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—

AIM

Make precision tests of AdS/CFT

Gain insights into string perturbation theory

—

WHAT DO WE MEAN BY AdS/CFT?

The dual pairs,

N = 4 SYM in d = 4

G = U(N) gauge group
←→ IIB string theory

on AdS5 × S5

N = 6 SCSM in d = 3

G = Uk(N)× U−k(N) gauge group
←→ IIA string theory

on AdS4 × CP3

—



Outline

1. Exact results:
Susy Localization

2. Gauge theory Wilson loops bestiary:
Straight lines, circles and cusps

3. AdS/CFT parameters

4. String theory and semiclassical expansion:
String duals to Wilson loops. Classical worldsheet.
Semiclassical expansion of string partition function
Zero modes: CKV,...
1001 Determinants: Zeta function, Gelfand-Yaglom, . . .
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1 Exact results in gauge theory: Susy Localization

Exact results in QFT are rare and difficult to obtain, but...

The situation improves if enough symmetry is present, and this is the case for

N=4 SYM and N=6 SCSM.

On the gauge theory side two techniques have been exploited to obtain exact results:

• Integrability: exact results in planar level limit and beyond see recent work by P Vieira 4pt

• Localization: exact results ∀ λ,N , but only applicable for susy objects.



2 Wilson loops bestiary: straight lines, circles, ...

Susy Wilson loops require additional couplings to scalars and fermions.

N=4 SYM WLs depend on two data: C, ~n

WR[C, ~n] =
1

dim[R]
TrRP exp

[∮
(iAµẋ

µ + |ẋ| ~φ · ~n) ds

]

C: xµ(s) curve on spacetime. timelike/spacelike/null (additional i′s required)

~n: ~n(s) maps every point in C to R6. Dictates scalar field coupling along C.

R: representation for charged particle. Aµ, φ
i in adjoint of U(N), e.g.: Aµ = AaµT

a
R (a = 1, . . . N2)

Supersymmetry demands ~n2 = 1 (~n ∈ S5) and a relation

ẋµ(s) ←→ ~n(s)

[Maldacena, Rey-Yee, Drukker-Gross-Ooguri, Erickson-Semenoff-Zarembo, Drukker-Giombi-Ricci-Trancanelli, . . . ]



N = 4 SYM WLs

• C: straight line, ~n = ~n0 constant ⇒ 1
2-BPS (16 susies)

〈WR(line, ~n0)〉 = 1, independent of λ,N,R

When computing vev perturbatively, the result arises from an exact cancelation between
gauge field and scalar propagators.

Localization technique allows to compute exact vevs of some WLs:

• C: circle, ~n = ~n0 constant ⇒ 1
2-BPS. Answer is non-trivial:

For R = 2

〈W2(circle, ~n0)〉 =
1

N
L1
N−1

(
− λ

4N

)
exp

[
λ

8N

]
, ∀λ,N

=
2

√
λ
I1(

√
λ) +

λ

48N 2
I2(
√
λ) +

λ2

1280N 4
I4(
√
λ) + . . . N � 1

=
e
√
λ

λ3/4

(√
2

π
− 3

4

1√
2π

1

λ1/2
− 15

64

1√
2π

1

λ
+ ...

)
, N =∞, λ� 1

Now scalar and gauge propagators add up to a constant, summation of planar ladder
diagrams give I1 Bessel [Eriksson-Semenoff-Zarembo 99, Drukker-Gross 00, Pestun 07]



• C: circle, ~nθ0(s) = (0, 0, 0, sin θ0 cos s, sin θ0 sin s, cos θ0) ⇒ 1
4-BPS (8 susies)

The WL vev was conjectured to be given by the 1
2- expression above by making the

replacement λ→ λ′ = λ cos2 θ0 [Drukker]

〈W2(circle, ~nθ0)〉 =
2√

λ cos θ0

I1(
√
λ cos θ0), N =∞

= exp

(√
λ cos θ0 −

3

2
ln
√
λ− 3

2
ln cos θ0 +

1

2
ln

2

π
− . . .

