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Supersymmetric partition functions from localization

I Localization is a very powerful tool for computing supersymmetric partition
functions and observables

– Sn partition functions, Wilson loop observables

– Sn × S1 partition functions and supersymmetric indices

I Generically, the partition function takes the form

Zsusy =

∫
dΦZclassical Z1−loop

I We explore the connection between the topologically twisted index on S2 × T 2

and AdS5 black string microstates

[F. Benini, K. Hristov and A. Zaffaroni, arXiv:1504.03698]
[S. M. Hosseini, A. Nedelin and A. Zaffaroni, arXiv:1611.09374]



JTL

Supersymmetric partition functions from localization

I Localization is a very powerful tool for computing supersymmetric partition
functions and observables

– Sn partition functions, Wilson loop observables

– Sn × S1 partition functions and supersymmetric indices

I Generically, the partition function takes the form

Zsusy =

∫
dΦZclassical Z1−loop

I We explore the connection between the topologically twisted index on S2 × T 2

and AdS5 black string microstates

[F. Benini, K. Hristov and A. Zaffaroni, arXiv:1504.03698]
[S. M. Hosseini, A. Nedelin and A. Zaffaroni, arXiv:1611.09374]



JTL

AdS/CFT and black hole/black string entropy

I AdS/CFT allows us to compare observables on both sides of the duality

Global AdS ↔ partition function on Sn

Black holes in AdS ↔ partition function on Sn−1 × S1

Black strings in AdS ↔ partition function on Sn−2 × T 2

I Consider a BPS black string in AdS5

boundary near horizon

AdS AAdS5 −→ AdS3 × S2

↓ ↓
CFT S2 × T 2 −→ T 2
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The topologically twisted index on S2 × T n

I The topologically twisted index was introduced by
F. Benini and A. Zaffaroni, arXiv:1504.03698

I Take an object with magnetic flux on S2 in AdS
– magnetic black hole in AdS4

– magnetic black string in AdS5

I What do we do on the field theory side?
– Background R symmetry flux on S2

– This cancels the curvature of S2 ⇒ partial topological twist

– The index may be computed using localization

I This topologically twisted index on S2 × S1 is conjectured to count the black hole
microstates [Benini, Hristov, Zaffaroni]

– Many general features are now known

– Extended to dyonic black holes, black holes with hyperbolic horizons, magnetic black
strings,. . .
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Counting black hole/black string microstates

I Given a magnetically charged AdS object, we can construct the topologically
twisted index in the field theory dual and evaluate it in the large-N limit

I First a quick review of black holes in AdS4

1. Magnetic black holes in M-theory on AdS4 × S7/Zk

Dual to ABJM theory

2. Magnetic black holes in massive IIA on AdS4 × S6

Dual to N = 2 Chern-Simons-matter theory

I Then we focus on black strings in AdS5

3 Magnetic black strings in IIB on AdS5 × S5

Dual to N = 4 super-Yang-Mills
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The S2 × S1 index and AdS
black holes
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Building blocks of the S2 × S1 index

I Consider three-dimensional N = 2 Chern-Simons-matter theories on S2 × S1

I The topologically twisted index receives contributions from:

• Vector multiplets:

Zvector =
∏
i

dxi
2πixi

xkmi

i

∏
α∈G

(1− xα)

• Chiral multiplets:

Zchiral =
∏
µ∈R

( √
xµyµf

1− xµyµf

)µ(m)+µf (n)−q+1

I These elements can be combined to construct the index for various models
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M-theory on AdS4 × S7/Zk

I The field theory dual is ABJM theory

Chern-Simons-matter with U(N)k × U(N)−k gauge groups and bi-fundamental
matter Ai ,Bj

I The topologically twisted index is given by

Z (ya, na) =
1

(N!)2

∑
m,m̃

∫ ∏
i

dxi
2πixi

xkmi

i

∏
i 6=j

(
1− xi

xj

)
∫ ∏

i

dx̃i
2πi x̃i

x̃−km̃i

i

∏
i 6=j

(
1− x̃i

x̃j

)
∏
i,j

∏
a

 √
xi
x̃j

ya

1− xi
x̃j

ya

mi−m̃j−na+1∏
i,j

∏
b

 √
x̃i
xi

yb

1−
x̃j
xi

yb

m̃j−mi−nb+1

I The index can be evaluated using the Jeffrey-Kirwan residue
[Benini, Hristov, Zaffaroni]
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Eigenvalue distribution

I Single solution to the BAE up to permutations

Solution for ∆a = {0.3, 0.4, 0.5, 2π − 1.2} and N = 50

I Large-N behavior

Re logZ ∼ f0N
3/2 + f1N

1/2 − 1
2 logN + · · ·

I Subleading terms are difficult to extract analytically
Tails in the distribution lead to complications
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Massive IIA theory on AdS4 × S6

I The dual field theory is an N = 2
Chern-Simons-matter theory with SU(N)k gauge group and adjoint matter X ,Y ,Z
[Guarino, Jafferis and Varela, arXiv:1504.08009]

I Here the topologically twisted index is given by

Z (ya, na) =
(−1)N

N!

