The topologically twisted index on $S^2 \times T^2$ and black strings in AdS

James Liu

University of Michigan

9 July 2018

JTL, L. A. Pando Zayas, V. Rathee and W. Zhao
JHEP 1801 (2018) 026 [arXiv:1707.04197]; PRL 120 (2018) 221602 [arXiv:1711.01076]
Junho Hong and JTL, JHEP 1807 (2018) 018 [arXiv:1804.04592]
JTL, L. A. Pando Zayas and S. Zhou, in progress

Supersymmetric partition functions and precision holography

Supersymmetric partition functions from localization

- Localization is a very powerful tool for computing supersymmetric partition functions and observables
 - Sⁿ partition functions, Wilson loop observables
 - $S^n \times S^1$ partition functions and supersymmetric indices
- Generically, the partition function takes the form

$$Z_{\text{susy}} = \int d\Phi \, Z_{\text{classical}} \, Z_{1-\text{loop}}$$

Supersymmetric partition functions from localization

- Localization is a very powerful tool for computing supersymmetric partition functions and observables
 - $-S^n$ partition functions, Wilson loop observables
 - $S^n \times S^1$ partition functions and supersymmetric indices
- Generically, the partition function takes the form

$$Z_{\rm susy} = \int d\Phi \, Z_{\rm classical} \, Z_{1-{
m loop}}$$

- ▶ We explore the connection between the topologically twisted index on $S^2 \times T^2$ and AdS₅ black string microstates
 - [F. Benini, K. Hristov and A. Zaffaroni, arXiv:1504.03698][S. M. Hosseini, A. Nedelin and A. Zaffaroni, arXiv:1611.09374]

AdS/CFT and black hole/black string entropy

► AdS/CFT allows us to compare observables on both sides of the duality

Global AdS \leftrightarrow partition function on S^n Black holes in AdS \leftrightarrow partition function on $S^{n-1} \times S^1$

Black strings in AdS $\ \leftrightarrow$ partition function on $S^{n-2} \times T^2$

AdS/CFT and black hole/black string entropy

► AdS/CFT allows us to compare observables on both sides of the duality

```
Global AdS \leftrightarrow partition function on S^n

Black holes in AdS \leftrightarrow partition function on S^{n-1} \times S^1

Black strings in AdS \leftrightarrow partition function on S^{n-2} \times T^2
```

Consider a BPS black string in AdS₅

	boundary		near horizon	
AdS	$AAdS_5$	\longrightarrow	$AdS_3 imes S^2$	
	\downarrow		\downarrow	
CFT	$S^2 imes T^2$	\longrightarrow	\mathcal{T}^2	

The topologically twisted index on $S^2 \times T^n$

- ► The topologically twisted index was introduced by F. Benini and A. Zaffaroni, arXiv:1504.03698
- ▶ Take an object with magnetic flux on S^2 in AdS
 - magnetic black hole in AdS₄
 - magnetic black string in AdS₅
- What do we do on the field theory side?
 - Background R symmetry flux on S²
 - This cancels the curvature of $S^2 \Rightarrow$ partial topological twist
 - The index may be computed using localization

The topologically twisted index on $S^2 \times T^n$

- ► The topologically twisted index was introduced by F. Benini and A. Zaffaroni, arXiv:1504.03698
- ▶ Take an object with magnetic flux on S^2 in AdS
 - magnetic black hole in AdS₄
 - magnetic black string in AdS₅
- ▶ What do we do on the field theory side?
 - Background R symmetry flux on S²
 - This cancels the curvature of $S^2 \Rightarrow$ partial topological twist
 - The index may be computed using localization
- ▶ This topologically twisted index on $S^2 \times S^1$ is conjectured to count the black hole microstates [Benini, Hristov, Zaffaroni]
 - Many general features are now known
 - Extended to dyonic black holes, black holes with hyperbolic horizons, magnetic black strings,...

