Complicated dependence on the chemical potentials $d_{a}=\Delta_{a} / 2 \pi(\bmod 1)$
- However
- We find $\operatorname{det} \mathbb{B}$ is either $\mathcal{O}(1)(\alpha=0)$ or approaches zero $(\alpha>0)$
- In general, α is piecewise linear

$$
N=2: \quad \alpha_{\{2,1,0\}}=0, \quad \alpha_{\left\{1,2, r^{\prime}\right\}}=\max \left(0, d_{a}-1 / 2\right)
$$

The determinant factor $\alpha\left(d_{a}\right)$

- We have been unable to find a general expression for $\alpha_{\left\{m^{\prime}, n^{\prime}, r^{\prime}\right\}}\left(d_{a}\right)$
- Complicated dependence on the chemical potentials $d_{a}=\Delta_{a} / 2 \pi(\bmod 1)$
- However
- We find det \mathbb{B} is either $\mathcal{O}(1)(\alpha=0)$ or approaches zero $(\alpha>0)$
- In general, α is piecewise linear

$$
N=3: \quad \alpha_{\{3,1,0\}}=0, \quad \alpha_{\left\{1,3, r^{\prime}\right\}}=\max \left(0, d_{2}-1 / 3, d_{3}-2 / 3\right)
$$

The determinant factor $\alpha\left(d_{a}\right)$

- We have been unable to find a general expression for $\alpha_{\left\{m^{\prime}, n^{\prime}, r^{\prime}\right\}}\left(d_{a}\right)$
- Complicated dependence on the chemical potentials $d_{a}=\Delta_{a} / 2 \pi(\bmod 1)$
- However
- We find det \mathbb{B} is either $\mathcal{O}(1)(\alpha=0)$ or approaches zero $(\alpha>0)$
- In general, α is piecewise linear

$$
N=3: \quad \alpha_{\{3,1,0\}}=0, \quad \alpha_{\left\{1,3, r^{\prime}\right\}}=\max \left(0, d_{2}-1 / 3, d_{3}-2 / 3\right)
$$

- The behavior is more complicated when N is composite

Domination by $Z_{\{1, N, 0\}}$

- Hosseini, Nedlin, Zaffaroni suggest that the high-temperature limit is dominated by

$$
\log Z_{\{1, N, 0\}} \sim-\frac{2 \pi^{2}}{\beta}\left(N^{2}-1\right) \sum_{a}\left(1-\mathfrak{n}_{a}\right) d_{a}\left(1-d_{a}\right)
$$

- This is the case provided $\log Z_{\{1, N, 0\}} \geq \log Z_{\{m, n, r\}}$, or

$$
\sum_{a}\left(1-\mathfrak{n}_{a}\right)\left(\frac{x_{a}\left(1-x_{a}\right)}{n^{\prime 2}}-d_{a}\left(1-d_{a}\right)\right) \geq \frac{2\left(n^{\prime}-1\right)}{N^{2}} \alpha_{\left\{m^{\prime}, n^{\prime}, r^{\prime}\right\}}\left(d_{a}\right)
$$

Domination by $Z_{\{1, N, 0\}}$

- Hosseini, Nedlin, Zaffaroni suggest that the high-temperature limit is dominated by

$$
\log Z_{\{1, N, 0\}} \sim-\frac{2 \pi^{2}}{\beta}\left(N^{2}-1\right) \sum_{a}\left(1-\mathfrak{n}_{a}\right) d_{a}\left(1-d_{a}\right)
$$

- This is the case provided $\log Z_{\{1, N, 0\}} \geq \log Z_{\{m, n, r\}}$, or

$$
\sum_{a}\left(1-\mathfrak{n}_{a}\right)\left(\frac{x_{a}\left(1-x_{a}\right)}{n^{\prime 2}}-d_{a}\left(1-d_{a}\right)\right) \geq \frac{2\left(n^{\prime}-1\right)}{N^{2}} \alpha_{\left\{m^{\prime}, n^{\prime}, r^{\prime}\right\}}\left(d_{a}\right)
$$