)
, λ� 1

This is the result we want to reproduce from string theory computations.

Equatorial loop on S5: 〈W2(circle, ~nπ/2)〉 = 1



3 AdS/CFT parameters

N = 4 SYM in d = 4

G = U(N) gauge group
←→ IIB string theory

on AdS5 × S5

(gYM , N)→ λ = g2
YMN , 1

N Teff = L2

2πα′ , gs

The parameters are related as

λ =

(
L2

α′

)2

λ

4πN
= gs

t’ Hooft limit: keep λ fixed and take N →∞.

When doing so the perturbative expansion in terms of λ reorganizes as

planar and non-planar graphs ↔ sphere/disk and higher genus (handles) string amplits



4 String Theory

The main importance of the AdS/CFT toolkit is that the gauge theory strong coupling
λ� 1 regime is easily studied using perturbative string theory.

Why?

Wilson loop gauge observable in fundamental representation relates to the string parti-
tion function with the WL contour C being the boundary condition for the string

〈W (C, ~n)〉 =

∫
∂X=C,~n

[DgDXDΨ] e−Sstring[g,X,Ψ]

here
Sstring =

Ts
2

∫
dτdσ

√
g
(
gαβGMN(X)∂αX

M∂βX
N + Ψ̄DΨ

)
The crucial point is that the action becomes weighted by an effective string tension

Ts =
1

2πα′
→ Teff =

L2

2πα′
=

√
λ

2π
↔ 1

~
← L2 : AdS radius

At strong coupling λ� 1 we perform a semiclassical expansion of the path integral.

Genus expansion is weighted by gs ∼ 1
N .

In t’ Hooft limit the leading contribution comes from disk topology with no handles.



Parallel lines ↔ Vqq̄. Cusped line ↔ Bremsstrahlung. Circular loop ↔ AdS/CFT test

1
2-BPS loop: constant position in S5. 1

4-BPS loop: non trivial embedding in S2 ⊂ S5

N = 4 Wilson loop
at large N

↔ disk amplitude of IIB superstring
with RR flux in AdS5 × S5



Circular Loop in Fundamental Representation

Expanding the exact planar result for N = 4 in the strong coupling λ� 1 regime

ln〈W 1/2(circle)〉 =
√
λ− 3

2
ln
√
λ +

1

2
ln

2

π
− 3

8

1√
λ

+ . . .

ln〈W 1/4(circle, θ0)〉 =
√
λ cos θ0 −

3

2
ln
√
λ− 3

2
ln cos θ0 +

1

2
ln

2

π
− . . . , λ� 1, N =∞

On general grounds we expect:

•
√
λ: should arise from classical worldsheet area, once properly renormalized Sren.

• ln
√
λ: correction is typical of zero modes. Drukker-Gross suggested its origin can be

traced to the Fadeed-Popov diffeo fixing determinant. The FP determinant has 3 z.m. in
disk topology hence 3× log λ1/4 is found. Recall each zero mode contributes with ~1/2.
• 1

2 ln 2
π should come from measure factor of semiclassical partition function + fluctuation

determinants over classical string solution.

To avoid the tricky (topological) issue related to FP ghosts the natural thing to do is to
compare WL with same topology. The natural observable is then

ln
〈W 1/4(circle, θ0)〉
〈W 1/2(circle)〉

=
√
λ(cos θ0 − 1)︸ ︷︷ ︸

leading

−3

2
ln cos θ0︸ ︷︷ ︸
1-loop

+O(
1√
λ

)



STRING PARTITION FUNCTION TO 1-LOOP ORDER

About the expression

Zstring ≈ C e−
√
λ

2π S̃[Xcl]
det1/2OF
det1/2OB

detOFP

C: Normalization factor of the path integral (measure) (eliminated when computing W 1/4

W 1/2 )

Xcl: Classical string worldsheet above which we fluctuate (classical fermions Ψcl = 0)

S̃[Xcl]: Action evaluated on classical solution = Area.