Counting black hole/black string microstates

► Given a magnetically charged AdS object, we can construct the topologically twisted index in the field theory dual and evaluate it in the large-*N* limit

Counting black hole/black string microstates

- ► Given a magnetically charged AdS object, we can construct the topologically twisted index in the field theory dual and evaluate it in the large-*N* limit
- First a quick review of black holes in AdS₄
 - 1. Magnetic black holes in M-theory on $\mathrm{AdS}_4\times S^7/\mathbb{Z}_k$ Dual to ABJM theory
 - 2. Magnetic black holes in massive IIA on $AdS_4 \times S^6$ Dual to $\mathcal{N}=2$ Chern-Simons-matter theory

Counting black hole/black string microstates

- ► Given a magnetically charged AdS object, we can construct the topologically twisted index in the field theory dual and evaluate it in the large-*N* limit
- First a quick review of black holes in AdS₄
 - 1. Magnetic black holes in M-theory on $\mathrm{AdS}_4 \times S^7/\mathbb{Z}_k$ Dual to ABJM theory
 - 2. Magnetic black holes in massive IIA on $AdS_4 \times S^6$ Dual to $\mathcal{N}=2$ Chern-Simons-matter theory
- ► Then we focus on black strings in AdS₅
 - 3 Magnetic black strings in IIB on $AdS_5 \times S^5$ Dual to $\mathcal{N}=4$ super-Yang-Mills

The $S^2 \times S^1$ index and AdS black holes

Building blocks of the $S^2 \times S^1$ index

- ▶ Consider three-dimensional $\mathcal{N}=2$ Chern-Simons-matter theories on $S^2\times S^1$
- ► The topologically twisted index receives contributions from:
 - Vector multiplets:

$$Z_{ ext{vector}} = \prod_i rac{d x_i}{2\pi i x_i} x_i^{k\mathfrak{m}_i} \prod_{lpha \in \mathcal{G}} (1-x^lpha)$$

Chiral multiplets:

$$Z_{ ext{chiral}} = \prod_{\mu \in R} \left(rac{\sqrt{\chi^{\mu} y^{\mu_f}}}{1 - x^{\mu} y^{\mu_f}}
ight)^{\mu(\mathfrak{m}) + \mu_f(\mathfrak{n}) - q + 1}$$

These elements can be combined to construct the index for various models

M-theory on $AdS_4 \times S^7/Z_k$

- ► The field theory dual is ABJM theory Chern-Simons-matter with $U(N)_k \times U(N)_{-k}$ gauge groups and bi-fundamental matter A_i , B_j
- ► The topologically twisted index is given by

$$\begin{split} Z(y_a,\mathfrak{n}_a) &= \frac{1}{(N!)^2} \sum_{\mathfrak{m},\tilde{\mathfrak{m}}} \int \prod_i \frac{dx_i}{2\pi i x_i} x_i^{k\mathfrak{m}_i} \prod_{i \neq j} \left(1 - \frac{x_i}{x_j}\right) \\ & \int \prod_i \frac{d\tilde{x}_i}{2\pi i \tilde{x}_i} \tilde{x}_i^{-k\tilde{\mathfrak{m}}_i} \prod_{i \neq j} \left(1 - \frac{\tilde{x}_i}{\tilde{x}_j}\right) \\ & \prod_i \prod_a \left(\frac{\sqrt{\frac{\tilde{x}_i}{\tilde{x}_j} y_a}}{1 - \frac{\tilde{x}_i}{\tilde{x}_j} y_a}\right)^{\mathfrak{m}_i - \tilde{\mathfrak{m}}_j - \mathfrak{n}_a + 1} \prod_i \prod_b \left(\frac{\sqrt{\frac{\tilde{x}_i}{\tilde{x}_j} y_b}}{1 - \frac{\tilde{x}_i}{\tilde{x}_j} y_b}\right)^{\tilde{\mathfrak{m}}_j - \mathfrak{m}_i - \mathfrak{n}_b + 1} \end{split}$$

► The index can be evaluated using the Jeffrey-Kirwan residue [Benini, Hristov, Zaffaroni]

Eigenvalue distribution

▶ Single solution to the BAE up to permutations

Solution for $\Delta_{\text{a}} = \{0.3, 0.4, 0.5, 2\pi - 1.2\}$ and N = 50

Eigenvalue distribution

Single solution to the BAE up to permutations

Solution for
$$\Delta_a = \{0.3, 0.4, 0.5, 2\pi - 1.2\}$$
 and $N = 50$

► Large-*N* behavior

Re log
$$Z \sim \left| f_0 N^{3/2} \right| + f_1 N^{1/2} - \frac{1}{2} \log N + \cdots$$

► Subleading terms are difficult to extract analytically Tails in the distribution lead to complications