∑
m

∫ ∏
i

dxi
2πixi

xkmi

i

∏
i 6=j

(
1− xi

xj

)
∏
i,j

∏
a

 √
xi
xj

ya

1− xi
xj

ya

mi−mj +na+1

I Once again, the index is evaluated using the Jeffrey-Kirwan residue
[Benini, Khachatryan and Milan 1707.06886; Hosseini, Hristov and Passias 1707.06884]
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Eigenvalue distribution

I Single solution to the BAE up to permutations

Solution for ∆a = {0.2, 0.7, 2π − 0.9} and N = 50

I Large-N behavior

Re logZ ∼ f0N
5/3 + f1N

2/3 + f2N
1/3 + f3 logN + · · ·

I Can we understand the subleading behavior?
No tails, but still have to deal with endpoints
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The S2 × T 2 index and AdS
black strings
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Building blocks of the S2 × T 2 index

I We now turn to the topologically twisted index on S2 × T 2 where T 2 is
parametrized by q = e2πiτ

– Four-dimensional Yang-Mills theory on S2 × T 2

I Work in an N = 1 language

• Vector multiplets:

Zvector = (−1)2ρ(m)
∏
i∈G

dxi
2πixi

η(q)2
∏
α∈G

(
θ1(xα, q)

iη(q)

)

• Chiral multiplets:

Zchiral =
∏
µ∈R

(
iη(q)

θ1(xµyµf , q)

)µ(m)+µf (n)+1
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IIB on AdS5 × S5

I The standard AdS/CFT setup

– IIB on AdS5 × S5 ←→ N = 4 SYM with SU(N) gauge group

I On the gravity side [Benini and Bobev, arXiv:1302.4451]

– Consider the SU(4)R ⊃ U(1)3 truncation — ie the STU model

– Magnetic string solutions with magnetic charges na

– Near horizon AdS3 × S2 with n1 + n2 + n3 = 2

I On the field theory side

– N = 4 SYM on T 2 × S2 with modular parameter q = e2πiτ

– Magnetic fluxes on S2 (given by na) enforce the topological twisting

– We also turn on chemical potentials ∆a

I The topologically twisted index is then a function of these parameters —
Z (∆a, na; τ)
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The topologically twisted index

I Compute the topologically twisted index for N = 4 SYM with gauge group
SU(N) on S2 × T 2

One vector and three chiral multiplets in the N = 1 language

I The result is [Hosseini, Nedelin and Zaffaroni, arXiv:1611.09374]

Z =
1

N!

∑
m

∫ ∏
i

dxi
2πixi

η(q)2
∏
i 6=j

(
θ1( xi

xj
, q)

iη(q)

)∏
a

∏
i,j

(
iη(q)

θ1( xi
xj
ya, q)

)mi−mj−na+1

xi = e iui , ya = e i∆a , q = e2πiτ

I After evaluating the Jeffrey-Kirwan residue

Z (∆a, na; τ) = A
∑

I∈BAEs

1

detB
∏
i 6=j

θ1( xi
xj
, q)

iη(q)

∏
a

(
iη(q)

θ1(
xj
xj
ya, q)

)1−na
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Solving the BAE
I The BAEs that we need to solve are

1 = e iBi ≡ e iv
∏
j

∏
a

θ1(e i(uj−ui+∆a), q)

θ1(e i(ui−uj+∆a), q)

I How do we obtain the ui ’s?

Hosseini, Nedelin, Zaffaroni obtained uj = ū + 2π τN j in the high-temperature limit
β → 0+ where τ = iβ/2π
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Multiple solutions to the BAE

I Evenly distributed eigenvalues ⇒ good solution for any q!

I We find a family of exact solutions specified by {m, n, r} where N = mn and
r = 0, 1, . . . , n − 1

ujk = ū + 2π
j + k τ̃

m
τ̃ =

mτ + r

n

with j = 0, 1, . . . ,m − 1 and k = 0, 1, . . . , n − 1
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The sum over sectors

I The topologically twisted index for N = 4 SYM on S2 × T 2 can be written as
Z =

∑
{m,n,r} Z{m,n,r} where

Z{m,n,r}(∆a, na; τ) =
iN−1

detB{m,n,r}

∏
a

[
ψ(∆a, τ)

(
m

ψ(m∆a, τ̃)

)N
]1−na

and

ψ(u, τ) =
θ1(u, τ)

η3(τ)
=
√
ϕ−2,1(u, τ)

Here ϕ−2,1 is the unique weak Jacobi form of weight −2 and index 1

I The sum over sectors is crucial for modularity of the index

Two modular parameters: τ : T 2 and τ̃ : T 2/Zm × Zn
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The index as an elliptic genus

I The index computes the elliptic genus of the N = (0, 2) SCFT obtained by
reducing on S2