OF : fermionic fluctuations

OB: bosonic fluctuations.

OFP : FP diffeo fixing + κ- fixing. ∃ worldsheet CKV =⇒ zero modes (topological)

———



CLASSICAL 1
4-BPS STRING SOLUTION

Background : ds2 = L2
(
ds2

AdS5
+ dΩ2

5

)
. AdS5 in H2 × S2 foliation → EAdS5 in H2 × S2 foliation via u→ iu and ϑ→ iϑ

ds2
EAdS5

= du2 + cosh2 u
(
dρ2 + sinh2 ρ dψ2

)
+ sinh2 u

(
dϑ2 + sin2 ϑ dϕ2

)
. S5 in S3 × S1 foliation:

dΩ2
5 = dθ2 + sin2 θ dφ2 + cos2 θ

(
dξ2 + cos2 ξ dα2

1 + sin2 ξ dα2
2

)︸ ︷︷ ︸
Ω3

,

———

String embedding: depends on latitude θ0 and position Ω(0) in S3

u = 0,
ρ = σ,

ψ = φ = τ,
Ω3 = Ω(0) = cte, sin θ(ρ) =

sinh ρ sinθ0

cosh ρ + cosθ0

Homogeneity of S3 implies independence of Ω(0) in all physical quentities.



Induced geometry: is asymptotic to EAdS2 ∀ θ0 (from now on we set L2 = 1)

ds2 = M(ρ)(dρ2 + sinh2 ρ dφ2), M(ρ) = 1 +
sin2 θ0

(cosh ρ + cosθ0)2

Worldsheets have disk topology ⇒ 3 CKV ∀ slns.

On shell action ≡ Worldsheet area is divergent

S̃ = 2π

∫ R

0

sinh ρ dρM(ρ) = 2π
sinh2R

cosθ0 + coshR
≈ 2π

(
eR − cosθ0 + O(e−R)

)
Adding boundary Euler χb = 1

2π

∫
ds κg (or performing Legendre transform), effectively

eliminates the divergent piece leaving a negative regularized area:

S̃reg = S̃ − χb = −2π cosθ0

———

This result successfully matches the leading order localization result

〈W 1/4〉
〈W 1/2〉

∣∣∣
leading

≈ e−
√
λ

2π (S̃reg[θ0]−S̃reg[0]) = e
√
λ(cos θ0−1)



Important limits:

• 1
2−BPS .θ0 = 0 : ds2 = dρ2 + sinh2ρ dφ2, M(ρ) = 1

Induced geometry: EAdS2. SL(2,R) ∼ SO(2, 1) isom→ 3 KV leaving boundary invariant.
Making ρ = 2 arctanh r → ds2 = 4

(1−r2)2 (dr
2 + r2dφ2), then CK equation is solved by

(Pξ)ab = ∇aξb +∇bξa − hab∇cξc = 0

ξ(1) = ∂φ, ξ(2) = (r2−1) sinφ ∂r−
1

r
(r2+1) cosφ ∂φ, ξ(3) = (r2−1) cosφ ∂r+

1

r
(r2+1) sinφ ∂φ

CKV are non-zero at the boundary!
———

• 1
4−BPS .θ0 = π

2
: ds2 = M(ρ)(dρ2 + sinh2ρ dφ2), M(ρ) = 1 + 1

cosh2 ρ

Induced geometry: aEAdS2, 1 KV + 2 CKV. Now an interesting thing happens:

The Ω(0) position at which the string is sitting in S3 ⊂ S5 is absent from the boundary
point of view since S3 collapses at θ = π

2

dΩ2
5 = dθ2 + sin2 θ dφ2 + cos2 θ dΩ2

3 , sin θ(ρ) = tanh ρ for θ0 =
π

2

But, S3 inflates into the bulk due to non-trivial θ(ρ) → Ω(0) is relevant.
Outcome: a continuous set of solutions (moduli space) for given boundary conditions

. ↔ expect zero modes in OB for θ0 = π
2 (a.k.a. Zarembo equatorial loops)



FLUCTUATIONS

δXM = EM
A(X) ξA: fluctuations are properly defined in tangent space.