Massive IIA theory on $AdS_4 \times S^6$

- ▶ The dual field theory is an $\mathcal{N}=2$ Chern-Simons-matter theory with $SU(N)_k$ gauge group and adjoint matter X,Y,Z [Guarino, Jafferis and Varela, arXiv:1504.08009]
- Here the topologically twisted index is given by

$$Z(y_a, \mathfrak{n}_a) = \frac{(-1)^N}{N!} \sum_{\mathfrak{m}} \int \prod_i \frac{dx_i}{2\pi i x_i} x_i^{k\mathfrak{m}_i} \prod_{i \neq j} \left(1 - \frac{x_i}{x_j}\right)$$
$$\prod_{i,j} \prod_a \left(\frac{\sqrt{\frac{x_i}{x_j} y_a}}{1 - \frac{x_i}{x_j} y_a}\right)^{\mathfrak{m}_i - \mathfrak{m}_j + \mathfrak{n}_a + 1}$$

▶ Once again, the index is evaluated using the Jeffrey-Kirwan residue [Benini, Khachatryan and Milan 1707.06886; Hosseini, Hristov and Passias 1707.06884]

Eigenvalue distribution

▶ Single solution to the BAE up to permutations

Solution for $\Delta_a = \{0.2, 0.7, 2\pi - 0.9\}$ and N = 50

Eigenvalue distribution

Single solution to the BAE up to permutations

Solution for $\Delta_a = \{0.2, 0.7, 2\pi - 0.9\}$ and N = 50

► Large-*N* behavior

Re log
$$Z \sim |f_0 N^{5/3}| + f_1 N^{2/3} + f_2 N^{1/3} + f_3 \log N + \cdots$$

Can we understand the subleading behavior? No tails, but still have to deal with endpoints

The $S^2 \times T^2$ index and AdS black strings

Building blocks of the $S^2 \times T^2$ index

- We now turn to the topologically twisted index on $S^2 \times T^2$ where T^2 is parametrized by $q=e^{2\pi i \tau}$
 - Four-dimensional Yang-Mills theory on $S^2 imes T^2$

Building blocks of the $S^2 \times T^2$ index

- We now turn to the topologically twisted index on $S^2 \times T^2$ where T^2 is parametrized by $q = e^{2\pi i \tau}$
 - Four-dimensional Yang-Mills theory on $S^2 \times T^2$
- ▶ Work in an $\mathcal{N} = 1$ language
 - Vector multiplets:

$$Z_{\text{vector}} = (-1)^{2\rho(\mathfrak{m})} \prod_{i \in G} \frac{dx_i}{2\pi i x_i} \eta(q)^2 \prod_{\alpha \in G} \left(\frac{\theta_1(x^\alpha, q)}{i \eta(q)} \right)$$

Chiral multiplets:

$$Z_{ ext{chiral}} = \prod_{\mu \in R} \left(rac{i \eta(q)}{ heta_1(x^\mu y^{\mu_f}, q)}
ight)^{\mu(\mathfrak{m}) + \mu_f(\mathfrak{n}) + 1}$$

IIB on $AdS_5 \times S^5$

- ► The standard AdS/CFT setup
 - IIB on $AdS_5 \times S^5 \longleftrightarrow \mathcal{N} = 4$ SYM with SU(N) gauge group
- ▶ On the gravity side [Benini and Bobev, arXiv:1302.4451]
 - Consider the $SU(4)_R\supset U(1)^3$ truncation ie the STU model
 - Magnetic string solutions with magnetic charges n_a
 - Near horizon $AdS_3 \times S^2$ with $\mathfrak{n}_1 + \mathfrak{n}_2 + \mathfrak{n}_3 = 2$

IIB on $AdS_5 \times S^5$

- ► The standard AdS/CFT setup
 - − IIB on $AdS_5 \times S^5 \longleftrightarrow \mathcal{N} = 4$ SYM with SU(N) gauge group
- ▶ On the gravity side [Benini and Bobev, arXiv:1302.4451]
 - Consider the $SU(4)_R \supset U(1)^3$ truncation ie the STU model
 - Magnetic string solutions with magnetic charges n_a
 - Near horizon AdS₃ × S² with $\mathfrak{n}_1 + \mathfrak{n}_2 + \mathfrak{n}_3 = 2$
- On the field theory side
 - $-\mathcal{N}=4$ SYM on $\mathcal{T}^2\times S^2$ with modular parameter $q=e^{2\pi i au}$
 - Magnetic fluxes on S^2 (given by n_a) enforce the topological twisting
 - We also turn on chemical potentials Δ_a
- ► The topologically twisted index is then a function of these parameters $Z(\Delta_a, \mathfrak{n}_a; \tau)$