- Not universally true, but can be studied
- Subdominant sectors will be exponentially suppressed
- Expect $Z_{\{1, N, 0\}}$ to dominate whenever a good string dual exists

Extremization and the central charge

- Assuming $Z_{\{1, N, 0\}}$ dominates, we obtain

$$
\begin{aligned}
\left.\log Z\left(\Delta_{a}, \mathfrak{n}_{a} ; i \beta / 2 \pi\right)\right|_{\beta \rightarrow 0^{+}} & \sim-\frac{2 \pi^{2}}{\beta}\left(N^{2}-1\right) \sum_{a}\left(1-\mathfrak{n}_{a}\right) d_{a}\left(1-d_{a}\right) \\
& \sim \frac{\pi^{2}}{6 \beta} c_{r}\left(\Delta_{a}, \mathfrak{n}_{a}\right)
\end{aligned}
$$

- For fixed charges \mathfrak{n}_{a}, we extremize the trial right-moving central charge c_{r} with respect to the potentials d_{a}

$$
\begin{gathered}
\bar{d}_{a}=\frac{\mathfrak{n}_{a}\left(\mathfrak{n}_{a}-1\right)}{2 \Theta}, \quad \Theta=1-\left(\mathfrak{n}_{1} \mathfrak{n}_{2}+\mathfrak{n}_{2} \mathfrak{n}_{3}+\mathfrak{n}_{3} \mathfrak{n}_{1}\right) \\
\Rightarrow \quad c_{r}\left(\mathfrak{n}_{a}\right)=3\left(N^{2}-1\right) \frac{\mathfrak{n}_{1} \mathfrak{n}_{2} \mathfrak{n}_{3}}{\Theta}
\end{gathered}
$$

(Unitarity demands $\mathfrak{n}_{1} \mathfrak{n}_{2} \mathfrak{n}_{3}>0$, and supersymmetry demands $\mathfrak{n}_{1}+\mathfrak{n}_{2}+\mathfrak{n}_{3}=2$)

Final thoughts

What about the large $-N$ limit?

- In the Cardy limit, we expect N^{2} behavior

$$
\log Z \sim \frac{N^{2}}{\beta} \quad \text { ie } \quad c_{r}=\mathcal{O}\left(N^{2}\right)
$$

This can be seen in the high-temperature limit of the topologically twisted index

What about the large $-N$ limit?

- In the Cardy limit, we expect N^{2} behavior

$$
\log Z \sim \frac{N^{2}}{\beta} \quad \text { ie } \quad c_{r}=\mathcal{O}\left(N^{2}\right)
$$

This can be seen in the high-temperature limit of the topologically twisted index

- Is there a $\log (N)$ correction?

And if so, is it universal? Can it be reproduced in the AdS black string dual?

What about the large $-N$ limit?

- In the Cardy limit, we expect N^{2} behavior

$$
\log Z \sim \frac{N^{2}}{\beta} \quad \text { ie } \quad c_{r}=\mathcal{O}\left(N^{2}\right)
$$

This can be seen in the high-temperature limit of the topologically twisted index

- Is there a $\log (N)$ correction?

And if so, is it universal? Can it be reproduced in the AdS black string dual?

- At finite temperature we expect modular covariance

$$
Z \sim N^{2} \psi\left(\Delta_{a}, \mathfrak{n}_{a}, \tau\right)
$$

- Can we study the elliptic genus at large- N ? And on the AdS side of the duality?

Summary

- We have explored the topologically twisted index for $\mathcal{N}=4 \mathrm{SYM}$ on $S^{2} \times T^{2}$
- Conjectured to count black string microstates in the holographic dual
- Main result: There are multiple solutions to the BAE for the index on $S^{2} \times T^{2}$
- Needed for modular covariance of the index
- But in the Cardy limit, only a single sector dominates
- Much remains to be understood in the precision counting of AdS black hole/black string microstates