Reason being SUSY, fermions only defined in tangent space.

δΨ: Target space Green-Schwarz fermions (16-component) and Worldsheet scalars.
Reduced to 2×2 blocks by convenient choice of Dirac matrices.

———

GAUGE FIXING

Nambu-Goto: Static gauge. Trivial FP determinant.
8 physical transverse fluctuations + 8 two dimensional fermions

[Faraggi-Pando Zayas-GAS-Trancanelli 16]

Polyakov: Conformal gauge. FP and Longitudinal dets assumed to cancel each other.
8 physical transverse fluctuations + 8 two dimensional fermions

[Forini-Giangreco-Griguolo-Seminara-Vescovi 15]

κ-symmetry fixing gives trivial contribution.



FUNCTIONAL DETERMINANTS:

Quite generally computing a determinant involves:

1. Differential operator
2. Boundary conditions: for WL setup they are Dirichlet at worldsheet boundary.
3. An inner product:

S(2) =

∫
d2σ
√
g φOφ =

∫
d2σ(
√
gM)φ

(
1

M
O
)
φ

Inner product / measure defines the operator to be diagonalized: O or OM = M−1O ?

which crucially determines the set of normalizable fluctuations!

———

How does a change of measure affect a det? [Schwarz 79]

An important recurrent result in 2d is the relation between the dets of Weyl related
operators: O = −∇2

g + X and Õ = 1
MO,

A[O,M ] = ln det Õ − ln detO =
1

4π

∫
d2σ
√
g lnM

(
1

12
∇2 lnM + X − 1

6
R(2)

)
g is the 2d metric, R(2)[g] its scalar curvature, and X a space dependent mass term.

———



1-LOOP EFFECTIVE ACTION FOR 1
4-BPS WILSON LOOP [FPzST 16]

Appropriate action is IIB Green-Schwarz, it incorporates spinor couplings to RR-fields.

1-loop effective action is a quotient between 8 fermions / 8 bosons

e−Γ
1−loop
effective(θ0) =

(det O+(θ0))
4
2 (det O−(θ0))

4
2

(det O1(θ0))
3
2 (det O2(θ0))

3
2 (det O3+(θ0))

1
2 (det O3−(θ0))

1
2

with measure being given by the induced metric hµν = Mgµν

O1(θ0) = M−1 (−gµν∇µ∇ν + 2) , O2(θ0) = M−1 (−gµν∇µ∇ν + V2)

O3±(θ0) = M−1 (−gµνDµDν + V3) , Dµ = ∇µ ± iAµ

O±(θ0) = M− 1
2

(
−i
(
/D +

1

4
/∂ lnM

)
− iΓ01 (1 + V )±W

)
, Dµ = ∇µ ±

i

2
Aµ

(coincide with those found by [FGGSV 15] for flat measure)
Here gµν and ∇µ evaluated on AdS2 metric. Aρ = 0, Aτ = A and

V2(ρ) = − 2 sin2 θ0
(cosh ρ+ cosθ0)2

, V3(ρ) = −∂ρA(ρ)

sinh ρ
, V (ρ) =

1√
M(ρ)

−1, cos θ(ρ) =
1 + cosh ρ cosθ0
cosh ρ+ cosθ0

W (ρ) =
sin2 θ0√

M(ρ)(cosh ρ+ cosθ0)2
, A(ρ) = 1−1 + cosh ρ cos θ(ρ)

cosh ρ+ cos θ(ρ)
, M(ρ) = 1+

sin2 θ0
(cosh ρ+ cosθ0)2

. Aµ smoothly collapses at the center of the disk, becomes non-zero at the boundary
and vanishes in the 1

2-BPS limit. Geometrically the components of the target space spin
connection along the normal bundle: Aij = P [Ωij], P : pullback to the worldsheet.