The topologically twisted index

Compute the topologically twisted index for $\mathcal{N}=4$ SYM with gauge group SU(N) on $S^2\times T^2$

One vector and three chiral multiplets in the $\mathcal{N}=1$ language

► The result is [Hosseini, Nedelin and Zaffaroni, arXiv:1611.09374]

$$Z = \frac{1}{N!} \sum_{\mathfrak{m}} \int \prod_{i} \frac{dx_{i}}{2\pi i x_{i}} \eta(q)^{2} \prod_{i \neq j} \left(\frac{\theta_{1}(\frac{x_{i}}{x_{j}}, q)}{i \eta(q)} \right) \prod_{a} \prod_{i, j} \left(\frac{i \eta(q)}{\theta_{1}(\frac{x_{i}}{x_{j}} y_{a}, q)} \right)^{m_{i} - m_{j} - n_{a} + 1}$$
$$x_{i} = e^{iu_{i}}, \qquad y_{a} = e^{i\Delta_{a}}, \qquad q = e^{2\pi i \tau}$$

The topologically twisted index

Compute the topologically twisted index for $\mathcal{N}=4$ SYM with gauge group SU(N) on $S^2\times T^2$

One vector and three chiral multiplets in the $\mathcal{N}=1$ language

▶ The result is [Hosseini, Nedelin and Zaffaroni, arXiv:1611.09374]

$$Z = \frac{1}{N!} \sum_{m} \int \prod_{i} \frac{dx_{i}}{2\pi i x_{i}} \eta(q)^{2} \prod_{i \neq j} \left(\frac{\theta_{1}(\frac{x_{i}}{x_{j}}, q)}{i \eta(q)} \right) \prod_{a} \prod_{i,j} \left(\frac{i \eta(q)}{\theta_{1}(\frac{x_{i}}{x_{j}}, y_{a}, q)} \right)^{m_{i} - m_{j} - n_{a} + 1}$$
$$x_{i} = e^{iu_{i}}, \qquad y_{a} = e^{i\Delta_{a}}, \qquad q = e^{2\pi i \tau}$$

After evaluating the Jeffrey-Kirwan residue

$$Z(\Delta_{a},\mathfrak{n}_{a};\tau) = \mathcal{A} \sum_{I \in \text{BAEs}} \frac{1}{\det \mathbb{B}} \prod_{i \neq j} \left[\frac{\theta_{1}(\frac{x_{i}}{x_{j}},q)}{i\eta(q)} \prod_{a} \left(\frac{i\eta(q)}{\theta_{1}(\frac{x_{j}}{x_{j}}y_{a},q)} \right)^{1-\mathfrak{n}_{a}} \right]$$

Solving the BAE

► The BAEs that we need to solve are

$$1=\mathrm{e}^{iB_i}\equiv\mathrm{e}^{i\mathrm{v}}\prod_i\prod_srac{ heta_1(\mathrm{e}^{i(u_j-u_i+\Delta_s)},q)}{ heta_1(\mathrm{e}^{i(u_i-u_j+\Delta_s)},q)}$$

▶ How do we obtain the u_i 's?

Solving the BAE

The BAEs that we need to solve are

$$1=e^{i\mathcal{B}_i}\equiv e^{i extstyle i}\prod_{j}\prod_{s}rac{ heta_1(e^{i(u_j-u_i+\Delta_s)},q)}{ heta_1(e^{i(u_i-u_j+\Delta_s)},q)}$$

 \triangleright How do we obtain the u_i 's?

Hosseini, Nedelin, Zaffaroni obtained $u_j = \bar{u} + 2\pi \frac{\tau}{N} j$ in the high-temperature limit $\beta \to 0^+$ where $\tau = i\beta/2\pi$

ITI

ightharpoonup Evenly distributed eigenvalues \Rightarrow good solution for any q!