Transforms under SL(2,Z) as a weak Jacobi form of weight 0

I Consider, for example, the case N = 6

ZN=6 =

 � �   � �   � �   � �   � �   � � 

 � �   � �   � �   � �   � �   � � 
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The transformation T : τ → τ + 1

 � � 

→
 � � 
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 � � 
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The transformation S : τ → −1/τ

 � � 

↔
 � �   � � 

↔
 � � 

 � � 

↔
 � �   � � 

↔
 � � 

 � � 

↔
 � �   � � 
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The high-temperature limit of the index

I We can take the Cardy limit of the index in order to compare with the black string
in AdS

Expect logZ ∼ π2

6β cr as β → 0+ where τ = iβ
2π

I This is obtained by performing a modular transformation τ → −1/τ

Z (∆a, na; τ) = e
i

2πτ′
∑

a ma∆′2a Z (∆′a, na; τ ′)

= e
i

2πτ′
∑

a ma∆′2a
∑

{m′,n′,r ′}

Z{m′,n′,r ′}(∆′a, na; τ ′)

where

τ ′ = −1

τ
=

2πi

β
, ∆′a =

∆a

τ
= −2πi∆a

β

and

ma = −N2 − 1

2
(1− na)

are indices of the Jacobi form
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The high-temperature limit of the index

I We expect the index to be dominated by a single sector

 � � 

τ→−1/τ−−−−−→

 � � 

Z{1,N,0}(∆a, na; τ) −→ Z{N,1,0}(∆a/τa, na;−1/τ)

I This is the sector considered in Hosseini, Nedelin, Zaffaroni

logZ (∆a, na; iβ/2π)
∣∣∣
β→0+

∼ π2

6β
cr (∆a, na)

I But can we really ignore the other sectors?
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High-temperature limit in the sector {m, n, r}

I Expanding the theta functions for τ ′ → i∞ gives

logZ{m,n,r} =
2π2

β

[∑
a

(1− na)
(
da(1− da)−m′2xa(1− xa)

)
+ 2(n′ − 1)α{m′,n′,r ′}(da)

]
+O(1)

where

da =
∆a

2π
(mod 1), xa =

n′∆a

2π
(mod 1)

I Here α{m′,n′,r ′}(da) parametrizes the high temperature behavior of the Jacobian
factor detB

log detB{m′,n′,r ′} ∼ −
4π2

β
(n′ − 1)α{m′,n′,r ′}(da)
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The determinant factor α(da)

I We have been unable to find a general expression for α{m′,n′,r ′}(da)

– Complicated dependence on the chemical potentials da = ∆a/2π (mod 1)

I However

– We find detB is either O(1) (α = 0) or approaches zero (α > 0)

– In general, α is piecewise linear

N = 2 : α{2,1,0} = 0, α{1,2,r ′} = max(0, da − 1/2)

I The behavior is more complicated when N is composite
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I The behavior is more complicated when N is composite
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Domination by Z{1,N,0}

I Hosseini, Nedlin, Zaffaroni suggest that the high-temperature limit is dominated
by

logZ{1,N,0} ∼ −
2π2

β
(N2 − 1)

∑
a

(1− na)da(1− da)

I This is the case provided logZ{1,N,0} ≥ logZ{m,n,r}, or

∑
a

(1− na)

(
xa(1− xa)

n′2
− da(1− da)

)
≥ 2(n′ − 1)

N2
α{m′,n′,r ′}(da)

I Not universally true, but can be studied

– Subdominant sectors will be exponentially suppressed

– Expect Z{1,N,0} to dominate whenever a good string dual exists
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Extremization and the central charge

I Assuming Z{1,N,0} dominates, we obtain

logZ (∆a, na; iβ/2π)
∣∣∣
β→0+

∼ −2π2

β
(N2 − 1)

∑
a

(1− na)da(1− da)

∼ π2

6β
cr (∆a, na)

I For fixed charges na, we extremize the trial right-moving central charge cr with
respect to the potentials da

d̄a =
na(na − 1)

2Θ
, Θ = 1− (n1n2 + n2n3 + n3n1)

⇒ cr (na) = 3(N2 − 1)
n1n2n3

Θ

(Unitarity demands n1n2n3 > 0, and supersymmetry demands n1 + n2 + n3 = 2)
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Final thoughts
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What about the large-N limit?

I In the Cardy limit, we expect N2 behavior

logZ ∼ N2

β
ie cr = O(N2)

This can be seen in the high-temperature limit of the topologically twisted index

I Is there a log(N) correction?

And if so, is it universal? Can it be reproduced in the AdS black string dual?

I At finite temperature we expect modular covariance

Z ∼ N2ψ(∆a, na, τ)

I Can we study the elliptic genus at large-N?
And on the AdS side of the duality?
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Summary

I We have explored the topologically twisted index for N = 4 SYM on S2 × T 2

– Conjectured to count black string microstates in the holographic dual

I Main result: There are multiple solutions to the BAE for the index on S2 × T 2

– Needed for modular covariance of the index

– But in the Cardy limit, only a single sector dominates

I Much remains to be understood in the precision counting of AdS black hole/black
string microstates