. Fermions have chiral and non-chiral masses. Non-chiral mass vanishes in 1/2-BPS lim.



The 1st correction to the Wilson loop ratio

ln
〈W 1/4〉
〈W 1/2〉

=
√
λ(cos θ0 − 1)−3

2
ln cos θ0︸ ︷︷ ︸
1-loop

+O(
1√
λ

)

should be matched with

e−∆Γ
1-loop
effective(θ0) =


(

det O+(θ0)
det O+(0)

)4 (
det O−(θ0)
det O−(0)

)4

(
det O1(θ0)
det O1(0)

)3 (
det O2(θ0)
det O2(0)

)3 (
det O3+(θ0)
det O3+(0)

)1 (
det O3−(θ0)
det O3−(0)

)1


1
2

———

Perspectives to compute the determinants:

1. Scale the induced metric to flat space. Any 2d metric is conformally flat!
[KT 08, FGGSV 15, FPzST 16, CMrZ 18]

2. Zeta function. Natural setup, honestly computed on the disk!
[DGT 00, BT 14, FTV 17, AdFPzRS 18]



COMPUTING DETERMINANTS

Perspective 1: scale to flat space performs a change of topology: disk → cylinder

ds2 = M(ρ) sinh2 ρ

(
dρ2

sinh2 ρ
+ dφ2

)
= Ω(σ)

(
dσ2 + dφ2

)
→ ds̄2 =

(
dσ2 + dφ2

)
Anomaly contributions of bosons and fermions cancel out: curved disk ≡ flat cylinder.

Gelfand-Yaglom: developed for 1d second order operator dets in interval (0, R).
It computes quotient of dets in terms of homogeneous solutions

DD :
detO
det Ō

=
ψ(R)

ψ̄(R)
with Oψ = 0, Ōψ̄ = 0, ψ(0) = 0, ψ′(0) = 1

Applied in 2d with circular symmetry by Fourier decomposing as

ln
detO(θ0)

detO(0)
≡

∞∑
l=−∞

ln
detOl(θ0)

detOl(0)
l = Z,Z +

1

2
.

For disk topology, solve in ρ ∈ (ε, R) and take appropriate limits at the end.
Result using this technique:

∆Γ1-loop
effective(θ0) =

3

2
ln cos θ0 − ln cos

θ0

2︸ ︷︷ ︸
reminder ↔ mismatch

Remarks: potentially divergence in Fourier sum cancels due to susy multiplet structure.
GY method is insensitive to the measure!

[FGGSV 15, FPzST 16 also KT 08, Drukker-Forini 11,Forini-Giangreco-Sax 12, Krjstiansen-Makeenko 12]



Perspective 2: Zeta function. Honest computation on the disk.

. [Camporesi-Higuchi 92]: Applied to hyperbolic space in ’90s .

. [Drukker-Gross-Tseytlin 00]: showed exact cancellation of determinants for straight line WL.
Agree with expectations from field thoery side: 〈W 1/2(line)〉1-loop = 0

. [Buchbinder-Tseytlin 14]: Circular 1
2- dets via Heat Kernel/Zeta function on EAdS2. Reobtain

Kruczenski-Tirziu mismatch. Fermionic dets were transformed into 2nd order:

strong coupling λ� 1 : 〈W 1/2(circle)〉1-loop 6=

(
det1/2(− /D2

+ 1)

det3(−∇2 + 2) det5(−∇2)

)1/2

. [Forini-Tseytlin-Vescovi 1702]: 1
4-BPS latitude WL computed as a small deformation of the