▶ We find a family of exact solutions specified by $\{m, n, r\}$ where N = mn and r = 0, 1, ..., n - 1

$$u_{jk} = \bar{u} + 2\pi \frac{j + k\tilde{\tau}}{m}$$
 $\tilde{\tau} = \frac{m\tau + r}{n}$

with j = 0, 1, ..., m - 1 and k = 0, 1, ..., n - 1

JTI

The sum over sectors

► The topologically twisted index for $\mathcal{N}=4$ SYM on $S^2\times T^2$ can be written as $Z=\sum_{\{m,n,r\}}Z_{\{m,n,r\}}$ where

$$Z_{\{m,n,r\}}(\Delta_a,\mathfrak{n}_a;\tau) = \frac{i^{N-1}}{\det \mathbb{B}_{\{m,n,r\}}} \prod_a \left[\psi(\Delta_a,\tau) \left(\frac{m}{\psi(m\Delta_a,\tilde{\tau})} \right)^N \right]^{1-\mathfrak{n}_a}$$

and

$$\psi(u,\tau) = \frac{\theta_1(u,\tau)}{\eta^3(\tau)} = \sqrt{\varphi_{-2,1}(u,\tau)}$$

Here $\varphi_{-2,1}$ is the unique weak Jacobi form of weight -2 and index 1

The sum over sectors

► The topologically twisted index for $\mathcal{N}=4$ SYM on $S^2\times T^2$ can be written as $Z=\sum_{\{m,n,r\}}Z_{\{m,n,r\}}$ where

$$Z_{\{m,n,r\}}(\Delta_a,\mathfrak{n}_a;\tau) = \frac{i^{N-1}}{\det \mathbb{B}_{\{m,n,r\}}} \prod_a \left[\psi(\Delta_a,\tau) \left(\frac{m}{\psi(m\Delta_a,\tilde{\tau})} \right)^N \right]^{1-\mathfrak{n}_a}$$

and

$$\psi(u,\tau) = \frac{\theta_1(u,\tau)}{\eta^3(\tau)} = \sqrt{\varphi_{-2,1}(u,\tau)}$$

Here $\varphi_{-2,1}$ is the unique weak Jacobi form of weight -2 and index 1

The sum over sectors is crucial for modularity of the index Two modular parameters: $\tau: T^2$ and $\tilde{\tau}: T^2/\mathbb{Z}_m \times \mathbb{Z}_n$

The index as an elliptic genus

▶ The index computes the elliptic genus of the $\mathcal{N}=(0,2)$ SCFT obtained by reducing on S^2

Transforms under $SL(2,\mathbb{Z})$ as a weak Jacobi form of weight 0

The index as an elliptic genus

The index computes the elliptic genus of the $\mathcal{N}=(0,2)$ SCFT obtained by reducing on S^2

Transforms under $SL(2,\mathbb{Z})$ as a weak Jacobi form of weight 0

ightharpoonup Consider, for example, the case N=6

The transformation $T: \tau \to \tau + 1$

The transformation S: au o -1/ au

The high-temperature limit

We can take the Cardy limit of the index in order to compare with the black string in AdS

Expect
$$\log Z \sim rac{\pi^2}{6\beta} c_r$$
 as $eta o 0^+$ where $au = rac{i eta}{2\pi}$

We can take the Cardy limit of the index in order to compare with the black string in AdS

Expect
$$\log Z \sim rac{\pi^2}{6\beta} c_r$$
 as $eta o 0^+$ where $au = rac{i eta}{2\pi}$

lacktriangle This is obtained by performing a modular transformation au o -1/ au

$$\begin{split} Z(\Delta_a,\mathfrak{n}_a;\tau) &= e^{\frac{i}{2\pi\tau'}\sum_a m_a \Delta_a'^2} Z(\Delta_a',\mathfrak{n}_a;\tau') \\ &= e^{\frac{i}{2\pi\tau'}\sum_a m_a \Delta_a'^2} \sum_{\{m',n',r'\}} Z_{\{m',n',r'\}}(\Delta_a',\mathfrak{n}_a;\tau') \end{split}$$

where

$$au' = -rac{1}{ au} = rac{2\pi i}{eta}, \qquad \Delta_a' = rac{\Delta_a}{ au} = -rac{2\pi i \Delta_a}{eta}$$

and

$$m_a=-\frac{N^2-1}{2}(1-\mathfrak{n}_a)$$

are indices of the Jacobi form

ITL

We expect the index to be dominated by a single sector

► This is the sector considered in Hosseini, Nedelin, Zaffaroni

$$\left.\log Z(\Delta_a,\mathfrak{n}_a;ieta/2\pi)\right|_{eta o 0^+}\sim rac{\pi^2}{6eta}c_r(\Delta_a,\mathfrak{n}_a)$$