1/2-BPS WL (perturbatively in θ0). Found a match for the quotient.
They profited from homogeneity of background EAdS2 space. Heat Kernel in homoge-
neous space requires the volume of space. Common folklore takes Vol(EAdS2) = −2π

λ� 1, (θ0)2 � 1 :
〈W 1/4(circle)〉
〈W 1/2(circle)〉

∣∣∣
1-loop, θ20

=

 det OF (θ0)
det OF (0)

det OB(θ0)
det OB(0)

1
2

θ20

———∫
d2σ
√
g = limR→∞

[
2π
∫ R
0 sinh ρ dρ = 2π(coshR− 1) ≈ 2π

(
/e
R

2 − 1 +O(e−R)
)]

= −2π



Motivated by [FTV 1702] we decided to attack the 1
4-BPS in full generality using ζ-function.

———

. [Aguilera Damia-Faraggi-Pando Zayas-Rathee-Silva 1802]: Strategy was to scale the metric to EAdS2

ds2 = M(ρ)
(
dρ2 + sinh2ρ dφ2

)
→ ds̄2 = dρ2 + sinh2ρ dφ2

No change of topology!

Generically the 1
4- operators take the form

OM = M−1Ō, Ō = −∇2︸ ︷︷ ︸
AdS connection + gauge fields

+ m2 + V

The determinants are therefore related according to

ln detOM = ln det Ō + A[O,M ]

Now a finite piece survives from the anomaly.

———



ζ-function: consider computing

ln det
Ō(θ0)

Ō(0)
with Ō(0) a free operator in AdS (V = 0 A = 0)

Space is no longer homogeneous so we use the U(1) circular isometry ∂τ to Fourier
decompose and re-express the 2d determinant in terms of 1d ones

ln
det Ō(θ0)

det Ō(0)
≡

∞∑
l=−∞

ln
det Ōl(θ0)

det Ōl(0)

The problem with this expression is that the Fourier sum diverges!

In flat space this problem has been studied [Kirsten-Dunne 06]. We generalized their results
to curved AdS and also we considered the presence of gauge fields.

Define

ln
det Ō(θ0)

det Ō(0)
≡ −ζ̂ ′Ō(0)− ln(µ2)ζ̂Ō(0) , ζ̂Ō(s) ≡ ζŌ(θ0)(s)− ζŌ(0)(s)

with

ζ̂Ō(s) =

∞∑
l=−∞

ζ̂Ōl(s)

Analytically continue to s = 0 and evaluate. On general grounds: ln det Ō(θ0)
det Ō(0)

∼ 1
l .



λ(k) = ν20 + k2, ν0 =
√

1
4

+m2

By standard contour integration we reexpress ζŌ

ζŌl(s) ≡
∑
i

(λ(l),i)
−s =

∮
γ

dk

2πi

(
k2 + ν2

0

)−s
∂k ln fl(k)︸ ︷︷ ︸

simple poles at location of eigevalues

=
sin πs

π

∫ ∞
ν0

dk
(
k2 − ν2

0

)−s
∂k ln fl(ik)

With fl(k) the extension to the complex k-plane of the regular solution to

Ōlf(l,k)(ρ) = (ν2
0 + k2)f(l,k)(ρ) satisfying f(l,k)(R) = 0, f(l,k)(ρ) ≈ ρ|l|, ρ� 1

which effectively puts the system in a box of radius R quantizing the spectrum ki. After
substracting the free operator one obtains

ζ̂Ōl(s) =
sin πs

π

∫ ∞
ν0

dk
(
k2 − ν2

0

)−s
∂ν ln gl(ik) with gl(k) =

f(l,k)(R)

f free
(l,k)(R)

gl(k) goes under the name of Jost function/phase shift. Note the resemblance with GY.



Substracting the 1/l divergence allows to regularize the sum. The divergence when added
back can be easily be given meaning and analytically continued to s = 0 obtaining finite
expressions.

Bosons:

ln
det Ō(θ0)

det Ō(0)
= ln

det Ō0

det Ōfree
0

+

∞∑
l=1

(
ln

det Ōl
det Ōfree

l

+ ln
det Ō−l
det Ōfree

−l
+

2

l
ζ̂Ō(0)

)
− 2

(
γ + ln

µ

2

)
ζ̂Ō(0)

+

∫ ∞
0

dρ sinh ρ ln (sinh ρ)V − q2

∫ ∞
0

dρ
A2

sinh ρ

ζ̂Ō(0) = −1

2

∫ ∞
0

dρ sinh ρ V

Fermions:

ln
det Ō

det Ōfree =

∞∑
l=1

2

(
ln

det Ōl
det Ōfree

l

+ ln
det Ō−l
det Ōfree

−l
+

2

l + 1
2

ζ̂Ō(0)

)
− 2

(
γ + ln

µ

2

)
ζ̂Ō(0)

+

∫ ∞
0

dρ sinh ρ ln (sinh ρ)
(

(m + V )2 −W 2 −m2
)
− q2

∫ ∞
0

dρ
A2

sinh ρ

−
∫ ∞

0

dρ sinh ρW 2

ζ̂Ō(0) = −1

2

∫ ∞
0

dρ sinh ρ
(

(m + V )2 −W 2 −m2
)



The dependence on the renormalization scale ln(µ2) cancels in the final expression.
This is reassuring in order to have an unambiguous result!

Putting all pieces together we find

∆Γ1-loop
effective(θ0) =

3

2
ln cos θ0︸ ︷︷ ︸
correct

+ 2

(
4 sin2 θ0

2
− θ0 sin θ0

)
︸ ︷︷ ︸

reminder is O(θ40)

= −3

4
θ2

0 + O
(
θ4

0

)
The result leaves us with an uncomfortable feeling, coinciding with the Localization result
at 1st order in θ0-pertubation (coinciding with [FTV 1702]) but differing with the full result!

———



MATCHING OF 1
4-BPS IN ANNULUS GEOMETRY

Introducing an auxiliary boundary at ρ = ε effectively changes the topology

disk→ annulus!

Moreover, if we excise the center of the disk at ρ = ε, we obtaining an annulus geometry.

Sε '
2πε2

(1 + cos θ0)
→ ε =

(
(1 + cos θ0)

Sε
2π

)1/2

Small radial cutoff in diff invariant variables shows θ0 dependence!

———

[Cagnazzo-Medina Rincon-Zarembo 1712] A delicate analysis of the determinants computed using
phase shift method showed an anomaly due to the θ0 dependence in the regulator. The
anomaly exactly cancels the reminder.

———

[Medina Rincon-Tseytlin-Zarembo 1804]: fixed of normalization comparing to the equatorial WL
(zero modes).



5 Summary and Open Questions

• Wilson loops are dual to string worldsheets with appropriate b.c.

• Leading order expansion at strong coupling matches between two sides.

• Fluctuation determinants for bosons and fermions as usual give ambiguous results.

Many different techniques (GY, phase shift) with fermions computed at the 1st

or 2nd order level give identical results for the cylinder.

• Match for 1
4-BPS loop in N = 4 was found by going to the cylinder and taking

appropriate diff invariant reguator.



But..

• Role of susy is unclear in b.c.

• Cancellation of longitudinal and ghost dets was an hypothesis. b.c.? CKV are non-
zero at the boundary, contrary to physical Dirichlet bc for WL. Krjstiansen-Makeenko?

• Zero modes and role of susy in equatorial loop? index?

• Drukker-Gross λ−3/4 argument fails for IIA 1
2-BPS WL! so?....

In ABJM case massless modes appear. Zeta function technique becomes subtle.

• Zeta function had the benefit of not needing b.c, but mismatch? susy?

• Kappa-symmetry gauge fixing determinant gives a constant DGT. Never computed.