▶ We expect the index to be dominated by a single sector

This is the sector considered in Hosseini, Nedelin, Zaffaroni

$$\left.\log Z(\Delta_{\mathsf{a}},\mathfrak{n}_{\mathsf{a}};ieta/2\pi)\right|_{eta o 0^+}\sim rac{\pi^2}{6eta}c_r(\Delta_{\mathsf{a}},\mathfrak{n}_{\mathsf{a}})$$

But can we really ignore the other sectors?

High-temperature limit in the sector $\{m, n, r\}$

Expanding the theta functions for $\tau' \to i\infty$ gives

$$\log Z_{\{m,n,r\}} = \frac{2\pi^2}{\beta} \Big[\sum_{a} (1 - \mathfrak{n}_a) (d_a (1 - d_a) - m'^2 x_a (1 - x_a)) + 2(n' - 1) \alpha_{\{m',n',r'\}} (d_a) \Big] + \mathcal{O}(1)$$

where

$$d_a = \frac{\Delta_a}{2\pi} \pmod{1}, \qquad x_a = \frac{n'\Delta_a}{2\pi} \pmod{1}$$

► Here $\alpha_{\{m',n',r'\}}(d_a)$ parametrizes the high temperature behavior of the Jacobian factor $\det \mathbb{B}$

$$\log \det \mathbb{B}_{\{m',n',r'\}} \sim -rac{4\pi^2}{eta}(n'-1)lpha_{\{m',n',r'\}}(d_{\mathsf{a}})$$

The determinant factor $\alpha(d_a)$

- ▶ We have been unable to find a general expression for $\alpha_{\{m',n',r'\}}(d_a)$
 - Complicated dependence on the chemical potentials $d_a = \Delta_a/2\pi \pmod{1}$
- ► However
 - We find det $\mathbb B$ is either $\mathcal O(1)$ ($\alpha=0$) or approaches zero ($\alpha>0$)
 - In general, α is piecewise linear

$$N=2:$$
 $\alpha_{\{2,1,0\}}=0,$ $\alpha_{\{1,2,r'\}}=\max(0,d_a-1/2)$

The determinant factor $\alpha(d_a)$

- ▶ We have been unable to find a general expression for $\alpha_{\{m',n',r'\}}(d_a)$
 - Complicated dependence on the chemical potentials $d_a = \Delta_a/2\pi \pmod{1}$
- However
 - We find det $\mathbb B$ is either $\mathcal O(1)$ ($\alpha=0$) or approaches zero ($\alpha>0$)
 - In general, α is piecewise linear

$$N=3:$$
 $\alpha_{\{3,1,0\}}=0,$ $\alpha_{\{1,3,r'\}}=\max(0,d_2-1/3,d_3-2/3)$

The determinant factor $\alpha(d_a)$

- ▶ We have been unable to find a general expression for $\alpha_{\{m',n',r'\}}(d_a)$
 - Complicated dependence on the chemical potentials $d_a = \Delta_a/2\pi \pmod{1}$
- However
 - We find det $\mathbb B$ is either $\mathcal O(1)$ ($\alpha=0$) or approaches zero ($\alpha>0$)
 - In general, α is piecewise linear

$$N=3:$$
 $\alpha_{\{3,1,0\}}=0,$ $\alpha_{\{1,3,r'\}}=\max(0,d_2-1/3,d_3-2/3)$

ightharpoonup The behavior is more complicated when N is composite

Domination by $Z_{\{1,N,0\}}$

Hosseini, Nedlin, Zaffaroni suggest that the high-temperature limit is dominated by

$$\log Z_{\{1,N,0\}} \sim -rac{2\pi^2}{eta}(N^2-1)\sum_a (1-\mathfrak{n}_a)d_a(1-d_a)$$

▶ This is the case provided $\log Z_{\{1,N,0\}} \ge \log Z_{\{m,n,r\}}$, or

$$\sum_{a} (1 - \mathfrak{n}_a) \left(\frac{x_a (1 - x_a)}{n'^2} - d_a (1 - d_a) \right) \ge \frac{2(n' - 1)}{N^2} \alpha_{\{m', n', r'\}}(d_a)$$