• Measure independence of induced worldsheet metric? But normalization constant as
done by Zarembo precisely compares to equatorial loop were they exist!

Medina-Rincon PHD thesis June 2018: “This beautiful result highlights the importance
and desperate need for a better understanding of the mathematical machinery required
for these perturbative string theory calculations.”



THANK YOU!



MOTIVATIONS: apologies for missing works

1. Maldacena 9803, Rey-Yee: Wilson loops in fundamental irrep and string worldsheets.
Coupling to scalars. Parallel lines ↔ gutter worldsheet. Vqq̄ computation.

2. Drukker-Gross-Ooguri 9904: Coupling to scalars and gauge fields. Several issues
related to cusp WL. Legendre transformation of action correctly regularizes.

3. Drukker-Gross-Tseytlin 0001: Proper foundation of semiclassical string partition funct.
GS action, RR fields and fermions. Dets for straight line from zeta function and on-shell
method. Wrote down circular WL dets. Longitudinal modes cancel FP det.

4. Erickson-Semenoff-Zarembo 0003: 1
2- circular WL: perturbation theory. Summation

of ladder diagrams at planar level give Bessel function. which relates to gaussian MM.
5. Drukker-Gross 0010: All N MM computation give Laguerre. Straight ↔ circle WL

are conformally related, but an anomaly ⇒ 〈W (|)〉 6= 〈W (©)〉.
3 CKV of disk are zero modes of FP determinant ↔ log

√
λ

6. Zarembo 02: Classify susies of some WL according to ansatz relating ẋµ ↔ ~n. Stresses
that moduli bring log λ1/4 contribution. Equatorial WL θ0 = π

2 solution has 3 moduli
leading to a cancellation of subleading corrections, then W = 1.

7. Drukker 06: Based on perturbative computation, conjectures that 1
4-BPS latitude WL.

vev is given by as Bessell with λ2 → λ2 cos θ0

8. Pestun 07: Localization of N = 4 formulated on (curved) S4 reduces to gaussian MM
Circular WL in fundamental gives Laguerre proving ESZ and DG conjectures.



9. Drukker-Giombi-Ricci-Trancanelli 0711: Richer ansatz for susy WL. A subset of these
contains latitude WL, the preserved susies allow to compute the vev via localization.

10. Kruczenski-Tirziu 08: Compute using Gelfand-Yaglom. Fermionic dets are 2nd order
and square rooted. Compute Fermions/Bosons. Find mismatch.

11. Kristjansen-Makeenko 12: Circular dets using Gelfand-Dikii. b.c. for ‖ modes
12. Buchbinder-Tseytlin 1404: Circular 1

2- dets via Heat Kernel/Zeta function. Reobtain
Kruczenski-Tirziu mismatch. Fermionic dets are 2nd order.

13. Forini-Giangreco Puletti-Griguolo-Seminara-Vescovi 1512: Write down 1
4- dets.

W 1/4/W 1/2- quotient estimated numerically. Mismatch with localization.
14. Faraggi-Pando Zayas-GAS-Trancanelli 1601: Analytic result for 1

4- dets using GY.
Organize susy multiplets. Reobtain FGPGSV mismatch. Fermionic dets are 1st order.

15. Forini-Tseytlin-Vescovi 1702: θ0 perturbative Heat Kernel computation of latitude
1
4-WL matches localization.

16. Cagnazzo-Medina Rincon-Zarembo 1712: Compute dets by spectral/phase shift
methods reobtaining 13. & 14. Find an anomaly, which removes the discrepancy
with localization, due to disk → cylinder topology change.

17. Aguilera Damia-Faraggi-Pando Zayas-Rathee-GAS 1802: Zeta function is θ0-exact
Mismatch with localization result. Fermionic dets are 2nd order and square rooted.

18. Medina Rincon-Tseytlin-Zarembo 1804: Fix the normalization of string path integral
by relating CKV and configurational zero modes in equatorial loop.