Domination by $Z_{\{1,N,0\}}$

 Hosseini, Nedlin, Zaffaroni suggest that the high-temperature limit is dominated by

$$\log Z_{\{1,N,0\}} \sim -rac{2\pi^2}{eta}(N^2-1)\sum_a (1-\mathfrak{n}_a)d_a(1-d_a)$$

▶ This is the case provided $\log Z_{\{1,N,0\}} \ge \log Z_{\{m,n,r\}}$, or

$$\sum_{a} (1 - \mathfrak{n}_a) \left(\frac{x_a (1 - x_a)}{n'^2} - d_a (1 - d_a) \right) \ge \frac{2(n' - 1)}{N^2} \alpha_{\{m', n', r'\}} (d_a)$$

- Not universally true, but can be studied
 - Subdominant sectors will be exponentially suppressed
 - Expect $Z_{\{1,N,0\}}$ to dominate whenever a good string dual exists

Extremization and the central charge

Assuming $Z_{\{1,N,0\}}$ dominates, we obtain

$$egin{align} \log Z(\Delta_a,\mathfrak{n}_a;ieta/2\pi) \Big|_{eta o 0^+} &\sim -rac{2\pi^2}{eta}(\mathit{N}^2-1) \sum_a (1-\mathfrak{n}_a) d_a (1-d_a) \ &\sim rac{\pi^2}{6eta} c_r(\Delta_a,\mathfrak{n}_a) \end{aligned}$$

For fixed charges n_a , we extremize the trial right-moving central charge c_r with respect to the potentials d_a

$$\bar{d}_{a} = \frac{\mathfrak{n}_{a}(\mathfrak{n}_{a} - 1)}{2\Theta}, \qquad \Theta = 1 - (\mathfrak{n}_{1}\mathfrak{n}_{2} + \mathfrak{n}_{2}\mathfrak{n}_{3} + \mathfrak{n}_{3}\mathfrak{n}_{1})$$

$$\Rightarrow \qquad \boxed{c_{r}(\mathfrak{n}_{a}) = 3(N^{2} - 1)\frac{\mathfrak{n}_{1}\mathfrak{n}_{2}\mathfrak{n}_{3}}{\Theta}}$$

(Unitarity demands $\mathfrak{n}_1\mathfrak{n}_2\mathfrak{n}_3>0$, and supersymmetry demands $\mathfrak{n}_1+\mathfrak{n}_2+\mathfrak{n}_3=2$)

Final thoughts

What about the large-*N* limit?

▶ In the Cardy limit, we expect N^2 behavior

$$\log Z \sim rac{N^2}{eta} \qquad ext{ie} \qquad c_r = \mathcal{O}(N^2)$$

This can be seen in the high-temperature limit of the topologically twisted index

What about the large-N limit?

▶ In the Cardy limit, we expect N^2 behavior

$$\log Z \sim rac{N^2}{eta} \qquad ext{ie} \qquad c_r = \mathcal{O}(N^2)$$

This can be seen in the high-temperature limit of the topologically twisted index

▶ Is there a log(N) correction?

And if so, is it universal? Can it be reproduced in the AdS black string dual?

What about the large-N limit?

▶ In the Cardy limit, we expect N^2 behavior

$$\log Z \sim rac{N^2}{eta} \qquad ext{ie} \qquad c_r = \mathcal{O}(N^2)$$

This can be seen in the high-temperature limit of the topologically twisted index

- ▶ Is there a log(N) correction?
 And if so, is it universal? Can it be reproduced in the AdS black string dual?
- ► At finite temperature we expect modular covariance

$$Z \sim N^2 \psi(\Delta_a, \mathfrak{n}_a, au)$$

Can we study the elliptic genus at large-N? And on the AdS side of the duality?

Summary

- ▶ We have explored the topologically twisted index for $\mathcal{N}=4$ SYM on $S^2\times T^2$
 - Conjectured to count black string microstates in the holographic dual
- ▶ Main result: There are multiple solutions to the BAE for the index on $S^2 \times T^2$
 - Needed for modular covariance of the index
 - But in the Cardy limit, only a single sector dominates
- ► Much remains to be understood in the precision counting of AdS black hole/black string microstates